
Conformal representation of surfaces, and Plateau’s
problem for Cartan functionals

STEFAN HILDEBRANDT
AND

HEIKO VON DER MOSEL

November 21, 2005

Abstract

This survey article presents the existence and regularity theory for Cartan
functionals, i.e., for general parameter invariant double integrals defined on
parametric surfaces with arbitrary codimension. We also discuss the closely
related problem of finding globally conformal parametrizations for surfaces
or two-dimensional Riemannian metrics by direct minimization of the area
functional as a particular Cartan functional. With this new approach we also
establish conformal representations of Fréchet surfaces and provide an alter-
native proof of Lichtenstein’s theorem on globally conformal mappings.
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1 Introduction

This paper presents both a survey and a generalization of results obtained by the
authors in the articles [19]–[24] which deal with Plateau’s problem for Cartan func-
tionals and with the closely related question of finding conformal representations of
surfaces or two-dimensional Riemannian metrics. Here aCartan functionalmeans
a two-dimensional parameter invariant integral

(1.1) F(X) :=
∫

B
F (X,Xu ∧Xv) dudv

defined for surfacesX : B → Rn, B ⊂ R2, with a LagrangianF (x, z) that is
positively homogeneous of first degree inz.

The one-dimensional analogue

(1.2) F(ξ) :=
∫

B
F (ξ, ξ̇) dt

on curvesξ : I → Rn, I ⊂ R, appears in Fermat’s principle of geometric optics,
in Jacobi’s formulation of the least action principle of point mechanics, and as arc
length in Finsler geometry.

In his memoir [4] Elie Cartan has introduced metric spaces whose “angular
metric” ds2 = gjkdx

jdxk is based on the notion of area defined by an integral of
the kind (1.1). Forn = 3, the fundamental tensor(gjk) is given by

(gjk) = (gjk)−1 with gjk =
1√
a
ajk,

a := det(ajk), and ajk :=
∂2

∂zj∂zk

1
2
F 2 = FFzjzk + FzjFzk .

Therefore it might be permitted to use the notation “Cartan functional” instead of
the lengthy “two-dimensional parameter invariant variational integral”.

The prototype of a Cartan functional is the area functional

A(X) :=
∫

B
|Xu ∧Xv| dudv

whose regular (i.e. immersed) extremals are the surfaces of zero mean curvature,
the minimal surfaces. The classical problem of Plateau consists in finding a mini-
mal surface spanning a given closed Jordan curveΓ in Rn, n ≥ 2. Closely related,
but not equivalent, is the problem of minimizingA among surfaces of a prescribed
topological type which are bounded byΓ. In Section 2 we treat a generalization
of these problems, the minimization of a given Cartan functional among surfaces
X : B → Rn of disk-type which are bounded byΓ. The first general results
for integrals of the type

∫
B F (Xu ∧Xv) dudv were obtained by E.J. McShane in
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1933–1935. The Plateau problem for general Cartan functionals (1.1) was treated
in the fifties by A.G. Sigalov [50]–[52], L. Cesari [5], and J.M. Danskin [7]. They
proved the existence of continuous minimizers. Somewhat later C.B. Morrey [41],
[42] and Y.G. Reshetnyak [46] found other and simpler methods that even pro-
vided the existence of (in the interior) Hölder continuous minimizers. However, it
seems to us that in non of these papers the existence of (in the generalized sense)
conformally parametrizedminimizers is established, although this is occasionally
claimed. Yet minimizersX of (1.1) have to satisfy

(1.3) |Xu|2 = |Xv|2, Xu ·Xv = 0

if one wants to establish some higher regularity, similarly as one cannot prove
higher regularity of minimizersξ for functionals (1.2) without the normalization
condition|ξ̇| ≡ const that fixes the parametrization of the geometric object “curve”
in an appropriate way. Here we treat the problem “F → min” even under the ad-
ditional constraint that the rangeX(B) of a competing surfaceX is contained in a
prescribed closed setK of Rn, say, in a submanifold ofRn. In Section 2 we estab-
lish the existence of conformally parametrized minimizers and, under appropriate
assumptions onK, the Ḧolder continuity of these minimizers is shown in Section
5. Higher regularity can so far be verified only for the special class of Cartan func-
tionals the Lagrangians of which possess a perfect dominance function. Following
C.B. Morrey [41], [42] we introduce in Section 5 the notion of a dominance func-
tion and exhibit a condition that guarantees the existence of a perfect one. Then
we show that any conformally parametrized minimizer ofF bounded by a contour
Γ ∈ C4 is of classH2,2(B,Rn) ∩ C1,β(B,Rn) for someβ ∈ (0, 1).

We note that the well-known partial regularity results for minimizers of inte-
grals

∫
Ω f(X,∇X) du1 . . . duk with strictly quasi-(or poly-)convex Lagrangians

f(x, p) cannot be applied because they requireC2-regularity of the integrand.
Moreover, work by B. Kirchheim, S. M̈uller, and V.S̆veŕak [29] shows that there
are smooth, strongly convex functionsf(p) such thatdivfp(∇X) = 0 has weak
solutionsX ∈ Lip(B,R2) which are notC1 in any open subset ofB. Recently, L.
Sźekelyhidi [53] improved this result in the following way:

There exists a smooth, strongly polyconvexf(p) on R2 × R2 with bounded
second derivatives such that the elliptic system in divergence formdivfp(∇X) =
0 admits weak solutionsX ∈ Lip(B,R2) on the unit ballB of R2 which are
notC1 in any (nonempty) open subset ofB. Moreover,f can be chosen so that
these weak solutions are weak local minimizers of the corresponding functional
F(X) :=

∫
B f(∇X) dudv.

So the regularity question for weak solutions of strictly polyconvex systems is
even in two dimensions a rather difficile problem, and no general regularity theory
seems to be available (see also J. Bevan [3]).

With the LagrangianF (x, z) of a Cartan functional (1.1) we link the associated
Lagrangianf(x, p) := F (x, p1 ∧ p2) for p = (p1, p2) ∈ Rn × Rn. Convexity of
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F (x, z) in z means polyconvexity off(x, p) in p, and the best one can hope for
F (x, z) is convexity ofF (x, z)− λ|z| in z for someλ > 0 which is equivalent to

ζ · |z|Fzzζ ≥ λ
[
|ζ|2 − |z|−2(ζ · z)2

]
for z 6= 0,

i.e.,Fzz(x, z) is (uniformly) positive definite on the orthogonal complement{z}⊥
of the one-dimensional space spanned byz. This means thatf(x, p) − λ|p1 ∧ p2|
is polyconvex, which is a kind of strict polyconvexity that is slightly weaker than
the standard strict polyconvexity which requires thatf(x, p)−λ|p|2 is polyconvex
in p.

In consideration of Sźekelyhidi’s example the reader might find the regularity
results presented in Section 5 to be of some value.

In Section 3 we use the technique developed in Section 2 to derive sufficient
conditions for Fŕechet surfaces to possess a conformal representation. For instance,
as one consequence of our investigations we present a simple proof of McShane’s
theorem that a Fréchet surface with a Lebesgue monotone representative can be
represented conformally. Let us note that (1.3) implies the inequality

|∇X|2 ≤ c|Xu ∧Xv|

with some constantc, in fact even equality withc = 2. Therefore, conformally
parametrized mappingsX : B → Rn, B ⊂ R2, n ≥ 2, aremappings with bounded
distortion.

Section 4 deals with the regular conformal representation of Riemannian met-
rics and regular surfaces. In particular, we prove a generalization of the Riemann
mapping theorem where the Euclidean metric is replaced by a Riemannian one.
Our approach consists in minimizing area whereas Jost’s method in [27], [28] min-
imizes Dirichlet’s integral in the weakH1,2-closure of diffeomorphisms.

Finally in Section 7 we discuss some further results and several open questions
that are to be raised in connection with the preceding results.

2 Minimizers of Cartan functionals

Let Γ be a closed rectifiable Jordan curve inRn, n ≥ 2, and denote byB the unit
disk

B := {(u, v) = w ∈ R2 : u2 + v2 < 1}

in R2. We consider the classC (Γ) of mappingsX : B → Rn bounded byΓ
which is defined as follows:C (Γ) consists of those mappingsX ∈ H1,2(B,Rn)
whose Sobolev trace on∂B (denoted byX|∂B) is a continuous, weakly monotonic
mapping of∂B ontoΓ (see e.g. [8], vol. I, p. 231). We recall the well-known fact
thatC (Γ) is nonvoid asΓ is assumed to be rectifiable.
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LetK be a closed set inRn containingΓ. We introduceC (Γ,K) as the set of
surfacesX ∈ C (Γ) whose rangeX(B) is contained inK, i.e.,X(w) ∈ K a.e. on
B for any representative ofX (which is again denoted byX). ClearlyC (Γ,K)
can be empty; sowe have to assume that there is at least one surfaceX0 ∈ C (Γ)
with X0(B) ⊂ K. This holds true ifK is the diffeomorphic image of a convex
set inRn; in fact it suffices thatK is bi-Lipschitz homeomorphic to a convex set.
Among others we want to study the variational problem

F(X) → min in C (Γ,K)

for Cartan functionalsF : C (Γ,K) → R. These are integrals of the kind

F(X) :=
∫

B
F (X,Xu ∧Xv) dudv

with a LagrangianF ∈ C0(K × RN ), N := n(n − 1)/2, such thatF (x, z) is
positively homogeneous of degree onewith respect toz, i.e., we assume

(H) F (x, tz) = tF (x, z) for t > 0 and for all (x, z) ∈ K × RN .

We also suppose that there are numbersm1 andm2 with 0 < m1 ≤ m2 such that
thedefiniteness assumption

(D) m1|z| ≤ F (x, z) ≤ m2|z| for all (x, z) ∈ K × RN

is satisfied. IfK is compact the assumptionF (x, z) ≤ m2|z| follows from (H)
and the continuity ofF whereas the assumptionm1|z| ≤ F (x, z) with m1 > 0 is
automatically satisfied if we assume thatK is compact andF (x, z) > 0 for any
(x, z) ∈ K × RN with z 6= 0. Then the Lebesgue integralF(X) is well-defined
on {X ∈ H1,2(B,Rn) : X(B) ⊂ K} and in particular onC (Γ,K). Hence, if
C (Γ,K) 6= ∅, it makes sense to look for a minimizer ofF in C (Γ,K). In order to
apply the direct method of the calculus of variations we use the lower semiconti-
nuity ofF with respect to weak convergence of sequences inH1,2(B,Rn) ∩ {X :
X(B) ⊂ K}.On account of a result by Acerbi and Fusco [1] this property follows
from the additional assumption

(C) F (x, z) is convex with respect toz, for anyx ∈ K.

In fact, if f : K × R2n → R denotes theassociated Lagrangian

f(x, p) := F (x, p1 ∧ p2) for x ∈ K, p = (p1, p2) ∈ Rn × Rn ∼= R2n,

condition (C) implies the polyconvexity off(x, p) with respect top, for anyx ∈ K,
and (D) yields

0 ≤ f(x, p) ≤ m2|p1 ∧ p2| ≤
1
2
m2|p|2 for (x, p) ∈ K × R2n.
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Then we also have

F(X) :=
∫

B
f(X,∇X) dudv for X ∈ H1,2(B,Rn) with X(B) ⊂ K,

and we obtain

LEMMA 2.1. If Xj ⇀ X in H1,2(B,Rn) andXj(B) ⊂ K for all j ∈ N then
X(B) ⊂ K and

F(X) ≤ lim inf
j→∞

F(Xj).

PROOF: By Rellich’s lemma we haveXj → X in L2(B,Rn), and soXjp(w) →
X(w) for a.e.w ∈ B for some subsequence{Xjp} ⊂ {Xj}. SinceK is closed
andXj(B) ⊂ K we arrive atX(B) ⊂ K. Thus alsoF(X) is defined, and [1]
yields the desired lower semicontinuity ofF . 2

By (H) the Cartan functional is a “parameter invariant integral”, i.e., we have
F(X ◦ τ) = F(X) on {X ∈ H1,2(B,Rn) : X(B) ⊂ K} for anyC1-diffeo-
morphismτ : B → B of B onto itself. Hence, for any differentiable familyτ s,
|s| < s0, of diffeomorphismsτ s : B → B such that

τ s(w) = w + sη(w) + · · ·

with η ∈ C1(B,R2) andη(w) · ν(w) = 0 for w ∈ ∂B, ν : ∂B → S1 being the
field of unit vectors normal to∂B,

(2.1) ∂F(X, η) :=
d

ds
F(X ◦ τ s)|s=0 = 0.

Now we choose three different parametersw1, w2, w3 ∈ ∂B and three disjoint
pointsP1, P2, P3 ∈ Γ and introduce the three-point condition

(?) X(w1) = P1, X(w2) = P2, X(w3) = P3.

Let C ∗(Γ) andC ∗(Γ,K) be the set of surfacesX ∈ C (Γ) andX ∈ C (Γ,K)
respectively which satisfy (?).

Next we introduce thearea functional

(2.2) A(X) :=
∫

B
|Xu ∧Xv| dudv =

∫
B

√
|Xu|2|Xv|2 − (Xu ·Xv)2 dudv

of a surfaceX ∈ H1,2(B,Rn) as well as itsDirichlet integral

(2.3) D(X) :=
1
2

∫
B
|∇X|2 dudv
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with ∇X = (Xu, Xv) and|∇X|2 = |Xu|2 + |Xv|2. Then

A(X) ≤ D(X),

and we have

A(X) = D(X) if and only ifX satisfies (??)

with

(??) |Xu|2 = |Xv|2, Xu ·Xv = 0,

i.e. |Xu(w)|2 = |Xv(w)|2 andXu(w) · Xv(w) = 0 for a.e. w ∈ B for any
representativeX of theH1,2-surface that we are considering. The equations (??)
are the so-calledconformality relations.Note thatA(X) is the simplest example
of a Cartan functional, withF (z) = |z| andf(p) = |p1 ∧ p2|.

ForX ∈ C1(B,Rn), n ≥ 2, the valueA(X) of the functionalA defined by
(2.2) is given by thearea formula

(2.4) A(X) =
∫

Rn

Θ(X,B, x) dH 2(x),

whereH 2 denotes the two-dimensional Hausdorff measure onRn andΘ(X,E, x)
is the Banach indicatrix for any setE ⊂ B andx ∈ Rn, i.e., the number of
solutionsw ∈ E of the equationX(w) = x,

(2.5) Θ(X,E, x) := ]{w ∈ E : X(w) = x} for E ⊂ B.

Federer has established (2.4) for any Lipschitz continuous mappingX : B → Rn,
n ≥ 2, and even for Sobolev mappings. In the latter case certain precautions are
necessary: The formula may hold for some representatives of a Sobolev mapping
but can fail for another one. In fact, both necessary and sufficient for (2.4) to hold
is thatX is aLusin representativeof classH1,2(B,Rn), that is,X must have the
Lusin property:

H 2(X(E)) = 0 for all E ⊂ B with H 2(E) = 0(⇔ L 2(E) = 0).

The following is true (cf. [12], vol. I, 3.1.5):

PROPOSITION2.2. If X of classH1,2(B,Rn), n ≥ 2, is a Lusin representative
then

(2.6)
∫

E
|Xu ∧Xv| dudv =

∫
Rn

Θ(X,E, x) dH 2(x)

for any measurable subsetE ofB, and even

(2.7)
∫

E
f(X(u, v))|Xu ∧Xv| dudv =

∫
Rn

f(x)Θ(X,E, x) dH 2(x)

for f : X(E) → R whenever one of the two sides is meaningful.
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Any Sobolev map of classH1,2(B,Rn) has a Lusin representative but it need not
be the continuous one if that exists. Such an example can be found in Remark 3, p.
223 of [12], vol. I. Even more striking is an example by Cesari modified by Malý
and Martio (see [34], pp. 34–35): There is a continuous mappingX : R2 → R2 of
classH1,2(R2,R2) with det∇X(w) = 0 for a.e.w ∈ R2 which maps the interval
{(u, 0) : 0 ≤ u ≤ 1} ontothe square[0, 1]× [0, 1].
On the other hand, the continuous representative of a mappingX ∈ H1,s(B,Rn)
with s > 2 is automatically a Lusin representative, and (2.6) and (2.7) are true
(evenX ∈ H1,s

loc (B,Rn) is sufficient); cf. [12], vol. I, p. 223, Theorem 3. Fur-
thermore, ifX : B → Rn, n ≥ 2, is a (locally) Ḧolder continuous representative
of classH1,2(B,Rn) thenX has the Lusin property, and so (2.6) and (2.7) remain
true. Forn = 2 this was proved in [34], Theorem C; forn > 2 we refer to Maĺy
[33], pp. 381–384.

We mention that any Lusin representativeX of classH1,2(B,Rn) maps mea-
surable subsetsE of B into H 2-measurable and countably2-rectifiable subsets of
Rn in the sense of Federer (cf. [12], vol. I, 2.1.4 and 3.1.5), and (2.6) implies

(2.8)
∫

B
|Xu ∧Xv| dudv ≥ H 2(X(B))

where the equality sign holds if and only ifΘ(X,B, x) = 1 for H 2-almost all
x ∈ X(B).

In the next section we shall recall how the functionalA is related to the Fŕechet
area of continuous surfaces, and then we discuss generalized conformal represen-
tations of such surfaces. Essentially this will be a special case of the following
investigation of thePlateau problem“F → min in C (Γ,K)” for a Cartan func-
tionalF as previously discussed. We first recall a well-known consequence of the
Courant-Lebesgue lemma (cf. [8], vol. I, 4.3 & 4.4).

LEMMA 2.3. (i) Let{Xj} be a sequence of surfacesXj ∈ C ∗(Γ) withD(Xj) ≤
c <∞ for all j ∈ N and some constantc > 0. Then there is a surfaceX ∈ C ∗(Γ)
and a subsequence{Xjν} of {Xj} such that

Xjν ⇀ X in H1,2(B,Rn) and Xjν |∂B → X|∂B in C0(∂B,Rn).

(ii) If in additionXj ∈ C ∗(Γ,K) for some closed setK in Rn then alsoX ∈
C ∗(Γ,K).

PROOF: By Poincaŕe’s inequality there is a constantc0 = c0(Γ) > 0 depending
on |Γ| := max{|x| : x ∈ Γ} such that

‖X‖2
L2(B,Rn) ≤ c0(1 +D(X)) for all X ∈ C (Γ)

whence

(2.9) ‖X‖2
H1,2(B,Rn) ≤ (2 + c0)(1 +D(X)) for all X ∈ C (Γ).
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So the set{X ∈ C ∗(Γ) : D(X) ≤ c} is sequentially compact with respect to
weak convergence inH1,2(B,Rn), and the Courant-Lebesgue lemma implies the
statements of (i). The assertion (ii) follows as in the proof of Lemma 2.1. 2

THEOREM 2.4. If F ∈ C0(K×Rn) meets(H), (D), and(C), whereK is a closed
set inRn then there is anX ∈ C ∗(Γ,K) withF(X) = infC (Γ,K)F satisfying the
conformality relations(??), provided thatC (Γ,K) is nonempty.

PROOF: For 0 < ε ≤ 1 we consider the family of functionalsF ε defined on
H1,2(B,K) := {X ∈ H1,2(B,Rn) : X(B) ⊂ K} by

F ε(X) := F(X) + εD(X).

Introducing the Lagrangianf ε : K × R2n → R by

f ε(x, p) := f(x, p) +
ε

2
|p|2

we have

F ε(X) =
∫

B
f ε(X,∇X) dudv.

It is well-known thatD is (sequentially) weakly lower semicontinuous on the space
H1,2(B,Rn). In conjunction with Lemma 2.1 it follows thatF ε is (sequentially)
weakly lower semicontinuous onH1,2(B,K) for anyε ∈ [0, 1].

Let τ : B → B be a conformal automorphism ofB onto itself andX ∈
C (Γ,K). ThenY := X ◦ τ ∈ C (Γ,K) andD(Y ) = D(X) as well asF(Y ) =
F(X) whenceF ε(Y ) = F ε(X). Therefore,

(2.10) inf
C (Γ,K)

F = inf
C ∗(Γ,K)

F and inf
C (Γ,K)

F ε = inf
C ∗(Γ,K)

F ε.

We define the nondecreasing functiond : [0, 1] → R by

(2.11) d(0) := inf
C (Γ,K)

F , d(ε) := inf
C (Γ,K)

F ε for 0 < ε ≤ 1.

Since|p|2/2 ≤ ε−1f ε(x, p) it follows that

(2.12) D(X) ≤ ε−1F ε(X) for all X ∈ C (Γ,K) and 0 < ε ≤ 1.

Now we fix someε ∈ (0, 1] and consider the minimum problem

“ F ε −→ min in C (Γ,K) ” .

By (2.10)–(2.12) there is a sequence{Xj} of mappingsXj ∈ C ∗(Γ,K) with
F ε(Xj) → d(ε) as j → ∞ andD(Xj) ≤ const. On account of Lemma 2.3
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there exists anXε ∈ C ∗(Γ,K) and a subsequence{Xjν} with Xjν ⇀ Xε in
H1,2(B,Rn). Thend(ε) ≤ F ε(Xε), and Lemma 2.1 impliesF ε(Xε) ≤ d(ε).
Thus

(2.13) d(ε) = F ε(Xε) for someXε ∈ C ∗(Γ,K).

Consider anyη ∈ C1(B,R2) with η(w) · ν(w) = 0 for all w ∈ ∂B, where
ν : ∂B → S1 is the field of unit vectors normal to∂B, and form a differentiable
family of diffeomorphismsτ s : B → B with τ s(w) = w + sη(w) + · · · for
|s| � 1. DefineY s by Y s(w) := Xε(τ s(w)) for w ∈ B and |s| � 1. Then
Y s ∈ C (Γ,K), and consequently,F ε(Y 0) = F ε(Xε) ≤ F ε(Y s) for |s| � 1,
taking (2.13) into account. This implies

d

ds
F ε(Y s)|s=0 = 0,

which is
0 = ∂F ε(Xε, η) = ∂F(Xε, η) + ε∂D(Xε, η).

Since∂F(Xε, η) = 0 (by virtue of (2.1)) andε > 0 we obtain

∂D(Xε, η) = 0 for all η ∈ C1(B,R2) with η · ν = 0 on ∂B.

For a := |Xε
u|2 − |Xε

v|2, b := 2Xε
u ·Xε

v, this leads to∫
B

[a(η1
u − η2

v) + b(η2
u + η1

v)] dudv = 0

for anyη = (η1, η2) ∈ C1(B,R2) with η · ν = 0 on ∂B. First we chooseη in
C∞c (B,R2) in the formη = Sδµ whereµ = (µ1, µ2) ∈ C∞c (B,R2) andSδ is a
smoothing operator with a symmetric kernelkδ, 0 < δ � 1, i.e., Sδµ = kδ ? µ.
Then ∫

B
[aδ(µ1

u − µ2
v) + bδ(µ2

u + µ1
v)] dudv = 0

for aδ := Sδa, b
δ := Sδb. An integration by parts yields∫

B
[−(aδ

u + bδv)µ
1 + (aδ

v − bδu)µ2] dudv = 0

for any µ ∈ C∞c (B′,R2) with B′ ⊂⊂ B and0 < δ < δ0(B′). Therefore the
functionsaδ,−bδ ∈ C∞(B′) satisfy the Cauchy-Riemann equations

aδ
u = (−bδ)v, aδ

v = −(−bδ)u in B′,

and soφδ := aδ − ibδ is holomorphic inB′ ⊂⊂ B for 0 < δ < δ0(B′). Since
φδ → φ := a − ib in L1(B′,C) asδ → 0 we infer thatφ is holomorphic inB′
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for anyB′ ⊂⊂ B, and soφ is holomorphic inB. Now we can apply a well-known
reasoning due to Courant [6, pp. 112–115] and obtainφ = 0, that is,

(2.14) |Xε
u|2 = |Xε

v|2, Xε
u ·Xε

v = 0 in B.

In other words, for anyε > 0 the minimizerXε of F ε satisfies the conformality
relations (??), and so we have

A(Xε) = D(Xε) for all ε > 0.

Condition (D) impliesm1A(Xε) ≤ F(Xε), hence

(m1 + ε)D(Xε) ≤ F ε(Xε).

On the other hand, (2.13) implies

F ε(Xε) ≤ F ε(Z) for all Z ∈ C (Γ,K),

and byA(Z) ≤ D(Z) andF(Z) ≤ m2A(Z) we haveF ε(Z) ≤ (m2 + ε)D(Z)
whence

(m1 + ε)D(Xε) ≤ (m2 + ε)D(Z).

Since
m2 + ε

m1 + ε
<
m2

m1
for all ε > 0

we arrive at
D(Xε) ≤ m2

m1
D(Z) for all Z ∈ C (Γ,K),

and consequently,

(2.15) D(Xε) ≤ m2

m1
inf

C (Γ,K)
D =: c <∞ for all ε ∈ (0, 1].

By virtue of Lemma 2.3 there is anX ∈ C ∗(Γ,K) and a sequence ofεj > 0 with
εj → 0 such thatXεj ⇀ X in H1,2(B,Rn). On account of Lemma 2.1 it follows
that

F(X) ≤ lim inf
j→∞

F(Xεj ).

Sinced(ε) is nondecreasing,limε→+0 d(ε) exists, and byd(ε) = F ε(Xε) =
F(Xε) + εD(Xε) we infer from (2.15) that

lim
ε→+0

d(ε) = lim
ε→+0

F ε(Xε) = lim
ε→+0

F(Xε).

Moreover, we haved(0) ≤ F(X) asX ∈ C (Γ,K), and so

d(0) ≤ F(X) ≤ lim
ε→+0

d(ε).
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On the other hand,d(ε) = F ε(Xε) ≤ F ε(Z) = F(Z) + εD(Z) for anyZ ∈
C (Γ,K) whencelimε→+0 d(ε) ≤ F(Z) and consequentlylimε→+0 d(ε) ≤ d(0).
ThusX ∈ C ∗(Γ,K) satisfies

F(X) = inf
C (Γ,K)

F = lim
ε→+0

F(Xε),

i.e.,X minimizesF in C (Γ,K).
Finally we want to show thatX satisfies the conformality relations (??). This

does not immediately follow from (2.14) since we merely have the weak conver-
genceXεj ⇀ X inH1,2(B,Rn).However, (??) is a consequence of (2.14) as soon
as we have the strong convergenceXεj → X in H1,2(B,Rn). For this it suffices
to prove

(2.16) lim
j→∞

D(Xεj ) = D(X).

This will be verified as follows: SinceXε minimizesF ε in C (Γ,K) we have
F ε(Xε) ≤ F ε(X), i.e.,

F(Xε) + εD(Xε) ≤ F(X) + εD(X),

andF(X) ≤ F(Xε) asX minimizesF . ThereforeεD(Xε) ≤ εD(X), and so
D(Xε) ≤ D(X) for ε > 0 whence

lim sup
j→∞

D(Xεj ) ≤ D(X).

The weak lower semicontinuity of the Dirichlet integral inH1,2(B,Rn) yields

D(X) ≤ lim inf
j→∞

D(Xεj ),

and so we obtain (2.16). This concludes the proof of the theorem. 2

REMARK . We gratefully acknowledge that the proof of (2.16) given above
was pointed out to us by Stefan Müller. Our original proof was more cumbersome
and even required strict convexity ofF (x, z) in z, in the sense thatF (x, z)− σ|z|
be convex for someσ > 0.

3 Conformal representation of Fréchet surfaces

Besides the classical formula

A(X) =
∫

B
|Xu ∧Xv| dudv
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for embeddingsX : B → Rn of classC1, which also makes sense for surfaces
X ∈ H1,2(B,Rn), there are numerous definitions generalizing the notion of area.
Of those, two have proved to be valuable, the two-dimensional Hausdorff measure
H 2(S) of a point setS ⊂ Rn and, secondly, the Lebesgue-area of a Fréchet
surface. We have discussed the relation betweenA(X) andH 2(X(B)) for X ∈
H1,2(B,Rn) in the preceding section. Now we turn to the Lebesgue area of a
Fréchet surface.

Consider two continuous mappingsX1 : Ω1 → Rn andX2 : Ω2 → Rn where
Ω1 andΩ2 are bounded open sets inR2. They are said to beLebesgue equivalent
(symbol:X1 ∼ X2) if there is a homeomorphismτ : Ω1 → Ω2 of Ω1 onto Ω2

such thatX1 = X2 ◦τ. This is an equivalence relation, and every equivalence class
might be called aLebesgue surface.Unfortunately, this notion of equivalence is too
narrow, and so one uses the weaker notion of Fréchet equivalence which is defined
as follows. For any two mappingsX1 ∈ C0(Ω1,Rn) andX2 ∈ C0(Ω2,Rn) with
homeomorphic compact parameter regionsΩ1 andΩ2 in R2 we define the distance
δ(X1, X2) as

(3.1) δ(X1, X2) := inf{‖X1 −X2 ◦ τ‖C0(Ω1,Rn) : τ ∈ H(Ω1,Ω2)}

whereH(Ω1,Ω2)} is the set of homeomorphisms fromΩ1 ontoΩ2. The distance
functionδ is nonnegative, symmetric, and satisfies the triangle inequality.

One callsX1 andX2 Fréchet equivalent(X1 ≈ X2) if δ(X1, X2) = 0. This
relation is, in fact, an equivalence relation. Every equivalence classS = [X] with
a representativeX ∈ C0(Ω,Rn) is said to be aFréchet surfaceof the topological
type of Ω, andX is called aparameter representationof S.

In the sequel we restrict ourselves to Fréchet surfacesS of the type of the disk.
They form a metric space(M , δ) with the distance functionδ(S1, S2) defined by

(3.2) δ(S1, S2) := δ(X1, X2) if S1 = [X1] and S2 = [X2].

The following result is easy to verify:

PROPOSITION3.1. (i) If X,Xj ∈ C0(B,Rn) with ‖X − Xj‖C0(B,Rn) → 0 as
j →∞, andS = [X], Sj = [Xj ], thenδ(Sj , S) → 0.

(ii) Conversely, ifS, Sj ∈ M with δ(Sj , S) → 0, and S = [X] for some
X ∈ C0(B,Rn), then there areXj ∈ C0(B,Rn) with Sj = [Xj ] and such that
‖X −Xj‖C0(B,Rn) → 0 asj →∞.

The convergenceδ(Sj , S) → 0 for S, S1, S2, . . . , Sj , . . . in M is denoted by the
symbolSj → S.

In order to define the Lebesgue areaL (S) of a given Fŕechet surfaceS we
consider the sequences{Pj} of polyhedral surfaces withPj → S. There is always
such a sequence, and for any polyhedronP its elementary surface areaE (P ) is
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well-defined. For any sequence{Pj}withPj → S we considerlim infj→∞ E (Pj),
and then we form the infimum of the valueslim infj→∞ E (Pj) taken with respect
to all sequencesPj → S; this is theLebesgue areaL (S) of S,

(3.3) L (S) := inf{lim inf
j→∞

E (Pj) : Pj → S}.

It turns out thatL (P ) = E (P ) for any polyhedronP. McShane [35] and Morrey
[37] have proved that

(3.4) L (S) = A(X)

if X is a parameter representation forS of classC0(B,Rn) ∩ H1,2(B,Rn). (We
refer to [45] and [43] for proofs of the results cited above as well as for further
results and references.)

Now we want to describe a condition onS that allows us to certify the existence
of a conformally parametrized representation.

THEOREM 3.2. Suppose thatX0 ∈ C (Γ) ∩ C0(B,Rn) satisfies

(3.5) oscΩX0 ≤ c0 osc∂ΩX0

for all open setsΩ ⊂ B and a constantc0 > 0 independent ofΩ. Then there
exists a mappingX ∈ C (Γ) ∩ C0(B,Rn) with δ(X,X0) = 0 which satisfies the
conformality relations

(??) |Xu|2 = |Xv|2, Xu ·Xv = 0.

PROOF: We consider mappingsX ∈ C0(B,Rn) which satisfy

(3.6) oscΩX ≤ c0 osc∂ΩX

for all open setsΩ ⊂ B. Let K(Γ, X0) be the set ofX ∈ C (Γ) ∩ C0(B,Rn)
which fulfill (3.6) as well asδ(X,X0) = 0, andK∗(Γ, X0) be the subset ofX ∈
K(Γ, X0) subject to a three-point condition

(?) X(wj) = Pj , j = 1, 2, 3,

as described in Section 2. (Note that, for any homeomorphismτ : B → B, the
reparametrized mappingZ := X ◦ τ satisfies (3.6) ifX fulfills (3.6).

Now we proceed similarly as in the proof of Theorem 2.4, replacingC (Γ,K)
andC ∗(Γ,K) byK(Γ, X0) andK∗(Γ, X0), respectively, as well asF andF ε by
A and

Aε := A+ εD for 0 < ε ≤ 1.

Instead of Lemma 2.3 we use the following result:
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LEMMA 3.3. Let{Xj} be a sequence of surfacesXj ∈ K∗(Γ, X0) withD(Xj) ≤
c < ∞ for all j ∈ N and some constantc > 0. Then there is a surfaceX ∈
K∗(Γ, X0) and a subsequence{Xjν} of {Xj} such that

Xjν ⇀ X in H1,2(B,Rn) and Xjν → X in C0(B,Rn).

We omit the proof of this result which is once again a consequence of the Courant-
Lebesgue lemma if one takes (3.6) into account.

Analogously to (2.10) we note that

inf
K(Γ,X0)

A = inf
K∗(Γ,X0)

A, inf
K(Γ,X0)

Aε = inf
K∗(Γ,X0)

Aε.

Then we fix someε ∈ (0, 1] and consider the minimum problem

“ Aε −→ min in K(Γ, X0) ” .

By the Lemmata 2.1 and 3.3 there is a minimizerXε ofAε in K(Γ, X0) which lies
in K∗(Γ, X0), i.e.,

Aε(Xε) = d(ε) for 0 < ε ≤ 1

if we set
d(ε) := inf

K(Γ,X0)
Aε.

For anyη ∈ C1(B,R2) with η(w) · ν(w) = 0 on ∂B, ν : ∂B → S1 the exterior
normal to∂B, we form a differentiable family of diffeomorphismsτ s : B → B
with

τ s(w) = w + sη(w) + · · · for |s| � 1

and setY s := Xε ◦ τ s. ThenY s ∈ K(Γ, X0) for |s| � 1 and soAε(Y 0) ≤
Aε(Y s). This implies

d

ds
Aε(Y s)|s=0 = 0

whence∂D(Xε, η) = 0 for anyη ∈ C1(B,Rn) with η · ν = 0 on ∂B, and we
obtain

|Xε
u|2 = |Xε

v|2, Xε
u ·Xε

v = 0 on B.

It follows that
A(Xε) = D(Xε)

and
Aε(Xε) = (1 + ε)D(Xε).

For anyZ ∈ K(Γ, X0) we haveAε(Xε) ≤ Aε(Z) andAε(Z) = A(Z)+εD(Z) ≤
(1 + ε)D(Z); thereforeD(Xε) ≤ D(Z) and in particular

D(Xε) ≤ D(X0) =: c for 0 < ε ≤ 1.
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By Lemma 3.3 it follows that there is anX ∈ K∗(Γ, X0) and a sequence ofεj > 0
with εj → 0 such thatXεj ⇀ X in H1,2(B,Rn) andXεj → X in C0(B,Rn).
SinceL (S) = A(Z) for S := [X0] and anyZ ∈ K(Γ, X0), we haveA(Xε) =
A(X) for all ε ∈ (0, 1], and so

D(Xε) = A(Xε) = A(X) ≤ D(X).

On the other hand,Xεj ⇀ X in H1,2(B,Rn); hence

D(X) ≤ lim inf
j→∞

D(Xεj ).

ThusA(X) = D(X) which implies (??). 2

An immediate consequence of the preceding theorem is

COROLLARY 3.4. LetS = [X0] be a Fŕechet surface with a parameter represen-
tationX0 of classC (Γ)∩C0(B,Rn) satisfying(3.5). Then there exists a represen-
tativeX of classC (Γ)∩C0(B,Rn) for S which fulfills the conformality relations
(??) and condition(3.5).

Another consequence of Theorem 3.2 is a celebrated result by McShane ([36],
Theorem I, p. 725) which we formulate as

COROLLARY 3.5. Suppose that the Fréchet surfaceS has a representative of class
C (Γ) ∩C0(B,Rn) which is Lebesgue monotone. Then there is a Lebesgue mono-
tone representativeX ∈ C (Γ) ∩ C0(B,Rn) for S satisfying the conformality
relations(??).

We recall that a continuous functionφ : B → R is said to beLebesgue monotone
if we have

min
∂Ω

φ ≤ φ(w) ≤ max
∂Ω

φ for all w ∈ Ω

and for any open setΩ ⊂ B. A mappingX ∈ C0(B,Rn) is called Lebesgue
monotone if each of its components has this property. Clearly every other repre-
sentative of the Fŕechet surfaceS = [X] is Lebesgue monotone as well. Moreover,
each Lebesgue monotone mappingX satisfies (3.5) withc0 =

√
n.

Actually McShane’s result looks slightly more general than Corollary 3.5 be-
cause it states the following:

Any Fŕechet surfaceS with finite areaL (S) that has a Lebesgue monotone
representativeX ∈ C0(B,Rn) which maps∂B weakly montonically onto a Jor-
dan curveΓ has a representative of classH1,2(B,Rn) which satisfies(??).
(Here the rectifiability ofΓ is not needed because of the assumptionL (S) <∞.)
However, this form of the assertion really is not stronger than Corollary 3.5 since
L (S) < ∞ implies the existence of a Lebesgue monotone representativeX of
classC (Γ) ∩ C0(B,Rn); see e.g. Nitsche [43],§226.
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LEMMA 3.6. Any bi-Lipschitz homeomorphismX0 of B onto a subsetS of Rn

satisfies condition(3.5).

PROOF: The mappingX0 : B → S is a bi-Lipschitz homeomorphism if there
are constantsλ andµ with 0 < λ ≤ µ such that

(3.7) λ|w1 − w2| ≤ |X(w1)−X(w2)| ≤ µ|w1 − w2| for all w1, w2 ∈ B.
Let Ω be an open set inB. Thendiam Ω = diam ∂Ω, and so

oscΩX ≤ µdiam Ω = µdiam ∂Ω ≤ (µ/λ) osc∂ΩX.

2

This leads to

COROLLARY 3.7. Suppose that the Fréchet surfaceS has a representativeX0 ∈
C (Γ) which furnishes a bi-Lipschitz mapping ofB onto the traceS := X0(B) of
S in Rn. Then there exists a representativeX ∈ C (Γ) ∩ C0(B,Rn) of S which
satisfies the conformality relations(??) and condition(?).

This result can, for instance, be applied to any polyhedral surfaceP that has an
embedding as a representative, and to any Fréchet surfaceS having an embedded
C1-immersionX0 : B → Rn as a representative. In fact, there is aδ > 0 such that

λ′|w1 − w2| ≤ |X0(w1)−X0(w2)| ≤ µ′|w1 − w2|
holds for anyw1, w2 ∈ B with |w1 − w2| < δ and someλ′, µ′ with 0 < λ′ ≤ µ′.
Furthermore there are numbersR,m1,m2 with R ≥ δ and0 < m1 ≤ m2 such
that|w1 − w2| ≤ R for anyw1, w2 ∈ B and

m1 ≤ |X0(w1)−X0(w2)| ≤ m2

for w1, w2 ∈ B with δ ≤ |w1 − w2| ≤ R. This implies
m1

R
|w1 − w2| ≤ |X0(w1)−X0(w2)| ≤

m2

δ
|w1 − w2|

for w1, w2 ∈ B with |w1 − w2| ≥ δ. Setting

λ := min{λ′,m1/R} and µ := max{µ′,m2/δ}
we obtain (3.7).

We also note the following general result by Morrey (see [38], p. 701, Theorem
2): Every nondegenerate Fréchet surfaceS with L (S) <∞ possesses a represen-
tativeX ∈ H1,2(B,Rn) ∩ C0(B,Rn) satisfying the conformality relations(??).

A Fréchet surfaceS with a representativeX ∈ C0(B,Rn) is said to benonde-
generateif X|∂B is nonconstant andB \C is connected for every continuumC in
B such thatX|C is constant (see [39], p. 49, Theorem 3). This intricate sufficient
condition seems difficult to be verified, which leads to the problem ofcharacteriz-
ing all surfaces which allow a conformal representation, which – to the best of our
knowledge – remains an open question up to now; see also [57], [58].
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4 Conformal representation of Riemannian metrics and
C1,α-surfaces

As before letB be the standard unit disk{w ∈ R2 : |w| < 1} in R2 andw = (u, v).
Secondly, letΩ be a bounded open set of pointsx = (x1, x2) ∈ R2, bounded by a
closed rectifiable Jordan curveΓ. We assume that, besides the Euclidean metric

(4.1) ds2e := δjkdx
jdxk

onR2, Ω carries a Riemannian metric

(4.2) ds2 := gjkdx
jdxk.

We shall prove the following global form of Lichtenstein’s theorem [32] which can
be viewed as a generalization of Riemann’s mapping theorem from the complex
plane to two-dimensional Riemannian manifolds.

THEOREM 4.1. Suppose thatΓ ∈ Cm,α andgjk ∈ Cm−1,α(Ω) for somem ∈ N
andα ∈ (0, 1). Then there is a conformal mappingτ fromB ontoΩ which is of
classCm,α(B,R2).

Here a conformal mappingτ from B onto Ω is a diffeomorphismτ : B → Ω
betweenB andΩ satisfying theconformality relations

(4.3) E (τ) = G (τ), F (τ) = 0,

where the quantitiesE (τ),F (τ), andG (τ) are defined as

E (τ) := gjk(τ)τ j
uτ

k
u , G (τ) := gjk(τ)τ j

v τ
k
v ,

(4.4)

F (τ) := gjk(τ)τ j
uτ

k
v .

The pull-backτ∗ds2 of the metricds2 onΩ to the diskB is given by the formula

τ∗ds2 = E (τ)du2 + 2F (τ)dudv + G (τ)dv2.

For a conformal mappingτ : B → Ω we have

(4.5) λ := E (τ) = G (τ) > 0 on B

and

(4.6) τ∗ds2 = λ(u, v) · (du2 + dv2).

Moreover, the componentsτ1, τ2 of a conformal mappingτ ,

τ(u, v) = (τ1(u, v), τ2(u, v)) for w = (u, v) ∈ B,
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satisfy theBeltrami equations√
g(τ)τ1

v = −ρ [ g12(τ)τ1
u + g22(τ)τ2

u ]
(4.7) √

g(τ)τ2
v = ρ [ g11(τ)τ1

u + g12(τ)τ2
u ],

where
g(x) := det(gjk(x))

and eitherρ(u, v) ≡ 1 or ρ(u, v) ≡ −1. The Beltrami equations (4.7) are the “gen-
eralized Cauchy-Riemann equations” of a conformal mappingτ, and they imply

(4.8)
√
g(τ) detDτ = ρE (τ).

Thusτ is orientation preserving or reversing ifρ = 1 or ρ = −1 respectively. If
gjk(x) ≡ δjk then Theorem 4.1 is the classical Riemann mapping theorem since we
can assumeρ ≡ 1 (otherwise we composeτ with the reflection(u, v) 7→ (u,−v)).
In fact, we even obtain the Osgood–Carathéodory extension of Riemann’s theorem
to the boundaries∂B and∂Ω, whereas the theorem in its classical formulation only
claims thatB can be mapped conformally ontoΩ.

There are many proofs for Theorem 4.1 or for related versions. The classical
approach consists in combining Lichtenstein’s theorem (which locally leads to con-
formal parameters) with the uniformization theorem. We proceed by a variational
method, minimizing thearea functional

(4.9) A(τ) :=
∫

B

√
E (τ)G (τ)−F 2(τ) dudv =

∫
B

√
g(τ) |detDτ | dudv.

This will simultaneously lead to a minimization of theDirichlet integral

(4.10) D(τ) :=
1
2

∫
B

[E (τ) + G (τ) ] dudv.

Proof of Theorem 4.1: We extend(gjk) to all of R2 in such a way thatgjk(x) =
δjk for |x| � 1 andgjk ∈ Cm−1,α(R2). Then there are numbersm1,m2 with
0 < m1 ≤ m2 such that

(4.11) m1|ξ|2 ≤ gjk(x)ξjξk ≤ m2|ξ|2 for all x, ξ ∈ R2.

Now we consider arbitrary mappingsτ : B → R2 of classH1,2(B,R2). For any
suchτ the functionsE (τ), F (τ), G (τ) are of classL1(B), and soA andD are
well-defined onH1,2(B,R2) and in particular onC (Γ) (cf. Section 2, setting
n = 2). We want to find a solutionτ of the minimum problem

“A −→ min in C (Γ)”
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satisfying (4.3). To this end we introduce

Aε(τ) := (1− ε)A(τ) + εD(τ), 0 ≤ ε ≤ 1,

and consider themodified minimum problem

“ Aε −→ min in C (Γ) ”

for any fixedε with 0 < ε ≤ 1. The functionalA is a Cartan functional, and so
Lemma 2.1 applies toA. Since alsoD is (sequentially) weakly lower semicontin-
uous onH1,2(B,R2), the same holds forAε. Hence there is aτ ε ∈ C (Γ) such
that

Aε(τ ε) = inf{Aε(τ) : τ ∈ C (Γ)}, 0 < ε ≤ 1.

The same reasoning as in the proof of Theorem 2.4 yields at first

∂Aε(τ ε, η) = ε∂D(τ ε, η) = 0

for any vector fieldη ∈ C1(B,R2) with η|∂B ⊥ ∂B, whence∫
B

[ a(η1
u − η2

v) + b(η2
u + η1

v ] dudv = 0

for suchη, with
a := E (τ ε)− G (τ ε), b := 2F (τ ε),

and thena = 0 andb = 0. Thus we have

(4.12) E (τ ε) = G (τ ε), F (τ ε) = 0 for 0 < ε ≤ 1.

For anyτ ∈ H1,2(B,R2) one hasA(τ) ≤ D(τ), and the equality sign holds if and
only if τ satisfies (4.3) a.e. onB. We conclude that

(4.13) Aε(τ ε) = A(τ ε) = D(τ ε) for 0 < ε ≤ 1.

Set
a(Γ) := inf

C (Γ)
A, d(Γ) := inf

C (Γ)
D.

Then we obtain for anyτ ∈ C (Γ) and0 < ε ≤ 1 that

d(Γ) ≤ D(τ ε) = Aε(τ ε) ≤ Aε(τ) ≤ D(τ)

whenced(Γ) ≤ D(τ ε) ≤ d(Γ), and so

(4.14) D(τ ε) = d(Γ) for all ε ∈ (0, 1].
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It follows from (4.13) and (4.14) thatAε(τ ε) = Aε′(τ ε′) for all ε, ε′ ∈ (0, 1]; thus
we have for anyτ ∈ C (Γ)

a(Γ) ≤ A(τ ε) = Aε(τ ε) = Aε′(τ ε′) ≤ Aε′(τ) → A(τ) as ε′ → 0.

Hencea(Γ) ≤ A(τ ε) ≤ a(Γ), i.e. A(τ ε) = a(Γ) for all ε ∈ (0, 1], and we have
arrived at

(4.15) a(Γ) = A(τ ε) = D(τ ε) = d(Γ) for all ε ∈ (0, 1].

In particular,τ := τ1 minimizes bothA andD in C (Γ).
Let us assume thatm ≥ 2 andα ∈ (0, 1). Then well-known results show that

τ is a minimal surface of classCm,α(B,R2) in the two-dimensional Riemannian
manifold (R2, ds2); cf. Morrey [42], Chapter 9, Tomi [55], Heinz-Hildebrandt
[16]. Furthermore, ifw0 ∈ B is a branch point ofτ , i.e., if E (τ)(w0) = 0, then
there is ana ∈ C2 \ {0} and a numberν ∈ N such that the Wirtinger derivative
τw = (1/2)(τu − iτv) : B → C2 of τ has the asymptotic expansion

τw(w) = a(w − w0)ν + o(|w − w0|ν) as w → w0.

Integrating it follows that forx with 0 < |x− τ(w0)| � 1 the indicatrix

Θ(τ, x) := ]{w ∈ B : τ(w) = x}

satisfies

(4.16) Θ(τ, x) ≥ 2, or Θ(τ, x) ≥ 1, if w0 ∈ B orw0 ∈ ∂B, respectively,

provided thatw0 is a branch point ofτ.
A topological argument yieldsΩ ⊂ τ(B) asτ maps∂B weakly monotonically

and continuously ontoΓ. Therefore we also have

(4.17) Θ(τ, x) ≥ 1 for x ∈ Ω.

Let τ0 be a diffeomorphism ofB ontoΩ, for instance the classical conformal map-
ping τ0 in the complex plane. Then

A(τ) ≤ A(τ0) =
∫

Ω

√
g(x) dx1dx2.

On the other hand the area formula yields

A(τ) =
∫

R2

Θ(τ, x)
√
g(x) dx1dx2,

and so

(4.18)
∫

R2

Θ(τ, x)
√
g(x) dx1dx2 ≤

∫
Ω

√
g(x) dx1dx2.
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On account of (4.16)–(4.18) it follows firstly thatτ has no branch points onB
whenceDτ(w) 6= 0 for all w ∈ B. Thusτ |∂B is 1–1 and yields a homeomor-
phism from∂B ontoΓ. Secondly,τ |B is open; hence it follows from (4.17)–(4.18)
that Θ(τ, x) = 1 for x ∈ Ω andΘ(τ, x) = 0 for x ∈ R2 \ Ω. Consequently,
τ : B → Ω is a diffeomorphism and, therefore, a conformal mapping fromB onto
Ω which satisfies the Beltrami equations (4.7). If we merely assumeΓ ∈ C1,α and
gjk ∈ C0,α(Ω), τ turns out to be a conformal mapping fromB ontoΩ which is
of classC1,α(B,R2). This follows from the preceding result by approximatingΓ
andgjk byC∞-dataΓn, g

n
jk, and applying a priori estimates for the corresponding

mappingsτn and their inversesτ−1
n which satisfy similar Beltrami equations (cf.

e.g. Schulz [48], Chapter 6; Jost [28], Chapter 3; or Morrey [42], pp. 373–374).2

COROLLARY 4.2. The conformal mappingτ : B → Ω in Theorem 4.1 is uniquely
determined if we fix a three-point condition on∂B, and it is a minimizer of bothA
andD in the classC (Γ).

A slight modification of the preceding reasoning combined with a suitable approx-
imation argument yields

THEOREM 4.3. If Γ is a closed Jordan curve inR2 and gjk ∈ Cm−1,α(R2) for
somem ∈ N andα ∈ (0, 1), then there is a homeomorphismτ ofB ontoΩ which
yields a conformal mapping of classCm,α(B,R2) fromB ontoΩ.

COROLLARY 4.4. If X : B → Rn, n ≥ 2, is an immersed surface of classCm,α,
m ∈ N, α ∈ (0, 1), then there exists an equivalent representationY := X ◦ τ
which is conformally parametrized, i.e.,|Yu|2 = |Yv|2, Yu · Yv = 0.

PROOF: X(x1, x2) with x = (x1, x2) ∈ B induces the Riemannian metric(gjk)
with

g11 = Xx1 ·Xx1 , g12 = g21 = Xx1 ·Xx2 , g22 = Xx2 ·Xx2

on B which is of classCm−1,α. If we now determine the corresponding con-
formal mappingτ from (B, dse) onto (B, ds) determined by Theorem 4.1, then
Y := X ◦ τ has the desired property. 2

REMARK 4.5. Our method of directly minimizing the area functional can also be
used to prove the global Lichtenstein theorem for two-dimensional Riemannian
manifolds homeomorphic to the standard sphereS2 ⊂ R3 as carried out in [24, pp.
8,9], or to treat multiply connected domains, see [25].
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We note that the results of this section are well-known; we refer to J.C.C.
Nitsche [43],§60, for references to the literature. The reader finds more recent con-
tributions in Jost [27], [28], Sauvigny [47], and Schulz [48]. F. Tomi has pointed
out to us a proof that operates with monotonic transformations and is closely related
to the variational method used by Jost. The first result on conformal representations
was proved by Gauß [11]; the final result is due to Lichtenstein [32].

5 Hölder continuity of minimizers of Cartan functionals

Now we want to exhibit a condition guaranteeing Hölder continuity of solutions
to the Plateau problem “F → min in C (Γ,K)” that are established by Theorem
2.4.

LetK be a closed set inRn, n ≥ 2, and denote byEn
ν the plane

{y ∈ Rn : yν+1 = 0, . . . , yn = 0}

with ν ≥ 2. We callK ν-quasiregularif there are numbersd > 0 andλ1, λ2 with
0 < λ1 ≤ λ2 such that the following holds:

For anyx0 ∈ K there are a neighbourhoodU(x0) containing then-dimensional
ball Bd(x0), a closed convex setK∗(x0) in En

ν , and a bi-Lipschitz mappingh of
K ∩ U(x0) ontoK∗(x0) with the inverseg := h−1 such that the Gram matrix
G := DgT ·Dg of g satisfies

(5.1) λ1|ξ|2 ≤ ξ ·G(y)ξ ≤ λ2|ξ|2 for y ∈ K∗(x0) and ξ ∈ Rn.

Via Nash’s theorem (in the form of Gromov) any complete Riemannian manifold
can be embedded smoothly as a closed subset of a Euclidean spaceRn. Therefore
the homogeneously regularRiemannian manifolds in the sense of Morrey ([42],
p. 363) can be viewed asν-quasiregular sets which are a kind ofν-dimensional
Lipschitz-submanifolds ofRn, 2 ≤ ν ≤ n.

THEOREM 5.1. LetK be aν-quasiregular set inRn, 2 ≤ ν ≤ n, and suppose
thatF (x, z) is the Lagrangian of a Cartan functional

F(X) :=
∫

B
F (X,Xu ∧Xv) dudv

satisfying conditions(H), (D), and (C) of Section 2. Then every solutionX ∈
C (Γ,K) of the Plateau problem “F → min inC (Γ,K)” with

(??) |Xu|2 = |Xv|2, Xu ·Xv = 0

is Hölder continuous inB and continuous onB. If Γ satisfies a chord-arc condition
thenX is even Ḧolder continuous onB. If one fixes in addition a three-point
condition

(?) X(wi) = Pi, for i = 1, 2, 3,
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and if Γ respects a chord-arc condition (with respect to(?) ), i.e., if there is a
constantL ≥ 1 such that for all pointsP,Q ∈ Γ which can be connected by a
subarcΓ(P,Q) ⊂ Γ containing at most one of the three pointsPi in (?), one has

L (Γ(P,Q)) ≤ L|P −Q|,

(hereL (Γ(P,Q)) denotes the length of the subarcΓ(P,Q)), then one obtains:
Every minimizerX ∈ C ∗(Γ,K) is of classC0,α(B,Rn) where the Ḧolder semi-
norm depends only onn, d, L, λ1 ,λ2, m1, m2, Γ, and the mutual distances of the
parameterswi and pointsPi in (?).

PROOF: We pick somew0 ∈ B and transformX on the diskBR(w0) = {w ∈
R2 : |w − w0| < R} with R := 1 − |w0| into polar coordinatesρ, θ centered
at w0; denote the transform ofX by Ξ. We can assumeΞ is represented by a
functionΞ(ρ, θ) which is absolutely continuous inρ ∈ [ε, R] for any ε ∈ (0, R)
for almost allθ ∈ [0, 2π], and absolutely continuous inθ ∈ R for almost all
r ∈ (0, R). We can also assume that this representative satisfiesΞ(ρ, θ) ∈ K for
(ρ, θ) ∈ (0, R)× R. Then the functionΦ : (0, R) → R defined by

Φ(r) :=
∫

Br(w0)
|∇X|2 dudv =

∫ r

0

∫ 2π

0

(
|Ξρ|2 + ρ−2|Ξθ|2

)
ρ dρ dθ

is absolutely continuous, and its derivative satisfies

rΦ′(r)/2 = Ψ(r) a.e. on (0, R)

with

Ψ(r) :=
∫ 2π

0
|Ξθ(r, θ)|2 dθ

if we take (??) into account. HereΨ(r) is defined and finite forr ∈ (0, R) \N
whereN is a one-dimensional null set.

(i) If Ψ(r) ≥ d2/π then

Φ(r) ≤ Φ(R) ≤ πd−2Φ(R)Ψ(r)

and so
Φ(r) ≤ πd−2D(X)rΦ′(r).

(ii) If Ψ(r) < d2/π then, for anyθ0, θ1 with |θ1 − θ0| ≤ π we obtain

|Ξ(r, θ1)− Ξ(r, θ0)| ≤
∣∣∣∣∫ θ1

θ0

Ξ(r, θ) dθ
∣∣∣∣ ≤ √

π(Ψ(r))1/2 < d.

Settingx0 := Ξ(r, θ0) we obtain

{Ξ(r, θ) : 0 ≤ θ ≤ 2π} ⊂ K ∩Bd(x0) ⊂ K ∩ U(x0)
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and
h(K ∩ U(x0)) = K∗(x0)

whereK∗(x0) is a convex set inE∗ν .
Now we consider the harmonic mappingH : Br(w0) → En

ν with the boundary
valuesZ(θ) := h(Ξ(r, θ)) ⊂ K∗(x0) which are of classH1,2((0, 2π),Rn). The
maximum principle impliesg(H(w)) ∈ K∗(x0) for w ∈ Br(w0) andg ◦ H ∈
H1,2(Br(w0),Rn), as well asg(H(w)) = Ξ(r, θ) for w = w0 + reiθ. Setting
Y (w) := g(H(w)) for w ∈ Br(w0) andY (w) := X(w) for w ∈ B \ Br(w0) we
obtain a surfaceY ∈ C (Γ,K). ThenF(X) ≤ F(Y ), and consequently

m1DBr(w0)(X) = m1ABr(w0)(X) ≤ FBr(w0)(X) ≤ FBr(w0)(Y )
≤ m2ABr(w0)(Y ) ≤ m2DBr(w0)(Y ).

It follows that

Φ(r) ≤ m−1
1 m2

∫
Br(w0)

|∇Y |2 dudv ≤ m−1
1 m2λ2

∫
Br(w0)

|∇H|2 dudv,

taking (5.1) and∇Y = gy(H(w))∇H(w) into account.
Moreover, ∫

Br(w0)
|∇H|2 dudv ≤

∫ 2π

0
|Zθ(θ)|2 dθ,

and

λ1

∫ 2π

0
|Zθ(θ)|2 dθ ≤

∫ 2π

0
|Ξθ(r, θ)|2 dθ = Ψ(r) = rΦ′(r)/2

by (5.1) andΞθ(r, θ) = gy(Z(θ))Zθ(θ). Therefore,

Φ(r) ≤ λ−1
1 m−1

1 λ2m2rΦ′(r)/2.

Combining both cases (i), and (ii), we obtain

Φ(r) ≤MrΦ′(r) for a.e.r ∈ (0, R)

for M := max{(2λ1m1)−1λ2m2, πd
−2D(X)} which implies∫

Br(w0)
|∇X|2 dudv ≤

( r
R

)2α
∫

BR(w0)
|∇X|2 dudv ≤ 2D(X)

( r
R

)2α

for 0 < r ≤ R with α := (2M)−1. Morrey’s “Dirichlet growth theorem” then
impliesX ∈ C0,α(B,Rn), and so the first assertion is proved.
By Lemma 3 in [18] we also obtainX ∈ C0(B,Rn).

The last assertion can be deduced as follows:
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Fix w0 ∈ B, and set forr ∈ (0, 2)

Cr := ∂B ∩Br(w0), Kr := B ∩ ∂Br(w0), Sr := B ∩Br(w0).

If Cr 6= ∅, we introduce polar coordinates aboutw0, denote the endpoints ofCr on
∂B by

z
(r)
i := w0 + reiθi(r), i = 1, 2,

where0 < θ1(r) < θ2(r) < 2π.
Now we claim that the three-point condition (?) and a suitable version of the
Courant-Lebesgue Lemma (cf. [8, Vol. I, Prop. 2, p. 242]) impliesthe existence
of some radiusR = R(Γ,m1,m2, (?) ) depending onΓ,m1,m2 and the minimal
mutual distances of thewi on ∂B and of thePi on Γ in (?), such that for each
r ∈ (0, R) at most one of the pointsP1, P2, P3 is contained inΞ(Cr).
Indeed, by the classical isoperimetric inequality for harmonic surfaces by Morse-
Tompkins (cf. [6, pp. 135–138] in connection with Riemann’s mapping theorem)
and the weak monotonicity ofX along∂B one has forH ∈ C (Γ) with ∆H = 0

in B andH −X ∈
◦
H1,2(B,Rn):

DB(X) = AB(X) ≤ 1
m1

FB(X) ≤ 1
m1

FB(H) ≤ m2

m1
AB(H)

≤ m2

4m1

(∫
∂B
|dH|

)2

=
m2

4m1

(∫
∂B
|dX|

)2

=
m2

4m1
L 2(Γ).(5.2)

SinceΓ is homeomorphic to∂B we find for any givenε > 0 some numberλ(ε) >
0 such that for allP,Q ∈ Γ with 0 < |P −Q| < λ(ε) the shorter subarcΓ1(P,Q)
connectingP andQ onΓ satisfies

diam Γ1(P,Q) < ε.

Choosing first
0 < ε < ε0 := min

j 6=k
|Pj − Pk|

we guarantee that

]
[
{P1, P2, P3} ∩ Γ1(P,Q)

]
≤ 1

for all pairsP,Q ∈ Γ satisfying0 < |P −Q| < λ(ε). With δ0 ∈ (0, 1) satisfying

2
√
δ0 < min

j 6=k
|wj − wk|

we chooseδ ∈ (0, δ0) depending onε,m1,m2 andL (Γ) such that by the Courant-
Lebesgue Lemma there existsρ ∈ (δ,

√
δ) such that by (5.2)

|X(z1)−X(z2)| ≤ oscKρX ≤

√
8πDB(X)

log 1
δ

≤
(5.2)

√
2πm2

m1 log 1
δ

L (Γ) < λ(ε).
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Therefore,

]
[
{P1, P2, P3} ∩ Γ1(X(z1), X(z2))

]
≤ 1.

By the three-point condition (?) and the choice ofδ0 we have

]
[
{w1, w2, w3} ∩Bρ(w0)

]
≤ 1,

and therefore
]
[
{P1, P2, P3} ∩X(Cρ)

]
≤ 1,

i.e., sinceX|∂B is weakly monotone,

X(Cδ) ⊂ X(Cρ) = Γ1(X(z(ρ)
1 , X(z(ρ)

2 )).

SettingR := δ = δ(m1,m2,L (Γ), ε0) ∈ (0, δ0) we arrive at

]
[
{P1, P2, P3} ∩X(Cr)

]
≤ 1 for all r ∈ (0, R),

which proves the claim.

Notice that for almost allr ∈ (0, 2) the mappingΞ(r, .) is absolutely continuous
in θ with ∫

Kr

|dX| =
∫ θ2(r)

θ1(r)
|Ξθ| dθ <∞,

and such thatϕ′(r) exists for the function

ϕ(ρ) := 2DSρ(w0)(X), ρ ∈ (0, 2).

The chord-arc condition onΓ now implies

L (X(Cr)) ≤ L|X(z1)−X(z2)| ≤ L

∫
Kr

|dX| for a.e.r ∈ (0, R).

This last inequality is trivially satisfied ifCr = ∅. Consequently,

(5.3)
∫

∂(Sr(w0))
|dX| ≤ (1 + L)

∫
Kr

|dX| for a.e.r ∈ (0, R).

For

ψ(r) :=
∫ θ2(r)

θ1(r)
|Ξθ(r, θ)|2 dθ

one has again by conformality

ψ(r) = rϕ′(r)/2 for a.e.r ∈ (0, 2).
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We distinguish two cases as in the proof for the interior case.
(i) If ψ(r) ≥ d2/(2π), then

ϕ(r) ≤ π

d2
DB(X)rϕ′(r),

and
(ii) if ψ(r) < d2/(2π), then for almost allr ∈ (0, R) and for any

0 ≤ θ1(r) ≤ θ ≤ θ′ ≤ θ2(r) ≤ 2π

we obtain
|Ξ(r, θ)− Ξ(r, θ′)| ≤

√
2π(ψ(r))1/2 < d.

In this case we can use a harmonic extension analogous to the interior case to obtain
for Sr(w0) = Br(w0) ∩B by (5.1)

DSr(w0)(X) ≤ m2

m1
ASr(w0)(Y ) ≤

(5.1)

m2

m1
c(N)λ2ASr(w0)(H),

wherec(N) is a constant depending only on the dimensionN = n(n− 1)/2. The
classical inequality for harmonic surfaces by Morse-Tompkins in conjunction with
(5.1) and (5.3) then leads to

DSr(w0)(X) ≤ c(N)λ2
m2

4m1

(∫
∂Sr(w0)

|dH|

)2

= c(N)λ2
m2

4m1

(∫
∂Sr(w0)

|dZ|

)2

≤
(5.1)

c(N)
λ2m2

4λ1m1

(∫
∂Sr(w0)

|dX|

)2

≤
(5.3)

c(N)
λ2m2

4λ1m1
(1 + L)2

(∫
Kr

|dX|
)2

≤ c(N)
πλ2m2

2λ1m1
(1 + L)2

∫ θ2(r)

θ1(r)
|Ξθ(r, θ)|2 dθ,

that is, together with Case (i),

ϕ(r) ≤Mrϕ′(r),

where

M := max
{
c(N)

πλ2m2

2λ1m1
(1 + L)2,

π

d2
DB(X)

}
.

This impliesX ∈ C0,α(B,Rn) for α := (2M)−1. 2
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REMARK 5.2. Suppose thatX0 ∈ C (Γ) yields a bi-Lipschitz mapping ofB onto
K := X0(B). ThenK is 2-quasiregular andX0 ∈ C (Γ,K). By Theorems 2.4
and 5.1 there is a minimizerX of A in C (Γ,K) which is of classC0(B,Rn) ∩
C0,α(B,Rn) for someα ∈ (0, 1) and satisfies|Xu|2 = |Xv|2, Xu ·Xv = 0. By a
topological argument we obtainX(B) = K whence

Θ(X,B, x) ≥ 1 for all x ∈ K.

Moreover,∫
K

Θ(X,B, x) dH 2(x) = A(X) ≤ A(X0) =
∫

K
dH 2(x),

and so it follows that

Θ(X,B, x) = 1 for H 2-almost allx ∈ K.

If one could proveΘ(X,B, x) = 1 for anyx ∈ K it would follow thatX is a
homeomorphism fromB ontoK whenceX = X0 ◦ τ for some homeomorphism
τ fromB onto itself, i.e.,X ∼ X0. However, it is not even clear thatX ≈ X0, i.e.
thatδ(X,X0) = 0 (cf. Section 3). On the other hand, by Corollary 3.7 there is a
mappingX∗ ∈ C (Γ)∩C0(B,Rn) withX∗ ≈ X0 which satisfies the conformality
relations. So one is tempted to conjecture thatX∗ ≈ X (and evenX∗ = X if both
mappings are normalized by the same3-point condition), but it is not clear to us
whether this is true.

6 Dominance functions and higher regularity

In this section we shall first discuss the notion of a dominance function for a para-
metric Lagrangian, i.e., for the Lagrangian of a Cartan functional. Of particular
importance are so-calledperfect dominance functions; we shall present a sufficient
condition guaranteeing the existence of such a function. Finally we state some
regularity results about solutions of the Plateau problem for a Cartan functional
provided that its Lagrangian possesses a perfect dominance function.
As in Section 2 letF ∈ C0(K ×RN ) be a “parametric Lagrangian” whose values
F (x, z) are defined for pointsx ∈ K andz ∈ RN whereK is a closed set inRn

andN = 1
2n(n− 1), i.e.,

(H) F (x, tz) = tF (x, z) for t > 0 and (x, z) ∈ K × RN .

Furthermore, we assume condition

(D) m1|z| ≤ F (x, z) ≤ m2|z| for (x, z) ∈ K × RN
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with 0 < m1 ≤ m2.
Theassociated Lagrangianf(x, p) for F (x, z) is defined by

f(x, p) := F (x, p1 ∧ p2) for x ∈ K and p = (p1, p2) ∈ Rn × Rn ∼= R2n.

Note that the algebraic surface

Π := {(p1, p2) = p ∈ R2n : p1 ∧ p2 = 0}

is the singular set off(x, p) whereasF (x, z) is singular only atz = 0. Let us also
introduce the algebraic surface

Π0 := {(p1, p2) = p ∈ R2n : |p1|2 = |p2|2, p1 · p2 = 0}.

We observe that
Π ∩Π0 = {0}.

DEFINITION 6.1. (i) A functionG ∈ C0(K×R2n) is called adominance function
for the parametric LagrangianF with the associated Lagrangianf if the following
two conditions are satisfied:

(6.1) f(x, p) ≤ G(x, p) for all (x, p) ∈ K × R2n,

(6.2) f(x, p) = G(x, p) if and only if p ∈ Π0.

(ii) G is said to bepositive definiteif

(6.3) µ1|p|2 ≤ G(x, p) ≤ µ2|p|2 for all (x, p) ∈ K × R2n

and some constantsµ1, µ2 with 0 < µ1 ≤ µ2.
(iii) G is calledquadraticif

(6.4) G(x, tp) = t2G(x, p) for t > 0 and (x, p) ∈ K × R2n.

For example, the area integrand

(6.5) A(z) := |z|

with the associated Lagrangian

(6.6) a(p) := |p1 ∧ p2| =
√
|p1|2|p2|2 − (p1 · p2)2

has the dominance function

(6.7) D(p) :=
1
2
|p|2 =

1
2
|p1|2 +

1
2
|p2|2.
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Correspondingly the Lagrangian

E(x, z) := |z|+Q(x) · z

with |Q(z)| < 1− δ for z ∈ K, δ > 0, has the dominance function

E∗(x, z) :=
1
2
|p|2 +Q(x) · p1 ∧ p2.

In fact, bothD(p) andE∗(x, p) are quadratic, positive definite dominance func-
tions for A(z) andE(x, z), respectively. As Morrey ([41], pp. 571–572) has
pointed out, everyF satisfying (H) and (D) has a quadratic, positive definite dom-
inance function, e.g.,

(6.8) G(x, p) := {f2(x, p) +
1
4
(m1 +m2)2[

1
4
(|p1|2 − |p2|2)2 + (p1 · p2)2]}1/2

which satisfies (6.3) withµ1 := m1/2, µ2 := m2/2, In general, however, a dom-
inance function will not be of classC2 onK × R2n becauseΠ will be a singular
set. Only ifF has a special structure as in the casesA andE, there exist domi-
nance functions which are quadratic polynomials inp and therefore differentiable.
Basically the “Riemannian version” ofE∗ is theonly smooth dominance function
whose integral

E(X) :=
∫

B
E(X,∇X) dudv

is conformally invariant (cf. Gr̈uter [14]).
Morrey proposed to prove higher regularity of conformally parametrized minimiz-
ersX for Cartan functionalsF by using the integrals

G(X) :=
∫

B
G(X,∇X) dudv

of dominance functionsG for F via the identity

(6.9) inf
C (Γ,K)

F = inf
C (Γ,K)

G

which is an immediate consequence of Theorem 2.4 as we shall see below. How-
ever, in order to establish higher regularity of minimizers ofG we need thatG(x, p)
is of classC2; but this will usually not be true sinceG(x, p) is singular onK ×Π,
except for rather special LagrangiansF (x, z). Still there is a very special class of
dominance functionsG(x, p) that are singular only ifp = 0; these will be called
perfectif they are also elliptic inp. Before we give the precise definition let us first
verify (6.9).



32 S. HILDEBRANDT, H. VON DER MOSEL

THEOREM 6.2. Suppose thatG(x, p) is a dominance function for the Lagrangian
F (x, z) satisfying(H), (D), (C). Then any minimizerX of G in C (Γ,K) is a con-
formally parametrized minimizer ofF in C (Γ,K). Conversely, any conformally
parametrized minimizer ofF in C (Γ,K) is also a minimizer ofG in C (Γ,K). In
particular, equation(6.9) is true.

PROOF: (i) We haveF ≤ G, andF(X) = G(X) holds true if and only if
X is conformal (i.e. if (??) is fulfilled). Because of Theorem 2.4 there is an
X ∈ C (Γ,K) satisfying (??) such thatF(X) = infC (Γ,K)F . Then

inf
C (Γ,K)

G ≤ G(X) = F(X) = inf
C (Γ,K)

F ≤ inf
C (Γ,K)

G.

This implies (6.9). The same argument shows that any conformally parametrized
minimizer ofF in C (Γ,K) is a minimizer ofG.
(ii) If X is a minimizer ofG in C (Γ,K) then

inf
C (Γ,K)

G = G(X) ≥ F(X) ≥ inf
C (Γ,K)

F = inf
C (Γ,K)

G,

and so

F(X) = G(X) = inf
C (Γ,K)

G = inf
C (Γ,K)

F .

HenceX is a conformally parametrized minimizer ofF in C (Γ,K). 2

COROLLARY 6.3. If, in addition to the assumptions of Theorem 6.2,K is a ν-
quasiregular set inRn (e.g. a smooth compact manifold) then we have

(6.10) inf
C (Γ,K)

F = inf
C̄ (Γ,K)

F = inf
C̄ (Γ,K)

G = inf
C (Γ,K)

G,

whereC̄ (Γ,K) := C (Γ,K) ∩ C0(B,Rn).

PROOF: Using Theorem 5.1 we can proceed as above. 2

Applying this corollary toF := A, G := D, K := Rn we obtain in particular

COROLLARY 6.4. One has

(6.11) inf
C (Γ)

A = inf
C̄ (Γ)

A = inf
C̄ (Γ)

D = inf
C (Γ)

D,

where we have set̄C (Γ) := C (Γ) ∩ C0(B,Rn).
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The “classical Plateau problem” consists in finding a minimal surface (i.e. a sur-
face of mean curvature zero) spanning a given closed Jordan curveΓ. For recti-
fiable Γ one usually solves this problem by minimizing Dirichlet’s integralD in
the classC (Γ), and then one proves that a minimizer ofD also minimizes the
area inC (Γ) by applying (6.11); see e.g. [6], [8], [27], [43], [44]. To verify
(6.11) some special effort is needed; previously some results on conformal orε-
conformal reparametrization of surfaces were used, and such results were thought
to be indispensable, as Courant has pointed out (see [6], pp. 116–118, and also
[44], Chapter VI, as well as [43],§§453–473.) Hence it seems surprising that such
mapping theorems are not needed in our approach as we were able to minimize
A directly, obtaining conformally parametrized minimizers, without the detour via
D. Thus (6.11) is a by-product of our Theorems 2.4 and 5.1. Actually, the sec-
ond ingredient, Theorem 5.1, can be replaced by a much simpler reasoning using
only classical results on harmonic mappings. Using this approach the solution
of the “simultaneous problem” minimizingA andD becomes a fairly elementary
matter, except for the lower semicontinuity result formulated in Lemma 2.1. Yet,
for F = A, even this result has an elementary proof as Klaus Steffen has kindly
pointed out to us:

LEMMA 6.5. If Xj ⇀ X in H1,2(B,Rn) then

(6.12) A(X) ≤ lim inf
j→∞

A(Xj).

PROOF: First we note the identity

(6.13) A(Z) = sup{
∫

B
φ · (Zu ∧ Zv) dudv : φ ∈ C∞0 (B,RN ), |φ| ≤ 1}

which holds for anyZ ∈ H1,2(B,Rn) andN = 1
2n(n − 1). We claim that for

proving (6.12) it suffices to show

(6.14) lim
j→∞

∫
B
φ · (Xj,u ∧Xj,v) dudv =

∫
B
φ · (Xu ∧Xv) dudv

for anyφ ∈ C∞0 (B,Rn) with |φ| ≤ 1. In fact, (6.14) and (6.13) yield∫
B
φ · (Xu ∧Xv) dudv = lim

j→∞

∫
B
φ · (Xj,u ∧Xj,v) dudv

≤ lim inf
j→∞

[ sup{
∫

B
Ψ · (Xj,u ∧Xj,v) dudv : Ψ ∈ C∞0 (B,RN ), |Ψ| ≤ 1} ]

= lim inf
j→∞

A(Xj).

Taking the supremum over allφ in C∞0 (B,RN ) with |φ| ≤ 1 we arrive at (6.12).
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Thus it suffices to verify (6.14). LetZ ∈ C2(B,Rn); then forφ ∈ C∞0 (B,RN ) an
integration by parts yields

(6.15)
∫

B
φ · (Zu ∧ Zv) dudv = −1

2

∫
B

[φu · (Z ∧ Zv) + φv · (Zu ∧ Z)] dudv.

Using a suitable approximation device this identity follows as well for anyZ ∈
H1,2(B,Rn).
Suppose now thatXj ⇀ X in H1,2(B,Rn). By Rellich’s theorem we obtain
Xj → X in L2(B,Rn), and so (6.14) can be derived from (6.15). 2

After this excursion to the classical Plateau problem for minimal surfaces we return
to the general Plateau problem

“ F −→ min in C (Γ) ”

for Cartan functionals. We want to derive higher regularity results for minimizers
via dominance functionalsG using (6.10). In the sequel we restrict our attention to
the caseK = Rn although the discussion would verbatim carry over to the case of
a smoothν-dimensional manifoldK in Rn, ν ≥ 2.

DEFINITION 6.6. A functionG ∈ C0(Rn×R2n)∩C2(Rn×(R2n\{0})) is called
a perfect dominance functionfor the parametric LagrangianF if it is a quadratic,
positive definite dominance function forF which satisfies the following ellipticity
condition:
For anyR0 > 0 there is a constantλG(R0) > 0 such that

(6.16) ξ ·Gpp(x, p)ξ ≥ λG(R0)|ξ|2 for |x| ≤ R0 and p, ξ ∈ R2n, p 6= 0.

This condition means that

G
pj

αpk
β
(x, p)ξj

αξ
k
β ≥ λG(R0)ξj

αξ
j
α.

Here and in the sequel we use the convention: Greek indices run from1 to 2 and
Latin ones from1 to n; repeated Greek (Latin) indices are to be summed from1 to
2 (from 1 to n).
Note that a perfect dominance functionG(x, p) may be singular only atp = 0.
Morrey found a way to construct a quadratic, positive definite dominance function
G for F provided thatF (x, z) isC2 for z 6= 0 and strictly convex inz, in the sense
thatF (x, z) − λ|z| is convex inz for some constantλ > 0. However, Morrey’s
construction only leads to rank-one convex dominance functionsG(x, p); these are
of no use sinceGpp(x, p) is not continuous, and so Gårding’s inequality cannot be
derived forGpp = (G

pj
αpk

β
) as the proof uses continuity; in fact, the inequality

does not hold for a general rank-one convex matrix(Aαβ
jk ) with coefficients that
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are merely of classL∞. However, by extending and strengthening Morrey’s con-
struction the authors were able to prove the following result (see Theorem 1.3 and
Section 2 of [23]):

THEOREM 6.7. Suppose thatF ∗ is of classC0(Rn×RN )∩C2(Rn×(RN \{0}))
which satisfies(H) and(D) with constantsm∗

1,m
∗
2, i.e.,

0 < m∗
1 ≤ F ∗(x, z) ≤ m∗

2 for (x, z) ∈ Rn × RN with |z| = 1.

Furthermore assume thatF ∗ satisfies the parametric ellipticity condition

|z|ζ · F ∗zz(x, z)ζ ≥ λ∗[ |ζ|2 − |z|−2(z · ζ)2 ] for x ∈ Rn, z, ζ ∈ RN with z 6= 0

with some constantλ∗ > 0. Then the parametric Lagrangian

F (x, z) := F ∗(x, z) + kA(z)

withA(z) := |z| possesses a perfect dominance function provided that

(6.17) k > 2[m∗
2 −min{λ∗,m∗

1/2}].

By a straight-forward computation one derives

COROLLARY 6.8. Suppose thatF (x, z) is of classC2 for z 6= 0 and satisfies(H),
(D), and

(6.18) |z|ζ · Fzz(x, z)ζ ≥ λ[ |ζ|2 − |z|−2(z · ζ)2 ]

for x ∈ Rn, z, ζ ∈ RN with z 6= 0 with some constantλ > 0. Moreover suppose
that

(6.19) 5 ·min{λ,m1} > 2m2.

ThenF possesses a perfect dominance function.

REMARK 6.9. If F (x, z) is inC2 for z 6= 0, then the convexity ofF (x, z) in z is
equivalent to the condition

ζ · Fzz(x, z)ζ ≥ 0.

Furthermore, forA(z) = |z| we find

|z|ζ ·Azz(z)ζ = |ζ|2 − |z|−2(z · ζ)2.

Therefore the convexity ofF (x, z) − λA(z) for someλ > 0 is equivalent to the
ellipticity condition (6.18). Here we note that|z|Fzz(x, z) is positively homoge-
neous of degree zero, and alsoFz(x, z) is homogeneous of degree zero. By Euler’s
relation it follows thatFzz(x, z)z = 0, i.e.,z 6= 0 is eigenvector ofFzz(x, z) to the
eigenvalue0. HenceFzz(x, z) can never be positive definite, andFzz(x, z) > 0
on {z}⊥ is the best possible that we can hope for. Precisely this assumption is
expressed by (6.18).
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Because of Theorem 6.7 (or Corollary 6.8) we have a large class of Cartan func-
tionalsF with “perfect dominance functionals”G which includeA as well as the
“capillarity functionals”E , but is much larger than these. Therefore the following
results proved by the authors in [20] and [22] are new and might be of interest:

THEOREM 6.10. Suppose thatF ∈ C2(Rn × (RN \ {0})) satisfies(H), (D),
(C), and thatF possesses a perfect dominance functionG. Then any conformally
parametrized minimizerX of F in C (Γ) is of classH2,2

loc (B,Rn) ∩ C1,α(B,Rn)
for someα ∈ (0, 1). If, in addition, Γ is of classC4 then one even hasX ∈
H2,2(B,Rn) ∩ C1,α(B,Rn) with

‖X‖H2,2(B,Rn) + ‖X‖C1,α(B,Rn) ≤ c(Γ, F )

where the constantc(Γ, F ) only depends onΓ and F if X is normalized by a
three-point condition(?).

For the proof of Theorem 6.10 we note that by Theorem 6.2 any conformally
parametrized minimizerX of F is also a minimizer of the dominance functionalG
corresponding toG,

G(Z) =
∫

B
G(Z,∇Z) dudv

for which the first variation

δG(Z, φ) =
∫

B
[Gx(Z,∇Z) · φ+Gp(Z,∇Z) · ∇φ] dudv

exists ifφ ∈ H1,2(B,Rn) ∩ L∞(B,Rn). Therefore we obtain

δG(Z, φ) = 0 for φ ∈
◦
H

1,2(B,Rn),

and the difference-quotient technique yields the interior regularity result. A subtle
point in the proof is how to deal with the singularity ofGpp(x, p) at p = 0; here
one applies a suitable approximation device. Much more involved is the proof of
the regularity ofX at the boundary. Here one can no more proceed as in the case of
minimal surfaces (see [8], vol. II, Chapter 7) as the system of Euler equations has
no longer a principal part in diagonal from, and Plateau’s boundary condition is
very nonlinear. New techniques had to be devised to tackle this problem; cf. [22].

REMARK 6.11. C.B. Morrey might have had a regularity result in a similar spirit
in mind as he indicated in [42], pp. 363–364. Yet for several reasons we do not see
why the approach that he sketched might work.

REMARK 6.12. We note that, contrary toδG(X,φ), the first variationδF(X,φ)
of a Cartan functionalF does not exist, except ifX is conformally parametrized;
cf. R. Jakob [26], pp. 405–407, Proposition 3.3 and Corollary 3.4. Therefore the
notion of an unstableF-extremal only makes sense for conformally parametrized
surfaces. We refer to the results of M. Shiffman and R. Jakob stated in Section 7.
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7 Further remarks and open questions

So far we have only discussed absolute minimizers of Cartan functionals for Plateau
boundary conditions. Semifree boundary conditions were treated in [23], and
the Douglas problem for multiply connected surfaces bounded by several Jordan
curves was investigated in [30] and [31]. One may also ask the question whether
there is some kind of Morse theory, or if it is at least possible to prove the existence
of unstable extremals, say, in the “mountain pass situation”. There seem to be no
results with regard to the general question, whereas Shiffman in his very interest-
ing paper [49] studied the mountain pass case and stated the following result (see
[49], p. 573, Main Theorem 16.2):
If the rectifiable Jordan curveΓ of typeK bounds two extremal surfaces which are
proper relative minima, thenΓ bounds an unstable extremal surface forF . Here
F is assumed to be of the form (1.1) with

(7.1) F (x, z) := F ∗(z) + k|z|,

whereF ∗ satisfies (H), (D), and (C), as well as

(7.2) k > max
S2

F ∗,

wheren = N = 3.
Unfortunately, Shiffman’s reasoning is not stringent, as pointed out by R. Jakob
(see [26], p. 403), and so this result is in doubt. Nevertheless, Shiffman’s paper
contains quite ingenious ideas which, combined with techniques developed by R.
Courant and E. Heinz, enabled R. Jakob to prove a somewhat stronger version of
the above stated theorem for polygonal boundaries. Moreover, he recently obtained
results for general rectifiable contours that satisfy a chord-arc condition.
We further remark that, in the context of geometric measure theory, much better
results than our theorems in Section 6 are known. F.J. Almgren, R. Schoen and
L. Simon [2] proved that anyF-minimizing two-dimensional integral current of
codimension one is a smooth, embedded surface away from its boundary. (Much
less is known about their boundary behaviour: R. Hardt [15] showed smoothness
at the boundary ifΓ is smooth andextreme, i.e., if Γ lies on the surface of a convex
body). However these current solutions can be quite different from our solutions
because of a peculiar phenomenon discovered by J.E. Taylor [54]:
If F ∈ C0(R3) ∩ C3(R3 \ {0}) is an essentially noneven elliptic parametric La-
grangian independent of the spatial variable, then there exists an oriented closed
analytic Jordan curveΓ on the sphereS2 and a Lipschitz immersionX of the ori-
ented disk (which is not an embedding) havingΓ as boundary such that the value
F(X) of the corresponding parametric functionalF is less than the valueF(Z)
of any Lipschitz embeddingZ of the oriented disk havingΓ as boundary.
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Here, a parametric LagrangianF (x, z) is calledessentially nonevenif it cannot be
written in the formF (x, z) = cF̃ (x, z) + Q(x) · z, wherec > 0, F̃ is even inz,
i.e. F̃ (x, z) = F̃ (x,−z), and wheredivQ = 0. Because of this result one cannot
necessarily expect that minimizers in the class of immersions, and even more so
minimizers in the more general class considered in our Theorems 2.4, 5.1, and 6.10,
are as well-behaved as minimizers in the class of embeddings, even if they are of
the type of the disk. In view of this result it is also not clear how the minimizing
surface obtained in Theorem 2.4 relates to the smooth embedded disk bounded by
an extreme boundary curveΓ and minimizing a Cartan functional with an even
Lagrangian, whose existence was established by B. White [56] with a Perron-type
method.

We close our survey with some open
Questions. 1. Can one prove for conformally parametrized minimizers (ex-
tremals)X of a Cartan functional an asymptotic expansion of the form

Xw(w) = A(w − w0)ν + o(|w − w0|ν) as w → w0

with ν ∈ N andA ∈ Cn \ {0} at every branch pointw0 ∈ B of X? (Here
Xw := 1

2(Xu − iXv), andw0 is called a branch point ofX if Xu(w0) = 0.)
A positive answer will certainly be useful if one wants to tackle the next question:
2. Can one prove higher regularity properties for conformally parametrized mini-
mizers ofF than those stated in Theorem 6.10?
3. Can one prove regularity ofanyconformally parametrized extremalX ∈ C (Γ)
of F if F andΓ are sufficiently smooth?
4. For which parametric LagrangiansF can one find perfect dominance functions?
Possibly for anyF ∈ C2(Rn × (RN \ {0})) satisfying (H), (D), and (6.18)?
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