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Abstract

This survey article presents the existence and regularity theory for Cartan
functionals, i.e., for general parameter invariant double integrals defined on
parametric surfaces with arbitrary codimension. We also discuss the closely
related problem of finding globally conformal parametrizations for surfaces
or two-dimensional Riemannian metrics by direct minimization of the area
functional as a particular Cartan functional. With this new approach we also
establish conformal representations oéfret surfaces and provide an alter-
native proof of Lichtenstein’s theorem on globally conformal mappings.
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1 Introduction

This paper presents both a survey and a generalization of results obtained by the
authors in the articles [19]-[24] which deal with Plateau’s problem for Cartan func-
tionals and with the closely related question of finding conformal representations of
surfaces or two-dimensional Riemannian metrics. HeCaan functionalmeans

a two-dimensional parameter invariant integral

(1.1) F(X) :—/BF(X,XU/\XU)dudv

defined for surfacex : B — R", B C R?, with a Lagrangian¥(z, z) that is
positively homogeneous of first degreezin
The one-dimensional analogue

(1.2) HO=LF@®ﬁ

oncurves : I — R™ I C R, appears in Fermat’s principle of geometric optics,
in Jacobi’s formulation of the least action principle of point mechanics, and as arc
length in Finsler geometry.

In his memoir [4] Elie Cartan has introduced metric spaces whose “angular
metric” ds? = gjkdl'jdﬂfk is based on the notion of area defined by an integral of
the kind (1.1). Forn = 3, the fundamental tensq@y;) is given by

. . 1 .
k=1 \npi k k
(9j6) = (") with ¢ = —2a’™,

: : 9 1
a = det(a’?), and a/* := 02021 §F2 =FF x4+ FiF.
j

Therefore it might be permitted to use the notation “Cartan functional” instead of
the lengthy “two-dimensional parameter invariant variational integral”.
The prototype of a Cartan functional is the area functional

A(X) ::/ | Xu A Xy| dudv
B

whose regular (i.e. immersed) extremals are the surfaces of zero mean curvature,
the minimal surfaces. The classical problem of Plateau consists in finding a mini-
mal surface spanning a given closed Jordan clirieR"”, n > 2. Closely related,

but not equivalent, is the problem of minimizioggamong surfaces of a prescribed
topological type which are bounded by In Section 2 we treat a generalization

of these problems, the minimization of a given Cartan functional among surfaces
X : B — R" of disk-type which are bounded dy. The first general results

for integrals of the typg, F(X, A X,) dudv were obtained by E.J. McShane in
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1933-1935. The Plateau problem for general Cartan functionals (1.1) was treated
in the fifties by A.G. Sigalov [50]-[52], L. Cesari [5], and J.M. Danskin [7]. They
proved the existence of continuous minimizers. Somewhat later C.B. Morrey [41],
[42] and Y.G. Reshetnyak [46] found other and simpler methods that even pro-
vided the existence of (in the interior)dttler continuous minimizers. However, it
seems to us that in non of these papers the existence of (in the generalized sense)
conformally parametrizechinimizers is established, although this is occasionally
claimed. Yet minimizersY of (1.1) have to satisfy

(1.3) 1Xu? = X%, X, -X,=0

if one wants to establish some higher regularity, similarly as one cannot prove
higher regularity of minimizerg for functionals (1.2) without the normalization
condition\£| = const that fixes the parametrization of the geometric object “curve”
in an appropriate way. Here we treat the problefm- min” even under the ad-
ditional constraint that the range(B) of a competing surfac&’ is contained in a
prescribed closed séf of R, say, in a submanifold dk”. In Section 2 we estab-

lish the existence of conformally parametrized minimizers and, under appropriate
assumptions o, the Holder continuity of these minimizers is shown in Section

5. Higher regularity can so far be verified only for the special class of Cartan func-
tionals the Lagrangians of which possess a perfect dominance function. Following
C.B. Morrey [41], [42] we introduce in Section 5 the notion of a dominance func-
tion and exhibit a condition that guarantees the existence of a perfect one. Then
we show that any conformally parametrized minimizefolbounded by a contour

I € C*is of classH??(B,R") N CY?(B,R") for somegs € (0,1).

We note that the well-known partial regularity results for minimizers of inte-
grals fQ f(X,VX)du'...du" with strictly quasi-(or poly-)convex Lagrangians
f(x,p) cannot be applied because they requiféregularity of the integrand.
Moreover, work by B. Kirchheim, S. Mler, and V.Sveiak [29] shows that there
are smooth, strongly convex functiofi$p) such thatdiv f,(VX) = 0 has weak
solutionsX € Lip(B, R?) which are noC! in any open subset @8. Recently, L.
Szkelyhidi [53] improved this result in the following way:

There exists a smooth, strongly polyconyéy) on R? x R? with bounded
second derivatives such that the elliptic system in divergencedorify(VX) =
0 admits weak solution < Lip(B,R?) on the unit ball B of R? which are
not C! in any (nonempty) open subset®f Moreover,f can be chosen so that
these weak solutions are weak local minimizers of the corresponding functional
F(X) =[5 f(VX)dudv.

So the regularity question for weak solutions of strictly polyconvex systems is
even in two dimensions a rather difficile problem, and no general regularity theory
seems to be available (see also J. Bevan [3]).

With the LagrangiaF'(z, z) of a Cartan functional (1.1) we link the associated
Lagrangianf(z,p) := F(xz,p1 A p2) for p = (p1,p2) € R™ x R™. Convexity of
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F(z,z) in z means polyconvexity of (z,p) in p, and the best one can hope for
F(z, z) is convexity of F'(x, z) — A|z| in z for some\ > 0 which is equivalent to

121 Faal 2 A [C12 = 121 72(C - 2)? | for 2 #0,

i.e., F..(z, z) is (uniformly) positive definite on the orthogonal complemént*

of the one-dimensional space spanned:b¥his means thaf(x,p) — \|p1 A po|

is polyconvex, which is a kind of strict polyconvexity that is slightly weaker than
the standard strict polyconvexity which requires tfiat, p) — A|p|? is polyconvex

in p.

In consideration of S&kelyhidi’'s example the reader might find the regularity
results presented in Section 5 to be of some value.

In Section 3 we use the technique developed in Section 2 to derive sufficient
conditions for Fechet surfaces to possess a conformal representation. For instance,
as one consequence of our investigations we present a simple proof of McShane’s
theorem that a Fchet surface with a Lebesgue monotone representative can be
represented conformally. Let us note that (1.3) implies the inequality

IVX|? < c| Xy A Xy

with some constant, in fact even equality witle = 2. Therefore, conformally
parametrized mappings : B — R”, B c R?, n > 2, aremappings with bounded
distortion.

Section 4 deals with the regular conformal representation of Riemannian met-
rics and regular surfaces. In particular, we prove a generalization of the Riemann
mapping theorem where the Euclidean metric is replaced by a Riemannian one.
Our approach consists in minimizing area whereas Jost’s method in [27], [28] min-
imizes Dirichlet’s integral in the weak '2-closure of diffeomorphisms.

Finally in Section 7 we discuss some further results and several open questions
that are to be raised in connection with the preceding results.

2 Minimizers of Cartan functionals

LetI" be a closed rectifiable Jordan curvelf, n > 2, and denote byB the unit
disk
= {(u,v) =w e R? : u? 402 < 1}

in R2. We consider the clas&'(I") of mappingsX : B — R" bounded byl"
which is defined as follows#'(T") consists of those mappingé € H'?(B,R")
whose Sobolev trace @hB (denoted byX |5z) is a continuous, weakly monotonic
mapping ofo B ontoI" (see e.g. [8], vol. I, p. 231). We recall the well-known fact
that# (") is nonvoid ad" is assumed to be rectifiable.
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Let K be a closed set iR™ containingl’. We introduce#’(I', K) as the set of
surfacesX € ¢'(I') whose rangeX (B) is contained ink, i.e., X (w) € K a.e. on
B for any representative oX (which is again denoted b¥). Clearly % (T, K)
can be empty; swe have to assume that there is at least one surfage %' (I)
with Xo(B) C K. This holds true ifK is the diffeomorphic image of a convex
set inR"; in fact it suffices that is bi-Lipschitz homeomorphic to a convex set.
Among others we want to study the variational problem

F(X)— min in g1, K)

for Cartan functionalsF : (I', K) — R. These are integrals of the kind
F(X):= / F(X, Xy N Xy) dudv
B

with a LagrangianF € CO(K x RY), N := n(n — 1)/2, such thatF(z, z) is
positively homogeneous of degree arith respect toz, i.e., we assume

(H)  F(z,tz) =tF(x,z) for t >0 and forall (z,2) € K x RV,

We also suppose that there are numbefsandms with 0 < m1 < ms such that
thedefiniteness assumption

(D) milz| < F(z,z) < malz| forall (z,z) e K xRY

is satisfied. IfK is compact the assumptidfi(x, z) < ma|z| follows from (H)

and the continuity of” whereas the assumption; |z| < F(z, z) with m; > 0is
automatically satisfied if we assume tHgtis compact and”(x, z) > 0 for any
(z,2) € K x RN with z # 0. Then the Lebesgue integr&l(X) is well-defined
on{X € H'"*(B,R") : X(B) C K} and in particular or¥’(I', K). Hence, if

% (', K) # 0, it makes sense to look for a minimizer &fin (", K). In order to
apply the direct method of the calculus of variations we use the lower semiconti-
nuity of F with respect to weak convergence of sequencd$'if(B,R") N {X :

X (B) C K}.Onaccount of aresult by Acerbi and Fusco [1] this property follows
from the additional assumption

© F(z,z) isconvex with respect te, for anyz € K.
In fact, if f : K x R?>” — R denotes thassociated Lagrangian
f(xap) = F($7p1 /\p2) for =z € Ka b= (php?) eR" xR" = R2n7

condition (C) implies the polyconvexity ¢f(x, p) with respect tg, for anyz € K,
and (D) yields

1
0 < f(z,p) < malp1 Ap2| < §m2|p\2 for (z,p) € K x R*".
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Then we also have
F(X) ::/ f(X,VX)dudv for X € H"*(B,R") with X(B) C K,
B

and we obtain

LEMMA 2.1. If X; — X in HY?(B,R") and X;(B) C K for all j € N then
X(B) C K and

F(X) < lijmglf}“(Xj).
PROOF By Rellich's lemma we hav&’; — X in L?(B,R"), and soX;, (w) —
X(w) for a.e.w € B for some subsequendeX;,} C {X;}. SinceK is closed
and X;(B) C K we arrive atX(B) C K. Thus alsoF(X) is defined, and [1]
yields the desired lower semicontinuity &t O

By (H) the Cartan functional is a “parameter invariant integral”, i.e., we have
F(Xor) = F(X)on{X € H"?(B,R") : X(B) c K} for any C'-diffeo-
morphismr : B — B of B onto itself. Hence, for any differentiable famity,
|s| < so, of diffeomorphisms* : B — B such that

8 (w) = w+ sn(w) + - - -

with n € C*(B,R?) andn(w) - v(w) = 0 forw € 0B, v : 9B — S! being the
field of unit vectors normal to'B,

d
(2.1) OF(X,n) = %f(X o 7%)|s=0 = 0.

Now we choose three different parameters wy, w3 € 0B and three disjoint
points Py, P,, P3 € T" and introduce the three-point condition

(*) X(wl) = Pl, X(wg) = PQ, X(w3) = P3.

Let #*(I') and¢™*(I", K') be the set of surface¥ € ¢(I') andX ¢ ¢(I',K)
respectively which satisfy.
Next we introduce tharea functional

(2.2) A(X) ::/ ]Xu/\Xv|dudv:/ VIXu21 X012 — (Xu - Xo)? dudv
B B

of a surfaceX € H'?(B,R") as well as itdDirichlet integral

(2.3) D(X) = ;/BWXyzdudv



CONFORMAL REPRESENTATION OF SURFACES 7

with VX = (X, X,) and|VX|?> = | X, |> + | X,|?. Then
A(X) < D(X),

and we have

A(X) =D(X) ifandonlyif X satisfies )
with
(5%) 1 Xul® = | X%, Xu- X, =0,
ie. | Xy, (w)? = |X,(w)* and X, (w) - X,(w) = 0 for a.e. w € B for any
representativeX of the H'-2-surface that we are considering. The equaties$ (
are the so-calledonformality relations.Note thatA(X) is the simplest example
of a Cartan functional, witlf'(z) = |z| and f(p) = |p1 A p2|.

For X € C1(B,R"), n > 2, the valueA(X) of the functionalA defined by
(2.2) is given by tharea formula

(2.4) AX)= | O(X,B,x)d#*(z),
]Rn
where#? denotes the two-dimensional Hausdorff measurB®andO (X, E, r)

is the Banach indicatrix for any séf ¢ B andx € R", i.e., the number of
solutionsw € E of the equationX (w) = z,

(2.5) OX,E,x):=f{we E: X(w) =z} for EC B.

Federer has established (2.4) for any Lipschitz continuous mapping — R",

n > 2, and even for Sobolev mappings. In the latter case certain precautions are
necessary: The formula may hold for some representatives of a Sobolev mapping
but can fail for another one. In fact, both necessary and sufficient for (2.4) to hold
is that X is aLusin representativef classH (B, R"), that is, X must have the
Lusin property:

H*(X(E)) =0 forall Ec B with s#%(E) = 0(< Z*(E) =0).
The following is true (cf. [12], vol. I, 3.1.5):

PROPOSITION2.2. If X of classH"?(B,R"), n > 2, is a Lusin representative
then

(2.6) / | Xu A Xyl dudv = | O(X,E,z)dA?(x)
E R”
for any measurable subsétof B, and even

(2.7) /Ef(X(u, V)| Xy A Xp| dudv = . f(2)O(X, B, x) dA#*(x)

for f : X(FE) — R whenever one of the two sides is meaningful.
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Any Sobolev map of clas& ?(B,R") has a Lusin representative but it need not
be the continuous one if that exists. Such an example can be found in Remark 3, p.
223 of [12], vol. I. Even more striking is an example by Cesari modified byyMal
and Martio (see [34], pp. 34-35): There is a continuous mapfingR? — R? of
classH!'2(R?, R?) with det VX (w) = 0 for a.e.w € R? which maps the interval
{(u,0) : 0 <u < 1} ontothe squarg0, 1] x [0, 1].
On the other hand, the continuous representative of a mappiagH (B, R")
with s > 2 is automatically a Lusin representative, and (2.6) and (2.7) are true
(evenX € HI}J’CS(B,R”) is sufficient); cf. [12], vol. I, p. 223, Theorem 3. Fur-
thermore, ifX : B — R", n > 2, is a (locally) Hblder continuous representative
of classH!2(B,R") thenX has the Lusin property, and so (2.6) and (2.7) remain
true. Forn = 2 this was proved in [34], Theorem C; far > 2 we refer to May
[33], pp. 381-384.

We mention that any Lusin representati¥eof classH!2( B, R™) maps mea-
surable subset® of B into .s#?-measurable and countaldlyrectifiable subsets of
R™ in the sense of Federer (cf. [12], vol. |, 2.1.4 and 3.1.5), and (2.6) implies

(2.8) /B | Xy A Xo| dudv > #*(X(B))

where the equality sign holds if and only@f (X, B,z) = 1 for .#?-almost all
x € X(B).

In the next section we shall recall how the functiosals related to the Fachet
area of continuous surfaces, and then we discuss generalized conformal represen-
tations of such surfaces. Essentially this will be a special case of the following
investigation of thePlateau problenf 7 — min in % (T, K)” for a Cartan func-
tional F as previously discussed. We first recall a well-known consequence of the
Courant-Lebesgue lemma (cf. [8], vol. |, 4.3 & 4.4).

LEMMA 2.3. (i) Let{X;} be a sequence of surfac&§ € ¢*(I') with D(X) <
¢ < oo forall j € N and some constart> 0. Then there is a surfac& € ¢*(I")
and a subsequendeX;, } of { X} such that

v

X;, — X in H**(B,R") and X, |sp — X|sp in C°(0B,R").

(i) If in addition X; € ¢*(I', K) for some closed s&k in R™ then alsoX €
¢* (I, K).

PROOF By Poincaé’s inequality there is a constast = ¢y(I") > 0 depending
on|T'| := max{|z| : x € T'} such that

IX172(5.5ny < co(1+D(X)) forall X € €(T)
whence

(2.9) X172 (prny < (24 co)(1+ D(X)) forall X € 4(T).
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So the se{ X € ¢*(I') : D(X) < ¢} is sequentially compact with respect to
weak convergence iff 2(B,R"), and the Courant-Lebesgue lemma implies the
statements of (i). The assertion (i) follows as in the proof of Lemma 2.1. O

THEOREM2.4. If F € C°(K x R") meetgH), (D), and(C), whereK is a closed
setinR" then there is anX' € ¢ (I', K) with (X ) = infyr ) F satisfying the
conformality relationg*x), provided that#'(I", K') is nonempty.

PrROOE For0 < e < 1 we consider the family of functional&® defined on
HY2(B,K):={X € H"*(B,R") : X(B) C K} by

F(X) = F(X) +eD(X).

Introducing the Lagrangiafi© : K x R>®* — R by

[(e.p) = F(e.p) + 5ol

we have
fe(X):/ fX,VX) dudv.
B

Itis well-known thatD is (sequentially) weakly lower semicontinuous on the space
HY2(B,R™). In conjunction with Lemma 2.1 it follows thaf* is (sequentially)
weakly lower semicontinuous afii?(B, K) for anye € [0, 1].

Let 7 : B — B be a conformal automorphism @ onto itself andX ¢
¢(I'K). ThenY := X o7 € ¢(I', K) andD(Y) = D(X) as well asF(Y) =
F(X)whenceF<(Y) = F(X). Therefore,

(2.10) inf F= inf F and inf F¢= inf F°.
%(T,K) (I, K) %(T',K) *(I,K)

We define the nondecreasing functién [0, 1] — R by

(2.11) d(0):= inf F, d(e):= inf F° for 0 <e<1.
Z(T,K) ¢ ,K)

Since|p|?/2 < e f<(x, p) it follows that

(2.12) D(X) < e 'FYUX) forall X e (I, K) and 0 < e < 1.

Now we fix somee € (0, 1] and consider the minimum problem
“F¢— min in¥(I',K)".

By (2.10)—(2.12) there is a sequen{&;} of mappingsX; € ¢*(I', K) with
F(X;) — d(e) asj — oo andD(X;) < const. On account of Lemma 2.3
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there exists an¥“ € ¢*(I', K) and a subsequendeX;, } with X; — X€in
HY2(B,R"). Thend(e) < F¢(X¢), and Lemma 2.1 implies=¢(X¢) < d(e).
Thus

(2.13) d(e) = F(X€) forsomeX® e ¢*(I', K).

Consider any; € C*'(B,R?) with n(w) - v(w) = 0 for all w € 9B, where
v : OB — Sl is the field of unit vectors normal 195, and form a differentiable
family of diffeomorphismsr® : B — B with 75(w) = w + sp(w) + --- for
|s] < 1. DefineY® by Y*(w) := X¢(m%(w)) for w € B and|s| < 1. Then
Y® € €(T, K), and consequentlyF¢(Y?) = F¢(X€) < F(Y*) for |s| < 1,
taking (2.13) into account. This implies

d
ZFYS se0 =0,
ds (Y)ls=0 =0

which is
0=0F(Xn) =0F(Xn)+edD(X,n).

SincedF(X€,n) = 0 (by virtue of (2.1)) and > 0 we obtain
dD(X¢,n) =0 forall n € C'(B,R?) with n-v =0 on dB.

Fora:= | X¢|? — | XE|?, b= 2X¢ - X, this leads to
/B la(nk — 1) + b + b)) dudv = 0

for anyn = (n*,n?) € C*(B,R?) with - v = 0 on dB. First we choose in
C(B,R?) in the formn = Fsu wherey = (ub, p?) € C°(B,R?) and.%; is a
smoothing operator with a symmetric kerigl 0 < § < 1, i.e., Zsu = ks * p.
Then

[ 108k = )+ 8% + ) o =0
B

for a® := a, b° := .#;b. An integration by parts yields
[ [ G@d B+ (ol = 8)p?) dudo = 0
B

for anyp € C°(B',R?) with B’ cC B and0 < § < do(B’). Therefore the
functionsa’, —b? € C>°(B’) satisfy the Cauchy-Riemann equations

ad = (=b)),, a® =—(=b)), in B,

and so¢? := a® — ib® is holomorphic inB’ cc B for0 < § < dy(B’). Since
#® — ¢ := a —ibin L'(B',C) asd — 0 we infer that¢ is holomorphic inB’
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forany B’ CcC B, and sap is holomorphic inB. Now we can apply a well-known
reasoning due to Courant [6, pp. 112—-115] and obtain 0, that is,

2.14 XP?2=|X% X°-X°=0in B.
( u v ) u v

In other words, for any > 0 the minimizerX¢ of F¢ satisfies the conformality
relations ¢x), and so we have

A(X€) =D(X*) forall €> 0.
Condition (D) impliesm; A(X€) < F(X¢), hence
(m1 + €/D(X) < F(X).
On the other hand, (2.13) implies
FI(X¢) <F(Z) forall Z e ¥ (I'K),

and by A(Z) < D(Z) andF(Z) < moA(Z) we haveF*(Z) < (mq +¢€)D(Z)
whence
(my1 4+ €)D(X€) < (ma + €)D(Z).

Since n

m € m
2 <2 forall e>0
mi1 + € my

we arrive at

D(x9) < D7) forall Ze?(I,K),
mi

and consequently,

(2.15) DX)< 2 inf D=c<oo forall ee (0,1].
my ¢(I,K)

By virtue of Lemma 2.3 there is ali € ¢*(I", K') and a sequence ef > 0 with
€; — 0 such thatX% — X in H%?(B,R™). On account of Lemma 2.1 it follows
that

F(X) < lijmiorc}ff(Xfﬂ').
Sinced(e) is nondecreasinglim._,.o d(e) exists, and byd(¢) = F¢(X€¢) =
F(X€) + eD(X€) we infer from (2.15) that

51320 dle) = 613110}‘ (X%) = ELHEO FX).

Moreover, we have(0) < F(X) asX € ¢(I', K), and so

d(0) < F(X) < GEIEO d(e).
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On the other handj(e) = F(X) < F(Z) = F(Z) + €D(Z) for any Z €
¢ (I', K) whencelim._.,o d(e) < F(Z) and consequentlym,_, ¢ d(e) < d(0).
ThusX € ¢*(I', K) satisfies
F(X)= inf F= lim F(X°),
¢ (I'K) e—+0
i.e., X minimizes¥ in ¢(I', K).

Finally we want to show thak satisfies the conformality relationsx). This
does not immediately follow from (2.14) since we merely have the weak conver-
genceX“ — X in H'2(B,R"). However, ) is a consequence of (2.14) as soon
as we have the strong convergenceé — X in H2(B,R"). For this it suffices
to prove
(2.16) lim D(X) = D(X).

Jj—00

This will be verified as follows: Since& ¢ minimizes ¢ in € (I', K) we have
F(X) <FU(X), e,

F(X)+eD(X) < F(X)+eD(X),

and F(X) < F(X¢) asX minimizesF. ThereforeeD(X¢) < ¢D(X), and so
D(X€) < D(X) for e > 0 whence

limsupD(X9) < D(X).

Jj—00
The weak lower semicontinuity of the Dirichlet integralif-2 (B, R") yields

D(X) <liminf D(X9),

J—00

and so we obtain (2.16). This concludes the proof of the theorem. O

REMARK. We gratefully acknowledge that the proof of (2.16) given above
was pointed out to us by StefaniMer. Our original proof was more cumbersome
and even required strict convexity 6f(z, z) in z, in the sense thdt'(z, z) — o|z|
be convex for some > 0.

3 Conformal representation of Frechet surfaces

Besides the classical formula

A(X) = / X, A X, dudv
B
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for embeddingsX : B — R” of classC', which also makes sense for surfaces
X € HY?(B,R"), there are numerous definitions generalizing the notion of area.
Of those, two have proved to be valuable, the two-dimensional Hausdorff measure
#%(S) of a point setS ¢ R” and, secondly, the Lebesgue-area of achet
surface. We have discussed the relation betwéek ) and.#2(X (B)) for X €
H'Y2(B,R") in the preceding section. Now we turn to the Lebesgue area of a
Fréchet surface.

Consider two continuous mappings : Q; — R™ and X, : Oy — R™ where
Q; and$), are bounded open setslit. They are said to beebesgue equivalent
(symbol: X; ~ X5) if there is a homeomorphism : Q; — Q5 of Q; onto O,
such thatX; = X, o07. This is an equivalence relation, and every equivalence class
might be called &ebesgue surfac&nfortunately, this notion of equivalence is too
narrow, and so one uses the weaker notion 6tRet equivalence which is defined
as follows. For any two mappings; € C°(Q;,R") and Xs € C%(Qy, R?) with
homeomorphic compact parameter regitnsand(), in R? we define the distance
5(X1, XQ) as

(31) (5<X1,X2) = 1nf{HX1 —X50 THCO(ﬁl,R”) T E H(ﬁl,ﬁg)}

whereH (01, 2)} is the set of homeomorphisms from onto(2,. The distance
functiond is nonnegative, symmetric, and satisfies the triangle inequality.

One callsX; and X» Fréchet equivalentX; ~ X5) if (X7, X2) = 0. This
relation is, in fact, an equivalence relation. Every equivalence dass X | with
a representativl ¢ C°(Q2, R") is said to be &réchet surfacef thetopological
type of 2, and X is called aparameter representationf .S.

In the sequel we restrict ourselves t@Enet surfaceS of the type of the disk.
They form a metric space#, §) with the distance function(.S, S2) defined by

(3.2) 6(51,92) == 6(X1, Xo) if S1 =[Xy] and Sy = [X3].
The following result is easy to verify:

PrROPOSITION3.1. (i) If X, X; € C%(B,R") with | X — Xj||copgn) — 0as
j — oo, andS = [X], §; = [Xj], thend(S;, S) — 0.

(i) Conversely, ifS,S; € .# with §(S;,5) — 0, and S = [X] for some
X € C°(B,R"), then there areX; € C°(B,R") with S; = [X;] and such that
IX = Xl go5.my — 088 — oc.

The convergencé(S;, S) — 0 for S,51,S5s,...,5;,...in .# is denoted by the
symbolS; — S.

In order to define the Lebesgue ar&4S) of a given Fechet surfaces we
consider the sequencé®; } of polyhedral surfaces wit®; — S. There is always
such a sequence, and for any polyhedfoits elementary surface ared P) is
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well-defined. For any sequen¢®; } with P; — S we considetim inf; .. &(P}),
and then we form the infimum of the valuks inf; ., & (P;) taken with respect
to all sequence®; — S; this is theLebesgue areaZ’(.S) of S,

(3.3) Z(8) = inf{liminf £(P)) : P; — S}.
j—00

It turns out thatZ’(P) = &(P) for any polyhedronP. McShane [35] and Morrey
[37] have proved that

(3.4) Z(S) = A(X)

if X is a parameter representation fof classC?(B,R") N H2(B,R"). (We
refer to [45] and [43] for proofs of the results cited above as well as for further
results and references.)

Now we want to describe a condition éfthat allows us to certify the existence
of a conformally parametrized representation.

THEOREM 3.2. Suppose thak € ¢(T') N C°(B, R") satisfies
(3.5) 0SG; X0 < ¢ 0SCynXo

for all open setd? C B and a constant, > 0 independent of2. Then there
exists a mappind( € ¢ (I') N C°(B,R") with §(X, X,) = 0 which satisfies the
conformality relations

(%) 1Xul? = X%, Xu-X,=0.
PROOF. We consider mapping& € C°(B,R") which satisfy
(3.6) 0SG; X < ¢ 0SChn X

for all open set€) C B. Let K(T, X;) be the set ofX € €(I') N C°(B,R")
which fulfill (3.6) as well asi(X, Xy) = 0, andC*(I", X) be the subset ok €
K(T, Xo) subject to a three-point condition

(*) X(w]) = Pj j = 1,2,3,

as described in Section 2. (Note that, for any homeomorphisnB — B, the
reparametrized mapping := X o 7 satisfies (3.6) ifX fulfills (3.6).

Now we proceed similarly as in the proof of Theorem 2.4, repla@iig, K)
and¢™* (T, K) by K(T', Xo) andC*(T", Xy), respectively, as well ag and F< by
Aand

A=A+ €D for 0 <e<1.

Instead of Lemma 2.3 we use the following result:
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LEMMA 3.3. Let{X,} be a sequence of surfac&s e K*(I', X() withD(X;) <
¢ < oo forall 5 € N and some constant > 0. Then there is a surfac €
K*(T', Xo) and a subsequendeX, } of { X} such that

X;, — X in H**(B,R") and X;, — X in C°(B,R").

We omit the proof of this result which is once again a consequence of the Courant-
Lebesgue lemma if one takes (3.6) into account.
Analogously to (2.10) we note that

inf A= inf A, inf A°= inf A"
’C(F,Xo) ,C*(F,Xo) K(F’XO) ’C*(F,Xo)

Then we fix some € (0, 1] and consider the minimum problem
“A°— min in KT, Xyp)".

By the Lemmata 2.1 and 3.3 there is a minimi2&rof A€ in C(I", X)) which lies
in £*(T', Xo), i.e.,
AS(X€) =d(e) for 0 <e<1

if we set
d(e) := inf A"
K(T',Xo)
For anyn € C(B,R?) with n(w) - v(w) = 00ndB, v : 9B — S! the exterior
normal todB, we form a differentiable family of diffeomorphisms$ : B — B
with
°(w) =w+ sn(w) +--- for |s|] <« 1

and setY® := X€o 7. ThenY*® € K(T, Xy) for |s| < 1 and soA¢(Y?) <
A(Y®). This implies

d

—Af(YS =0 = 0

Ao
whencedD(X¢,n) = 0 for anyn € C*(B,R") with - v = 0 on 9B, and we
obtain

X2 = |X52, X5 X5=0on B.

It follows that
A(X) =D(X°)

and
AS(X9) = (1+ ) D(X6).

ForanyZ € K(T', Xo) we haved(X¢) < A(Z) andA“(Z) = A(Z)+€eD(Z) <
(1+ €)D(Z); thereforeD(X ) < D(Z) and in particular

D(X) <D(Xy)=:cfor 0<e<l.
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By Lemma 3.3 it follows that there is aki € £*(I", X) and a sequence ef > 0
with ¢; — 0 such thatX% — X in H%?(B,R") and X% — X in C°(B,R").
SinceZ(S) = A(Z) for S := [Xp] and anyZ € K(T', Xy), we haveA(X€) =
A(X) forall e € (0,1], and so

D(XY) = A(XY) = A(X) < D(X).
On the other handY“ — X in H'2(B,R"); hence

D(X) < liminf D(X5).

J—00

Thus A(X) = D(X) which implies §x). O

An immediate consequence of the preceding theorem is

COROLLARY 3.4. Let S = [X] be a Fiechet surface with a parameter represen-
tation X of class#’ (I') N C°(B, R") satisfying(3.5). Then there exists a represen-
tative X of class¢'(I') N CY(B, R™) for S which fulfills the conformality relations
(%) and condition(3.5).

Another consequence of Theorem 3.2 is a celebrated result by McShane ([36],
Theorem |, p. 725) which we formulate as

CoROLLARY 3.5. Suppose that the Echet surfacé& has a representative of class

€ (') N C°(B,R") which is Lebesgue monotone. Then there is a Lebesgue mono-
tone representativeX € ¢(I') N C°(B,R") for S satisfying the conformality
relations(xx).

We recall that a continuous functian: B — R is said to be_ebesgue monotone
if we have

Ig})ngb < p(w) < Irégxqb forall weQ
and for any open set C B. A mappingX € CY(B,R") is called Lebesgue
monotone if each of its components has this property. Clearly every other repre-
sentative of the Fchet surfacé = [X] is Lebesgue monotone as well. Moreover,
each Lebesgue monotone mappiXigatisfies (3.5) witlyg = /n.

Actually McShane’s result looks slightly more general than Corollary 3.5 be-
cause it states the following:

Any Fréchet surfaceS' with finite area.Z’(.S) that has a Lebesgue monotone
representativeX € C°(B,RR™) which maps)B weakly montonically onto a Jor-
dan curvel has a representative of clags!?(B, R") which satisfiegxx).

(Here the rectifiability of" is not needed because of the assumptitft) < oc.)
However, this form of the assertion really is not stronger than Corollary 3.5 since
Z(S) < oo implies the existence of a Lebesgue monotone representtioé
class? (') N C°(B,R"); see e.g. Nitsche [43}226.
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LEMMA 3.6. Any bi-Lipschitz homeomorphisiXi; of B onto a subsef of R
satisfies condition3.5).

PROOF.  The mappingX, : B — S is a bi-Lipschitz homeomorphism if there
are constanta andy with 0 < A < p such that

(B.7)  ANwy —we| < | X (w1) — X(we)| < plwy — we| forall wy,wy € B.
Let 2 be an open set i. Thendiam €2 = diam 052, and so
0sCgX < pdiamQ = pdiam 9Q < (u/N) 0sCho X.

This leads to

COROLLARY 3.7. Suppose that the Bchet surfaceS has a representativdy €
% (T") which furnishes a bi-Lipschitz mapping Bfonto the traceS := X(B) of
S in R™. Then there exists a representati¥e € ¢ (I') N C°(B,R") of S which
satisfies the conformality relatiorisx) and condition(x).

This result can, for instance, be applied to any polyhedral sutfatieat has an
embedding as a representative, and to aehet surfacé having an embedded
C'-immersionX, : B — R™ as a representative. In fact, there i5 a 0 such that

Nwy — wa| < [Xo(w) — Xo(ws)| < p'|wy — wo)

holds for anyw;, ws € B with |w; — ws| < § and some\, i/ with 0 < X < 4.
Furthermore there are numbdﬁsml,img with R > § and0 < my < msy such
that|wy — we| < R for anyw;, wy € B and

my < | Xo(wr) — Xo(wz)| < me

for wy,wy € Bwith § < |w; — wo| < R. This implies
m1
R
for wy, we € B with |wy — wsy| > 4. Setting

A :=min{\N,mi/R} and u := max{y’', ms/5}

we obtain (3.7).

We also note the following general result by Morrey (see [38], p. 701, Theorem
2): Every nondegenerate &chet surfacé with £ (S) < oo possesses a represen-
tative X ¢ H%?(B,R") N C°(B,R") satisfying the conformality relatior(sx).

A Fréchet surfacé with a representativél € C°(B,R") is said to benonde-
generatef X |55 is nonconstant an@ \ C'is connected for every continuu@in
B such thatX | is constant (see [39], p. 49, Theorem 3). This intricate sufficient
condition seems difficult to be verified, which leads to the problechafacteriz-
ing all surfaces which allow a conformal representation, which — to the best of our
knowledge — remains an open question up to now; see also [57], [58].

m
i —wa] < [ Xp(wn) — Xo(wa)| € ~Ffwr — wy
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4 Conformal representation of Riemannian metrics and
Cle-surfaces

As before let3 be the standard unitdigkv € R? : |w| < 1} inR? andw = (u, v).
Secondly, lef) be a bounded open set of points= (z!, 2%) € R?, bounded by a
closed rectifiable Jordan cur¥e We assume that, besides the Euclidean metric

(4.1) ds? == (5jkdxjdxk
onR2, Q) carries a Riemannian metric
(4.2) ds? .= gjkd:vjdxk.

We shall prove the following global form of Lichtenstein’s theorem [32] which can
be viewed as a generalization of Riemann’s mapping theorem from the complex
plane to two-dimensional Riemannian manifolds.

THEOREM4.1. Suppose thaf € C™“ andg;;, € C™1*(Q2) for somem € N
anda € (0,1). Then there is a conformal mappingfrom B ontoQ which is of
classC™“ (B, R?).

Here a conformal mapping from B onto Q is a diffeomorphismr : B — Q
betweenB and(} satisfying theconformality relations

(4.3) &(r)=4(r), F(r)=0,
where the quantitie€' (), .# (1), and¥(7) are defined as

E(1) = gi(T)TiTE,  G(1) = g (r)TiTE,
(4.4)
F(1):= gjk(T)Tin.
The pull-backr*ds? of the metricds? on Q) to the diskB is given by the formula
ds? = &(1)du® + 2.7 (1)dudv + 9 () dv?.

For a conformal mapping : B — Q we have

(4.5) AN=&(1)=%(r)>0o0n B
and
(4.6) 7*ds* = XNu,v) - (du® + dv?).

Moreover, the components, 72 of a conformal mapping,

7(u,v) = (7(u,v), 7%(u,v)) for w = (u,v) € B,
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satisfy theBeltrami equations

V9 plo2(T )7'1+922(7')7'5]

4.7)

Va(r)rs = plgn(T)7y + g12(T)72],
where

g(x) := det(g;r(x))

and eithep(u,v) = 1 or p(u,v) = —1. The Beltrami equations (4.7) are the “gen-
eralized Cauchy-Riemann equations” of a conformal mappirend they imply
(4.8) Vg(r)det DT = p&(7).
ThusT is orientation preserving or reversinggdf= 1 or p = —1 respectively. If

gjk(z) = d;, then Theorem 4.1 is the classical Riemann mapping theorem since we
can assumg = 1 (otherwise we composewith the reflectionu, v) — (u, —v)).
In fact, we even obtain the Osgood—Cagattiory extension of Riemann'’s theorem
to the boundarie8 B andof?, whereas the theorem in its classical formulation only
claims thatB can be mapped conformally onb

There are many proofs for Theorem 4.1 or for related versions. The classical
approach consists in combining Lichtenstein’s theorem (which locally leads to con-
formal parameters) with the uniformization theorem. We proceed by a variational
method, minimizing tharea functional

(4.9) A(r / VE(T) — 72(1) dudv = / Vg(r)| det D7| dudv.
B
This will simultaneously lead to a minimization of tBgrichlet integral
(4.10) D(r) = % / [E(7) + 9 (7) ] dudo.
B

Proof of Theorem 4.1: We extend(g;y,) to all of R? in such a way thag;,(z) =
§ik for |z| > 1 andgj, € C™ 1%(R?). Then there are numbers, my with
0 < m1 < mgy such that

(4.11) my|€° < gir(2)€ " < mylél? forall z,& € R,

Now we consider arbitrary mappings: B — R? of classH!?(B,R?). For any

suchr the functions&(7), .Z (1), ¥(r) are of class.!(B), and soA andD are

well-defined onH!'%2(B,R?) and in particular ori¢'(T") (cf. Section 2, setting
n = 2). We want to find a solutiom of the minimum problem

“A— min in€()"
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satisfying (4.3). To this end we introduce
A(1) = (1—e)A(r) + eD(r), 0<e<]1,
and consider thenodified minimum problem
“A°— min inE((I)”

for any fixede with 0 < ¢ < 1. The functionalA is a Cartan functional, and so
Lemma 2.1 applies tal. Since alsdD is (sequentially) weakly lower semicontin-
uous onH?(B,R?), the same holds ford¢. Hence there is a¢ € %(I') such
that

A7) =inf{A°(7) : 7€ €(I)}, 0<e<l.

The same reasoning as in the proof of Theorem 2.4 yields at first
0A(1¢,m) = edD(7,m) =0

for any vector field; € C*(B, R?) with 5|35 L 0B, whence

/ [a(n, —n7) + b(n; + 1y ] dudv = 0
B

for suchn, with
a:=&(1%)—9(1%), b:=2%(19),

and themm = 0 andb = 0. Thus we have
(4.12) E(T)=9(r%), F(r°)=0for 0 <e<L1.

For anyr € H'2(B,RR?) one hasA(7) < D(r), and the equality sign holds if and
only if T satisfies (4.3) a.e. aB. We conclude that

(4.13) A7) = A(T°) =D(7¢) for 0 <e<1.
Set
a(T) := inf A, d(T") := inf D.
%) %(T)
Then we obtain for any € ¢(I') and0 < e < 1 that
d(l') <D(7°) = A°(7°) < A(7) < D(7)
whenced(I') < D(7¢) < d(I"), and so

(4.14) D(r¢) =d(T') forall €€ (0,1].
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It follows from (4.13) and (4.14) thatl*(7¢) = A (7<) for all ¢, ¢’ € (0, 1]; thus
we have for anyr € €' (T")

a(l) < A(T€) = A(7) = A9 () < A9 (1) = A(r) as ¢ — 0.

Hencea(I') < A(7€) < a(T'), i.e. A(7¢) = a(T") for all e € (0, 1], and we have
arrived at

(4.15) a(T) = A(r) = D(r9) = d(T')  forall e (0,1].

In particular,r := 7! minimizes both4 andD in ¢'(T").

Let us assume that > 2 anda € (0, 1). Then well-known results show that
7 is a minimal surface of class™ (B, R?) in the two-dimensional Riemannian
manifold (R?, ds?); cf. Morrey [42], Chapter 9, Tomi [55], Heinz-Hildebrandt
[16]. Furthermore, ifwg € B is a branch point of, i.e., if &£(7)(wy) = 0, then
there is am € C2\ {0} and a number € N such that the Wirtinger derivative
7w = (1/2)(7, — i7,) : B — C? of 7 has the asymptotic expansion

Tw(w) = a(w — wp)” + o(|w —wpl”) as w — wy.
Integrating it follows that for: with 0 < |z — 7(wp)| < 1 the indicatrix
O(r,z) == t{w € B: 7(w) = x}
satisfies
(4.16) O(r,z)>2, or O(r,z) >1, ifwye Borwy € dB, respectively,

provided thatw is a branch point of.
A topological argument yield® C 7(B) asT mapsdB weakly monotonically
and continuously ont®'. Therefore we also have

(4.17) O(r,z) > 1 for = € Q.

Let 7o be a diffeomorphism o3 onto (2, for instance the classical conformal map-
ping 7o in the complex plane. Then

A(r) < A(mo) = /\/g(:c) datda?®.
Q
On the other hand the area formula yields
A(r) = O(r, z)\/ g(z) de'dx?,
R2

and so

(4.18) /]RZ O(r,2)\/g(x) dz'da® < /Q\/g(a:) da'dz?.
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On account of (4.16)—(4.18) it follows firstly thathas no branch points oB
whenceDr(w) # 0 for all w € B. Thust|sp is 1-1 and yields a homeomor-
phism fromdB ontoI'. Secondlyy |z is open; hence it follows from (4.17)—(4.18)
thatO(r,z) = 1 forz € Q andO(r,z) = 0 for z € R?\ Q. Consequently,
7 : B — Qs a diffeomorphism and, therefore, a conformal mapping fidonto

Q which satisfies the Beltrami equations (4.7). If we merely asshiraeC' ™ and
gik € C%*(Q), 7 turns out to be a conformal mapping fraBonto 2 which is
of classC*(B,R?). This follows from the preceding result by approximating
andg;, by C*°-datal’,,, 9 and applying a priori estimates for the corresponding
mappingsr,, and their inverses,, ! which satisfy similar Beltrami equations (cf.
e.g. Schulz [48], Chapter 6; Jost [28], Chapter 3; or Morrey [42], pp. 373—-874).

COROLLARY 4.2. The conformal mapping : B — Q in Theorem 4.1 is uniquely
determined if we fix a three-point condition 0, and it is a minimizer of botid
andD in the classg'(T").

A slight modification of the preceding reasoning combined with a suitable approx-
imation argument yields

THEOREM4.3. If T' is a closed Jordan curve iR* and gz € C™"*(R?) for
somem € Nanda € (0,1), then there is a homeomorphisnof B onto(2 which
yields a conformal mapping of clagg™* (B, R?) from B onto().

COROLLARY 4.4. If X : B — R", n > 2, is an immersed surface of clagg><,
m € N, a € (0,1), then there exists an equivalent representafion= X o 7
which is conformally parametrized, i.¢Y,,|? = |Y,|?, Y., - Y, = 0.

PROOF X (z!,2?) with 2 = (2!,2?) € B induces the Riemannian met(ig;,)
with

g1l = XZ,I . Xxl, g12 = ga21 = Xxl -Xm2, goo = Xm2 . XxQ

on B which is of classC™ 1<, If we now determine the corresponding con-
formal mappingr from (B, ds.) onto (B, ds) determined by Theorem 4.1, then
Y := X o7 has the desired property. O

REMARK 4.5. Our method of directly minimizing the area functional can also be
used to prove the global Lichtenstein theorem for two-dimensional Riemannian
manifolds homeomorphic to the standard sph#re R? as carried out in [24, pp.
8,9], or to treat multiply connected domains, see [25].



CONFORMAL REPRESENTATION OF SURFACES 23

We note that the results of this section are well-known; we refer to J.C.C.
Nitsche [43],660, for references to the literature. The reader finds more recent con-
tributions in Jost [27], [28], Sauvigny [47], and Schulz [48]. F. Tomi has pointed
out to us a proof that operates with monotonic transformations and is closely related
to the variational method used by Jost. The first result on conformal representations
was proved by Gaul3 [11]; the final result is due to Lichtenstein [32].

5 Holder continuity of minimizers of Cartan functionals

Now we want to exhibit a condition guaranteeingléer continuity of solutions
to the Plateau problem” — min in %€ (T', K)” that are established by Theorem
2.4.

Let K be a closed setiR™, n > 2, and denote by’ the plane

{yeR": ¢yt =0,...,9" =0}

with v > 2. We call K v-quasiregularif there are numberd > 0 and A, A, with
0 < A1 < Az such that the following holds:

Foranyz, € K there are a neighbourhodd(x) containing the:-dimensional
ball B;(xo), a closed convex sét*(xy) in E7, and a bi-Lipschitz mapping of
K N U(xo) onto K*(zo) with the inversey := h~! such that the Gram matrix
G := Dg" - Dg of g satisfies

(5.1) M <€ Gy)E < Nf¢? for y e K*(z) and & € R™.

Via Nash’s theorem (in the form of Gromov) any complete Riemannian manifold
can be embedded smoothly as a closed subset of a EuclideanSpaleerefore

the homogeneously reguldRiemannian manifolds in the sense of Morrey ([42],
p. 363) can be viewed asquasiregular sets which are a kind:eflimensional
Lipschitz-submanifolds oR™, 2 < v < n.

THEOREMbB.1. Let K be av-quasiregular set irR", 2 < v < n, and suppose
that F'(z, z) is the Lagrangian of a Cartan functional
F(X) ::/ F(X, X, A Xy) dudv
B
satisfying conditiongH), (D), and (C) of Section 2. Then every solution <
¢ (I, K) of the Plateau problem* — min in% (', K)” with
(5%) 1Xu)? = X0}, Xu-X,=0

is Holder continuous irB and continuous oi. If " satisfies a chord-arc condition
then X is even Hlder continuous onB. If one fixes in addition a three-point
condition

*) X(w;) =PF;, for i=1,23,
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and if I" respects a chord-arc condition (with respect(tg), i.e., if there is a
constant. > 1 such that for all pointsP, Q € T" which can be connected by a
subarcI'(P, Q) C T containing at most one of the three poiitsin (x), one has

Z(I(P,Q)) < LIP - Q|

(here Z(I'(P, Q)) denotes the length of the subdr¢P, @)), then one obtains:
Every minimizetX € ¢*(T, K) is of classC%*(B,R") where the Hlder semi-
norm depends only om, d, L, A1 ,A2, m1, mo, I', and the mutual distances of the
parametersy; and pointspP; in ().

PROOF.  We pick somewy € B and transformX on the diskBg(wg) = {w €
R? : |w — wo| < R} with R := 1 — |wp| into polar coordinateg, # centered
at wy; denote the transform ok by =Z. We can assum& is represented by a
function =(p, #) which is absolutely continuous im € [e, R] for anye € (0, R)
for almost allé € [0,2x], and absolutely continuous i € R for almost all
r € (0, R). We can also assume that this representative satisfied)) € K for
(p,0) € (0, R) x R. Then the functionb : (0, R) — R defined by

r 2
O(r) == / IV X|? dudv = / / <\Ep\2 +p*2|59\2) pdpdd
B (wo) 0 JO

is absolutely continuous, and its derivative satisfies
r®'(r)/2 = ¥(r) a.e. on(0,R)
with )
U(r) = / Z(r, 0 do
0

if we take ¢*) into account. Herd(r) is defined and finite for € (0, R) \ A
where. /" is a one-dimensional null set.
(i) If ¥(r) > d?/m then

D(r) < O(R) < 7d2B(R)U(r)
and so
(r) < 7d>D(X)rd'(r).
(i) If W(r) < d?/x then, for anydy, 61 with |§; — | < = we obtain

12(r,01) —E(r,0p)| <

/61 =(r,0) de‘ < VRO < d

)

Settingzy := Z(r, 6p) we obtain

{E(r,0) : 0 <0 <27m} C KN By(zg) C KNU(zp)
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and

h(K NU(zo)) = K™ (x0)
whereK*(x() is a convex set ir);.

Now we consider the harmonic mappifl: B,(wo) — E;* with the boundary
valuesZ(0) := h(Z(r,0)) C K*(xo) which are of clas¥7%2((0, 27), R"). The
maximum principle impliegy(H (w)) € K*(xo) for w € B,(wp) andg o H €
HY2(B,(wp),R"), as well asg(H(w)) = E(r,0) for w = wy + re. Setting
Y(w) := g(H(w)) for w € B,(wp) andY (w) := X (w) forw € B\ B, (wp) we
obtain a surfacé” € ¢(I', K). ThenF(X) < F(Y), and consequently

mM1Dp, (w)(X) = M1AB, (we)(X) < FB, (wo)(X) < FB,(w)(Y)

S mQABr(’wo)(Y) S mQDBr(wo)(Y)'
It follows that
O(r) < ml_lmg/ |VY|2 dudv < ml_lmg)\g/ |VH|2 dudv,
B'r(wO) B’I‘(wo)

taking (5.1) andvY = g, (H (w))V H(w) into account.
Moreover,

27
/ VHQdudvg/ 1Z0(0)[2 do,
Br(wo) 0

and ) )
Al/ | Zo(0)|* df < / 1Zo(r,0)|? df = U(r) = r®(r)/2
0 0

by (5.1) andEy(r, 8) = g,(Z(0))Zs(8). Therefore,
®(r) < AT my Namgrd’(r) /2.
Combining both cases (i), and (i), we obtain
d(r) < Mrd'(r) fora.e.r € (0,R)

for M := max{(2A1m1) " A\ama, 7d~2D(X)} which implies

r\ 2a 7 2o
VX|? dudv < (= / VX|? dudv < 2D(X
/;7.(1110) | ’ (R) BR(’WO) | ’ ( ) (R)

for 0 < r» < R with o := (2M)~!. Morrey’s “Dirichlet growth theorem” then
implies X € C%(B,R"), and so the first assertion is proved.
By Lemma 3 in [18] we also obtaiX € C°(B,R").

The last assertion can be deduced as follows:
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Fix wy € B, and set for € (0, 2)
C,:=0BN B,(wy), K,:=BNaB.(wy), S,:= BN B,(wp).

If C,. # (), we introduce polar coordinates abau, denote the endpoints 6f. on
0B by
2 = g e =12,

where0 < 0;(r) < 6(r) < 2.

Now we claim that the three-point conditior)(and a suitable version of the
Courant-Lebesgue Lemma (cf. [8, Vol. |, Prop. 2, p. 242]) impthes existence

of some radiu® = R(I', m1, mo, (x) ) depending o, m;, my and the minimal
mutual distances of the; on 9B and of theP;, on T in (%), such that for each

r € (0, R) at most one of the point8;, P, Ps is contained irE(C,).

Indeed, by the classical isoperimetric inequality for harmonic surfaces by Morse-
Tompkins (cf. [6, pp. 135—-138] in connection with Riemann’s mapping theorem)
and the weak monotonicity of alongdB one has forH € % (") with AH =0

in BandH — X € H'2(B,R"):

Dp(X) = Ap(X) < n;fBoc) < Wl”fB(H) < "2 Ag(H)

2 2
mo ma m2 2
(5-2) 4my </ch| |> dmy (/33 |> 4my (F)

Sincel is homeomorphic té&B we find for any givere > 0 some numbehi(e) >
0 such that for allP, @ € T" with 0 < |P — Q| < A(e) the shorter subart, (P, Q)
connectingP and@ on T satisfies

IN

diamI'1 (P, Q) < e

Choosing first
0<e<e:=min|P; — Py
0 #k| J |

we guarantee that
8 [{Pl,PQ,P3} NI (P Q)
for all pairs P, Q € T satisfying0 < |P — Q| < A(e). With 6y € (0, 1) satisfying
dp < rj;i?]wj — wy|

we choosé € (0, dp) depending o, m1, mg and.Z(I") such that by the Courant-
Lebesgue Lemma there exigts (0, v/6) such that by (5.2)

87Dp(X) 2mm
B 2_2(T) < Ae).

|X(21) = X(22)] < osCg, X < | ——7—
log 5 52) my log 5
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Therefore,
i [{P17P2,P3} ﬂF1(X(zl),X(z2))} <1.

By the three-point condition{ and the choice af, we have
f [{w17w2,w3} ﬂm} <1,

and therefore
¢ [P P PN X(C))| <1,

i.e., sinceX |yp is weakly monotone,
X(C5) € X(Cp) = Tu(X (", X (4).
SettingR := 0 = §(m1,me, L (1), e9) € (0,dp) we arrive at
¢ [{Pl,PQ,Pg} mX(cT)} <1 forall 7€ (0,R),

which proves the claim.

Notice that for almost alt € (0, 2) the mappind=(r, .) is absolutely continuous

in 6 with
02(r)
/ |dxy:/ 1Zg] df < oo,
K, 01(r)

and such thap'(r) exists for the function
¢(p) = 2Dg,(w)(X), p€(0,2).
The chord-arc condition ohl now implies

ZL(X(Cr)) < L|X(z1) — X(22)] < L/ |dX| fora.e.r € (0,R).

r

This last inequality is trivially satisfied if, = (). Consequently,

(5.3) / dX|§(1+L)/ x| foraer e (0, R).
A(Sr(wo)) K.

For
02(r)

b(r) == /9 s

one has again by conformality

P(r) =r¢'(r)/2 fora.e.r € (0,2).
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We distinguish two cases as in the proof for the interior case.
(i) If ¥(r) > d?/(27), then

and
(i) if (r) < d?/(2), then for almost alt € (0, R) and for any

0<61(r) <O<O <bs(r)<2m

we obtain
2(r,0) — Z(r,0")| < V27 ((r)/? < d.

In this case we can use a harmonic extension analogous to the interior case to obtain
for ST(’LU()) = Br(wg) N B by (5.1)

m m
D, w)(X) € — A, () (Y) < —c(N)A2Ag, (uy) (H),

my (5.1) M1

wherec(N) is a constant depending only on the dimensér= n(n —1)/2. The
classical inequality for harmonic surfaces by Morse-Tompkins in conjunction with
(5.1) and (5.3) then leads to

2
ma
D (X)) < cN)\/ dH
S, ( 0)( ) ( )24m1 < 8ST(w0)’ >
2
mo
_ CNA/ 4z
( )24m1 < 8Sr(w0)’ ’>

2
< e ([ jaxg
(5.1) 4Aima \ Jas, (wo)

< o(N)22M2(q 4 2 </K \dX])z

(5.3) 4 \1my
< c(N)W)\2m2(1+L)2/62(T) 1Zy(r, 0)[2 d6
>~ 2/\1m1 01(r) —=o\7, )

that is, together with Case (i),
p(r) < Mrg/(r),

where
7T)\2m2 m

(1+ L) dQDB(X)} .

M := max {C(N) Sy

This impliesX € C%*(B,R") for a := (2M)~L. O
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REMARK 5.2. Suppose thaY, € ¢'(T") yields a bi-Lipschitz mapping aB onto
K := Xo(B). ThenK is 2-quasiregular an&, € ¢ (T, K). By Theorems 2.4
and 5.1 there is a minimizex of A in (T, K) which is of classC%(B,R™) N
C%(B,R") for somea € (0,1) and satisfie$X, |> = | X,|?, X, - X, = 0.Bya
topological argument we obtaiki (B) = K whence

O(X,B,z)>1 forall z € K.

Moreover,
/ O(X, B, z) dA*(x) = A(X) < A(Xo) = / 4 (2),
K K

and so it follows that
O(X,B,z) =1 for#*-almostallr € K.

If one could proved(X, B,z) = 1 for anyz € K it would follow that X is a
homeomorphism fronB onto K whenceX = X, o 7 for some homeomorphism

7 from B onto itself, i.e.,.X ~ X,. However, it is not even clear thaf ~ X, i.e.
thatd (X, Xo) = 0 (cf. Section 3). On the other hand, by Corollary 3.7 there is a
mappingX* € € (I')NC°(B,R™) with X* ~ X, which satisfies the conformality
relations. So one is tempted to conjecture tiat~ X (and evenX* = X if both
mappings are normalized by the safpoint condition), but it is not clear to us
whether this is true.

6 Dominance functions and higher regularity

In this section we shall first discuss the notion of a dominance function for a para-
metric Lagrangian, i.e., for the Lagrangian of a Cartan functional. Of particular
importance are so-callggerfect dominance functiopse shall present a sufficient
condition guaranteeing the existence of such a function. Finally we state some
regularity results about solutions of the Plateau problem for a Cartan functional
provided that its Lagrangian possesses a perfect dominance function.

As in Section 2 lef” € CY(K x RY) be a “parametric Lagrangian” whose values
F(z,z) are defined for points ¢ K andz € RY whereK is a closed set ifR"
andN = in(n —1),ie.,

(H) F(z,tz) = tF(z,2) for t >0 and (z,2) € K x RV,
Furthermore, we assume condition

(D) milz| < F(z,z) < mslz| for (z,2) € K x RY
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with 0 < mq < mo.
Theassociated Lagrangialfi(x, p) for F(z, z) is defined by
f(z,p) := F(z,p1 Aps) for z € K and p = (p1,p2) € R” x R" = R?",
Note that the algebraic surface
I1:= {(p1,p2) = p € R™™ : p1 Apy = 0}

is the singular set of (x, p) whereasF'(z, z) is singular only at = 0. Let us also
introduce the algebraic surface

o == {(p1.p2) = p € R*" : |p1|* = |p2|*, p1 - p2 = O}

We observe that
IT N 1T, = {0}.

DEFINITION 6.1. (i) AfunctionG € C°(K xR?") is called adominance function
for the parametric Lagrangiai’ with the associated Lagrangiahif the following
two conditions are satisfied:

(6.1) f(z,p) < G(z,p) forall (z,p)c K x R*",

(6.2) f(z,p) = G(z,p) ifandonly ifp € Ilj.
(i) G is said to bepositive definitaf
(6.3) pmlp|* < G(z,p) < polp|* forall (z,p) € K x R*"

and some constanjs, pe With 0 < g1 < po.
(iii) G is calledquadratidf

(6.4) G(z,tp) = t*G(x,p) for t >0 and (z,p) € K x R*™,
For example, the area integrand
(6.5) A(z) = |7]

with the associated Lagrangian

(6.6) a(p) = |p1 Ap2| = V/Ip1Ip2l? — (p1 - p2)?

has the dominance function

1 1 1
6.7 D(p) == =[p|* = = |p1|* + =|pa|*-
(6.7) (p) 9 p 9 |p1] 9 P2
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Correspondingly the Lagrangian
E(z,2) = [zl + Qz) - 2

with |Q(z)] <1 -6 for z € K, § > 0, has the dominance function

N 1
E*(z,2) := §|ID|2 +Q(x) - p1 A p2.

In fact, bothD(p) and E*(z, p) are quadratic, positive definite dominance func-
tions for A(z) and E(z, z), respectively. As Morrey ([41], pp. 571-572) has
pointed out, every satisfying (H) and (D) has a quadratic, positive definite dom-
inance function, e.g.,

(6:8) Gl p) = {£2(wp) + {ms +ma [ (1~ 2 + (o1 - 2]}/

which satisfies (6.3) withu; := m;/2, ua := mo/2, In general, however, a dom-
inance function will not be of class§? on K x R?" becausdl will be a singular
set. Only if I has a special structure as in the cadeand E, there exist domi-
nance functions which are quadratic polynomialg snd therefore differentiable.
Basically the “Riemannian version” di* is theonly smooth dominance function
whose integral

E(X) ::/BE(X,VX)dudv

is conformally invariant (cf. Qiter [14]).
Morrey proposed to prove higher regularity of conformally parametrized minimiz-
ersX for Cartan functionalsF by using the integrals

G(X) ::/BG(X,VX)dudv

of dominance functioné& for F' via the identity

(6.9) inf F= inf G
%(T,K) %(I,K)

which is an immediate consequence of Theorem 2.4 as we shall see below. How-
ever, in order to establish higher regularity of minimizerg afe need that:(z, p)

is of classC?; but this will usually not be true sina@(z, p) is singular onk x II,
except for rather special Lagrangiaf$zx, z). Still there is a very special class of
dominance functioné&:(z, p) that are singular only ip = 0; these will be called
perfectif they are also elliptic irp. Before we give the precise definition let us first
verify (6.9).
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THEOREM6.2. Suppose thaf(z, p) is a dominance function for the Lagrangian
F(z, z) satisfying(H), (D), (C). Then any minimizeX of G in (T, K) is a con-
formally parametrized minimizer of in ¢ (', K'). Conversely, any conformally
parametrized minimizer of in € (I, K) is also a minimizer o§ in € (I', K). In
particular, equation(6.9)is true.

ProoOF (i) We haveF < G, andF(X) = G(X) holds true if and only if
X is conformal (i.e. if ¢x) is fulfilled). Because of Theorem 2.4 there is an
X € ¢ (T, K) satisfying ¢x) such thatF(X) = infg  xy F. Then

inf G<G(X)=F(X)= inf F< inf G.
¢ (T,K) %(T,K) %(T,K)

This implies (6.9). The same argument shows that any conformally parametrized
minimizer of 7 in (', K) is a minimizer ofG.
(i) If X is a minimizer ofG in ¢ (T, K) then

inf G=G(X)>F(X)> inf F= inf G,

%(I,K) %(T,K) %(I',K)
and so
F(X)=G(X)= inf G= inf F.
%(I',K) %(I',K)
HenceX is a conformally parametrized minimizer &fin ¢ (I', K). O

COROLLARY 6.3. If, in addition to the assumptions of Theorem 6R2,is a v-
guasiregular set iR™ (e.g. a smooth compact manifold) then we have

(6.10) inf F= inf F= inf G= inf G,
% (I,K) Z(T,K) %4(I,K) %(I,K)

where?(I', K) := € (T, K) N C°(B,R").

PROOF  Using Theorem 5.1 we can proceed as above. O
Applying this corollary taF := A, G := D, K := R" we obtain in particular
COROLLARY 6.4. One has

(6.11) inf A= inf A= inf D = inf D,
#(T) () 4(I) #(T)

where we have s&f(T') := ¢(T') N C°(B,R").
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The “classical Plateau problem” consists in finding a minimal surface (i.e. a sur-
face of mean curvature zero) spanning a given closed Jordan Euier recti-
fiableT" one usually solves this problem by minimizing Dirichlet’s integfain

the class#’(I"), and then one proves that a minimizer ®falso minimizes the

area in¢(I") by applying (6.11); see e.g. [6], [8], [27], [43], [44]. To verify
(6.11) some special effort is needed; previously some results on conforraal or
conformal reparametrization of surfaces were used, and such results were thought
to be indispensable, as Courant has pointed out (see [6], pp. 116-118, and also
[44], Chapter VI, as well as [4335453—-473.) Hence it seems surprising that such
mapping theorems are not needed in our approach as we were able to minimize
A directly, obtaining conformally parametrized minimizers, without the detour via
D. Thus (6.11) is a by-product of our Theorems 2.4 and 5.1. Actually, the sec-
ond ingredient, Theorem 5.1, can be replaced by a much simpler reasoning using
only classical results on harmonic mappings. Using this approach the solution
of the “simultaneous problem” minimizing andD becomes a fairly elementary
matter, except for the lower semicontinuity result formulated in Lemma 2.1. Yet,
for F = A, even this result has an elementary proof as Klaus Steffen has kindly
pointed out to us:

LEMMA 6.5. If X; — X in H?(B,R") then

(6.12) A(X) < liminf A(Xj;).

J—00

PrROOF.  First we note the identity
(6.13) A(Z) = Sup{/ ¢ (Zuy N Zy)dudv : ¢ € CSO(B,RN), lp] <1}
B

which holds for anyZ € H'*(B,R") andN = 3n(n — 1). We claim that for
proving (6.12) it suffices to show

(6.14) lim [ ¢ (XjuAXjp)dudv = / ¢ ( Xy N Xy) dudv
B B

J—00

forany¢ € C5°(B,R™) with |¢| < 1. In fact, (6.14) and (6.13) yield

/ ¢ ( Xy NXy)dudv = lim [ ¢- (X4, A Xj,)dudv
B

j—o Jp

< liminf[sup{/ U (XjuAXjy)dudv : U € Cé’o(B,RN), U] < 1}]
J—00 B

= liminf A(X}).
j—o0

Taking the supremum over aflin C5° (B, RY) with |¢| < 1 we arrive at (6.12).
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Thus it suffices to verify (6.14). Let € C?(B,R"); then forg € C5°(B,RY) an
integration by parts yields

(6.15) /Bqﬁ-(Zu/\Zv)dudv——;/B[qbu-(Z/\Zv)—i—tby'(Zu/\Z)] dudv.

Using a suitable approximation device this identity follows as well for Zng
HY2(B,R").

Suppose now thak; — X in HY?(B,R"). By Rellich’s theorem we obtain
X; — X in L*(B,R™), and so (6.14) can be derived from (6.15). O

After this excursion to the classical Plateau problem for minimal surfaces we return
to the general Plateau problem

“*F— min ing([l)”

for Cartan functionals. We want to derive higher regularity results for minimizers
via dominance functionalg using (6.10). In the sequel we restrict our attention to
the casd{ = R" although the discussion would verbatim carry over to the case of
a smoothv-dimensional manifold< in R™, v > 2.

DEFINITION 6.6. A functionG € CO(R" x R?")NC?(R™ x (R?"\ {0})) is called
a perfect dominance functidior the parametric Lagrangiai’ if it is a quadratic,
positive definite dominance function fbrwhich satisfies the following ellipticity
condition:

For any Ry > 0 there is a constanmt(Ry) > 0 such that

(6.16) & Gpp(z,p)§ > Ac(Ro)l¢[* for |a| < Ry and p,& € R*",p # 0.

This condition means that
G (2 PJERED = A (Ro)ELE.

Here and in the sequel we use the convention: Greek indices runiftor and
Latin ones froml to n; repeated Greek (Latin) indices are to be summed fram

2 (from 1 to n).

Note that a perfect dominance functiéf{z, p) may be singular only gt = 0.
Morrey found a way to construct a quadratic, positive definite dominance function
G for F provided thatF"(x, z) is C? for z # 0 and strictly convex ir, in the sense
that F'(z, z) — A|z| is convex inz for some constank > 0. However, Morrey’s
construction only leads to rank-one convex dominance functitinsp); these are

of no use sinc&,, (z, p) is not continuous, and sodeding’s inequality cannot be
derived forG,, = (sz;pg) as the proof uses continuity; in fact, the inequality

does not hold for a general rank-one convex ma(uzl?,f) with coefficients that
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are merely of clas€°°. However, by extending and strengthening Morrey’s con-
struction the authors were able to prove the following result (see Theorem 1.3 and
Section 2 of [23]):

THEOREM6.7. Suppose thaf™* is of classC?(R™ x RNV )NC?(R™ x (RV\ {0}))
which satisfiegH) and (D) with constantsn}, m3, i.e.,

0 <m} < F*(x,2) <m} for (z,z) € R® x RY with |z| = 1.

Furthermore assume thdt* satisfies the parametric ellipticity condition
|2|C - Fr (2, 2)C = N[|C)? = |2|72(2- ¢)?] for 2 € R",z,¢ e RY with 2z #0
with some constant* > 0. Then the parametric Lagrangian

F(z,z) = F*(z,2) + kA(z)
with A(z) := |z| possesses a perfect dominance function provided that
(6.17) k > 2[m35 — min{\*, m]/2}].
By a straight-forward computation one derives

COROLLARY 6.8. Suppose thaf'(z, ) is of classC? for z # 0 and satisfiegH),
(D), and

(6.18) 121¢ - Faz(a, 2)¢ > A[IC]* = [272(2 - €)?]

forz € R", 2, ¢ € RY with z # 0 with some constant > 0. Moreover suppose
that

(6.19) 5-min{\, m1} > 2ma.
ThenF possesses a perfect dominance function.

REMARK 6.9. If F(z, z) is in C? for z # 0, then the convexity of'(z, z) in z is
equivalent to the condition

¢ Fo(x,z)¢ > 0.
Furthermore, forA(z) = |z| we find

[2[¢ - Az (2)¢ = [C* = 12 72(2 - )%

Therefore the convexity of' (z, z) — MA(z) for someX > 0 is equivalent to the
ellipticity condition (6.18). Here we note thét|F . (z, z) is positively homoge-
neous of degree zero, and al8g z, z) is homogeneous of degree zero. By Euler’s
relation it follows thatF, . (x, )z = 0, i.e., z # 0 is eigenvector of’, . (z, z) to the
eigenvalud). HenceF..(z, z) can never be positive definite, ad, (x,z) > 0

on {z}* is the best possible that we can hope for. Precisely this assumption is
expressed by (6.18).
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Because of Theorem 6.7 (or Corollary 6.8) we have a large class of Cartan func-
tionals F with “perfect dominance functionalgj which includeA as well as the
“capillarity functionals”&, but is much larger than these. Therefore the following
results proved by the authors in [20] and [22] are new and might be of interest:

THEOREMG6.10. Suppose that” € C?(R™ x (RN \ {0})) satisfies(H), (D),
(C), and thatF' possesses a perfect dominance functibriThen any conformally
parametrized minimizeX of F in €' (") is of cIassH,%f(B,R") N Ch*(B,R")
for somea € (0,1). If, in addition, T is of classC* then one even ha¥ <

H22(B,R") N CHe(B,R") with
1X 22 + 1X oo g zn) < (T, F)

where the constant(I", F') only depends o' and F' if X is normalized by a
three-point conditiorgx).

For the proof of Theorem 6.10 we note that by Theorem 6.2 any conformally
parametrized minimizeK of F is also a minimizer of the dominance functiogal
corresponding td@-,

g(Z):/ G(Z,VZ) dudv
B
for which the first variation

5G(Z,¢) = /B (Go(Z,V2) - 6+ Cy( 2,V Z) - Vo) dudv

exists ifp € H2(B,R") N L>°(B,R"). Therefore we obtain

5G(Z,¢) =0 for ¢ € HY*(B,R"),

and the difference-quotient technique yields the interior regularity result. A subtle
point in the proof is how to deal with the singularity 6%,,(x, p) atp = 0; here

one applies a suitable approximation device. Much more involved is the proof of
the regularity ofX at the boundary. Here one can no more proceed as in the case of
minimal surfaces (see [8], vol. I, Chapter 7) as the system of Euler equations has
no longer a principal part in diagonal from, and Plateau’s boundary condition is
very nonlinear. New techniques had to be devised to tackle this problem; cf. [22].

REMARK 6.11. C.B. Morrey might have had a regularity result in a similar spirit
in mind as he indicated in [42], pp. 363—-364. Yet for several reasons we do not see
why the approach that he sketched might work.

REMARK 6.12. We note that, contrary 6@ (X, ¢), the first variationd 7 (X, ¢)

of a Cartan functiona¥ does not exist, except X is conformally parametrized,;

cf. R. Jakob [26], pp. 405407, Proposition 3.3 and Corollary 3.4. Therefore the
notion of an unstablé-extremal only makes sense for conformally parametrized
surfaces. We refer to the results of M. Shiffman and R. Jakob stated in Section 7.
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7 Further remarks and open questions

So far we have only discussed absolute minimizers of Cartan functionals for Plateau
boundary conditions. Semifree boundary conditions were treated in [23], and
the Douglas problem for multiply connected surfaces bounded by several Jordan
curves was investigated in [30] and [31]. One may also ask the question whether
there is some kind of Morse theory, or if it is at least possible to prove the existence
of unstable extremals, say, in the “mountain pass situation”. There seem to be no
results with regard to the general question, whereas Shiffman in his very interest-
ing paper [49] studied the mountain pass case and stated the following result (see
[49], p. 573, Main Theorem 16.2):

If the rectifiable Jordan curvE of type.#” bounds two extremal surfaces which are
proper relative minima, thef bounds an unstable extremal surface for Here

F is assumed to be of the form (1.1) with

(7.2) F(z,z) = F*(2) + k|#|,
where F* satisfies (H), (D), and (C), as well as

(7.2) k > max F*,

SZ
wheren = N = 3.
Unfortunately, Shiffman’s reasoning is not stringent, as pointed out by R. Jakob
(see [26], p. 403), and so this result is in doubt. Nevertheless, Shiffman’s paper
contains quite ingenious ideas which, combined with techniques developed by R.
Courant and E. Heinz, enabled R. Jakob to prove a somewhat stronger version of
the above stated theorem for polygonal boundaries. Moreover, he recently obtained
results for general rectifiable contours that satisfy a chord-arc condition.
We further remark that, in the context of geometric measure theory, much better
results than our theorems in Section 6 are known. F.J. Almgren, R. Schoen and
L. Simon [2] proved that anyr-minimizing two-dimensional integral current of
codimension one is a smooth, embedded surface away from its boundary. (Much
less is known about their boundary behaviour: R. Hardt [15] showed smoothness
at the boundary if' is smooth anextremei.e., if " lies on the surface of a convex
body). However these current solutions can be quite different from our solutions
because of a peculiar phenomenon discovered by J.E. Taylor [54]:
If F e CO(R3) N C3(R3\ {0}) is an essentially noneven elliptic parametric La-
grangian independent of the spatial variable, then there exists an oriented closed
analytic Jordan curvé' on the spheres? and a Lipschitz immersioX of the ori-
ented disk (which is not an embedding) havihgs boundary such that the value
F(X) of the corresponding parametric functiondlis less than the valug(Z2)
of any Lipschitz embedding of the oriented disk having as boundary.
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Here, a parametric Lagrangidf(z, z) is calledessentially noneveihit cannot be
written in the formF (z, z) = cF(z,2) + Q(z) - z, wherec > 0, F is even inz,

i.e. F(z,z) = F(z,—2), and wherelivQ = 0. Because of this result one cannot
necessarily expect that minimizers in the class of immersions, and even more so
minimizers in the more general class considered in our Theorems 2.4, 5.1, and 6.10,
are as well-behaved as minimizers in the class of embeddings, even if they are of
the type of the disk. In view of this result it is also not clear how the minimizing
surface obtained in Theorem 2.4 relates to the smooth embedded disk bounded by
an extreme boundary curdé and minimizing a Cartan functional with an even
Lagrangian, whose existence was established by B. White [56] with a Perron-type
method.

We close our survey with some open
Questions. 1. Can one prove for conformally parametrized minimizers (ex-
tremals)X of a Cartan functional an asymptotic expansion of the form

Xp(w) = A(w — wo)” + o(|lw —wpl”) as w — wy

with v € NandA € C" \ {0} at every branch pointyy € B of X? (Here

Xy = §(Xy — iX,), andwy is called a branch point of if X, (wo) = 0.)

A positive answer will certainly be useful if one wants to tackle the next question:
2. Can one prove higher regularity properties for conformally parametrized mini-
mizers of F than those stated in Theorem 6.107?

3. Can one prove regularity ahyconformally parametrized extremal € %' (T)

of F if F andI are sufficiently smooth?

4. For which parametric Lagrangiahscan one find perfect dominance functions?
Possibly for anyF € C2(R™ x (RN \ {0})) satisfying (H), (D), and (6.18)?

Acknowledgement. This work was started when both authors were visiting the
Bernoulli centre of the EPFL Lausanne in Spring 2004. We would like to thank
Professor John Maddocks for his hospitality.

References

[1] E. Acerbi; N. Fusco, Semicontinuity problems in the calculus of variations.
Arch. Rat. Mech. Anal86 (1984), 125-145.

[2] F.J. Almgren; R. Schoen; L. Simon, Regularity and singularity estimates
on hypersurfaces minimizing parametric elliptic variational integrals. Acta
Math.139(1977), 217-265.

[3] J. Bevan, Singular minimizers of strictly polyconvex functionalsRif<2.
Calc. Var.23(2005), 347-372.



[4]

[5]

[6]

[7]

(8]

9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

CONFORMAL REPRESENTATION OF SURFACES 39

E. Cartan, Les espacesniques fonés sur la notion d’'aire. Actuaéis Sci-
entifiques et Industrielles No. 72, Paris, Hermann et Cie 1933.

L. Cesari, An existence theorem of the calculus of variations for integrals on
parametric surfaces. Amer. J. Mait4 (1952), 265-292.

R. CourantDirichlet’s principle, conformal mapping, and minimal surfaces.
Interscience Publishers, New York 1950.

J.M. Danskin, On the existence of minimizing surfaces in parametric dou-
ble integral problems in the calculus of variations. Riv. Mat. Univ. PaBma
(1952), 43-63.

U. Dierkes; S. Hildebrandt; A. Kster; O. WohlrabMinimal Surfacesyols
I & Il. Grundlehren der math. Wissenschaft2@5 & 296, Springer, Berlin
1992.

J. Douglas, Solution of the problem of Plateau. Trans. Amer. Math. &c.
(1931), 263-321.

H. Federer, Geometric Measure TheoryGrundlehren der math. Wis-
senschafted53 Springer, Berlin 1969.

C.F. GauR3, Allgemeine Auwkung der Aufgabe: die Theile einer gegebnen
Flache auf einer andern gegebne#adfle so abzubilden, dass die Abbildung
dem Abgebildeten in den kleinsten Theiléhnlich wird. Als Beantwortung

der von der Bniglichen Socigit der Wissenschaften in Copenhagénif822
aufgegebnen Preisfrage. Schumachers Astronomische Abhandlungen, Drittes
Heft, 1-30, Altona 1825. (Cf. also: Werke Bd. 1V, 189-216.)

M. Giaquinta; G. Modica; J. S@ek, Cartesian Currents in the Calculus of
Variationsvols | & Il. Ergebnisse der Mathematik und ihrer Grenzgebgate
& 38, Springer, Berlin Heidelberg New York 1998.

P. Hajlasz, Sobolev mappings, co-area formula and related topics. In: Pro-
ceedings of Analysis and Geometry, pp. 227—254. Novosibirsk, Sobolev Inst.
Press, 2000.

M. Griter, Conformally invariant variational integrals and the removability
of isolated singularities. Manuscripta Ma#, (1984), 85-104.

R. Hardt, On boundary regularity for integral currents or flat chains modulo
two minimizing the integral of an elliptic integrand. Comm. P.D2K1977),
1163-1232.

E. Heinz; S. Hildebrandt, Some remarks on minimal surfaces in Riemannian
manifolds. Comm. Pure. Appl. MatB3(1970), 371-377.



40 S. HILDEBRANDT, H. VON DER MOSEL

[17] S. Hildebrandt, Boundary behavior of minimal surfaces. Arch. Rat. Mech.
Anal. 35(1969), 47-82.

[18] S. Hildebrandt; H. Kaul, Two-dimensional variational problems with ob-
structions, and Plateau’s problem fHrsurfaces in a Riemannian manifold.
Comm. Pure Appl. Math25 (1972), 187-223.

[19] S. Hildebrandt; H. von der Mosel, On two-dimensional parametric variational
problems. Calc. Va® (1999), 249-267.

[20] S. Hildebrandt; H. von der Mosel, Plateau’s problem for parametric double
integrals: Part I. Existence and regularity in the interior. Comm. Pure Appl.
Math.56 (2003), 926-955.

[21] S. Hildebrandt; H. von der Mosel, The partially free boundary problem
for parametric double integrals. InNonlinear Problems in Mathemati-
cal Physics and Related Topicslhternational Mathematical Series Vol. I,
Kluwer/Plenum, London 2002, 145-165.

[22] S. Hildebrandt; H. von der Mosel, Plateau’s problem for parametric double
integrals: Part Il. Regularity at the boundary. J. Reine Angew. Ma@h.
(2003), 207-233.

[23] S. Hildebrandt; H. von der Mosel, Dominance functions for parametric La-
grangians. In:Geometric analysis and nonlinear partial differential equa-
tions. Springer, Berlin Heidelberg New York 2003, 297-326.

[24] S. Hildebrandt; H. von der Mosel, On Lichtenstein’s theorem about globally
conformal mappings. Calc. Va23(2005), 415-424.

[25] S. Hildebrandt; H. von der Mosel, On globally conformal mappings for mul-
tiply connected surfaces. In preparation.

[26] R.Jakob, Unstable extremal surfaces of the “Shiffman functional”. Calc. Var.
21(2004), 401-427.

[27] J. Jost, Conformal mappings and the Plateau-Douglas problem in Riemannian
manifolds. J. Reine Angew. Matl859(1985), 37-54.

[28] J. Jost,Two-dimensional Geometric Variational Problerigiley, New York
1990.

[29] B. Kirchheim; S. Miller; V. Sveik, Studying nonlinear pde by geometry
in matrix space. In:Geometric analysis and nonlinear partial differential
equationsSpringer, Berlin Heidelberg New York 2003, 347-395.



CONFORMAL REPRESENTATION OF SURFACES 41

[30] M. Kurzke, Geometrische Variationsprobleme auf mehrfach zusam-
mentangenden ebenen Gebieten. Bonner Mathematische Sch@#én
(2001).

[31] M. Kurzke; H. von der Mosel, The Douglas problem for parametric double
integrals. Man. Math110(2003), 93-114.

[32] L. Lichtenstein, Zur Theorie der konformen Abbildung: Konforme Abbil-
dung nichtanalytischer, singulatenfreier Fhichendicke auf ebene Gebiete.
Bull. Acad. Sci. Cracovie, Cl. Sci. Math. N&er. A (1916), 192-217.

[33] J. Maly, Sufficient conditions for change of variables in integral. Proc. on
Analysis and Geometry, Novosibirsk: Sobolev Institute Press 2000, 370-386.

[34] J. Maly; O. Martio, Lusin’s condition (N) and mappings of the clags". J.
reine angew. Math458(1995), 19-36.

[35] E.J. McShane, Integrals over surfaces in parametric form. Ann. of \3dth.
(1933), 815-838.

[36] E.J. McShane, Parametrization of saddle surfaces with applications to the
problem of Plateau. Trans. Amer. Math. S86.(1934), 718-733.

[37] C.B. Morrey, A class of representations of manifolds, Il. Amer. J. Maé.
(1934), 275-293.

[38] C.B. Morrey, An analytic characterization of surfaces of finite Lebesgue area,
[. Amer. J. Math57 (1935), 692—702.

[39] C.B. Morrey, The topology of (path) surfaces. Amer. J. M&h(1935), 17—
50.

[40] C.B. Morrey, The problem of Plateau on a Riemannian manifold. Ann. Math.
49(1948), 807-851.

[41] C.B. Morrey, The parametric variational problem for double integrals. Comm.
Pure Appl. Math14(1961), 569-575.

[42] C.B. Morrey, Multiple integrals in the calculus of variations. Grundlehren der
math. WissenschaftetB0, Springer, Berlin 1966.

[43] J.C.C. Nitsche Vorlesungeniiber Minimalfichen.Grundlehren der math.
Wissenschafteh99, Springer, Berlin 1976.

[44] T. Rad, On the problem of least area and the problem of Plateau. Math. Z.
32(1930), 763—-796.



42 S. HILDEBRANDT, H. VON DER MOSEL

[45] T. Radb, Length and area. Amer. Math. Soc. Collog. Publ. Vol. 30, Provi-
dence, R.I., 1948.

[46] Y.G. Reshetnyak, New proof of the theorem on existence of an absolute min-
imum for two-dimensional variational problems in parametric form (in Rus-
sian). Sibirsk. Matemat. Zhurnal(1962), 744—-768.

[47] F. Sauvigny, Introduction of isothermal parameters into a Riemannian metric
by the continuity methodAnalysis19 (1999), 235-243.

[48] F. Schulz, Regularity theory for quasilinear elliptic systems and Monge-
Ampeére equations in two dimensions. Springer Lecture Nbie& Springer
Berlin 1990.

[49] M. Shiffman, Instability for double integral problems in the calculus of vari-
ations. Ann. of Math45 (1944), 543-576.

[50] A.G. Sigalov, Regular double integrals of the calculus of variations in non-
parametric form. Doklady Akad. Nauk SSSR (1950), 891-894.

[51] A.G. Sigalov, Two-dimensional problems of the calculus of variations. Us-
pehi Mat. Nauk (N. S.p (1951), 16-101. Amer. Math. Soc. Translation No.
83.

[52] A.G. Sigalov, Two-dimensional problems of the calculus of variations in non-
parametric form, transformed into parametric form. Mat. Sb. N. S.888 (
(1956) 183-202. Amer. Math. Soc. Translations, Set(041958), 319-340.

[53] L. Szekelyhidi, The regularity of critical points of polyconvex functionals.
Arch. Rat. Mech. Anall172(2004), 133-152.

[54] J.E. Taylor, Nonexistence @f-minimizing embedded disks. Pac. J. Ma&&B.
(1980), 279-283.

[55] F. Tomi, Ein einfacher Beweis eines Regulaissatzes ifr schwache
Losungen gewisser elliptischer Systeme. Mathl12(1969), 214—-218.

[56] B. White, Existence and regularity of smooth embedded surfaces of pre-
scribed genus that minimize parametric even elliptic functionals3en
manifolds. J. Diff. Geom33(1991), 413—-443.

[57] J.W.T. Youngs, The topology of Echet surfaces. Ann. Math5 (1944), 753—
785.

[58] J.W.T. Youngs, On surfaces of clakg. Bull. Amer. Math. Soc51 (1945),
669-673.



CONFORMAL REPRESENTATION OF SURFACES 43

STEFAN HILDEBRANDT
Mathematisches Institut
Universitat Bonn
Beringstralle 1
D-53115 Bonn
GERMANY

HEIKO VON DER MOSEL
Institut fur Mathematik
RWTH Aachen
Templergraben 55
D-52062 Aachen
GERMANY

E-mail: heiko@
instmath.rwth-aachen.de



