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Abstract

We derive the Euler-Lagrange equations for nonlinearly elastic rods with self-
contact. The excluded-volume constraint is formulated in terms of an upper bound
on the global curvature of the centre line. This condition is shown to guarantee the
global injectivity of the deformation of the elastic rod. Topological constraints such
as a prescribed knot and link class to model knotting and supercoiling phenomena as
observed, e.g., in DNA-molecules, are included by using the notion of isotopy and
Gaussian linking number. The bound on the global curvature as a nonsmooth side
condition requires the use of Clarke’s generalized gradients to obtain the explicit
structure of the contact forces, which appear naturally as Lagrange multipliers in
the Euler-Lagrange equations. Transversality conditions are discussed and higher
regularity for the strains, moments, the centre line and the directors is shown.

1. Introduction

In nature we observe that bodies can touch but not penetrate each other, since
interpenetration of matter is impossible. In particular, deformable bodies can ex-
hibit self-contact as, e.g., if we step on a beer can or if an electrical cord forms
knots and wraps around itself. It turns out that the mathematical treatment of this
simple physical phenomenon is surprisingly difficult.

In the bio-sciences there is a rapidly growing interest in a variety of problems
which display the effect of self-contact as an inherent feature. For instance, the
supercoiling of DNA (i.e., when the double helix wraps around itself) and knotting
phenomena cause self-touching of the molecule. These mechanisms seem to influ-
ence certain biochemical processes in the cell and are of special interest in structural
molecular biology providing, in addition, a particular challenge to modellers [31,
26, 17, 25, 32]. Average shapes of knotted polymeric chains in thermal equilibrium
have been observed to be related to the centre lines of ideal knots which may be



Friedemann Schuricht & Heiko von der Mosel

described as maximally tightened knotted ropes touching themselves “everywhere”
(see [12, 28]). On a completely different length scale, multicellular bacterial mac-
rofibres of Bacillus subtilis form a highly twisted helical structure exhibiting self-
contact, which seems to be an advantageous configuration of self-organization in
the cell population (see [15]). Macroscopic examples are knotted metal wires with
isolated contact points or with several regions of line contact. Interestingly, certain
helical shapes observed in nature coincide with optimal configurations of closely
packed strings, which also serve as models for the structure of folded polymeric
chains (see [14, 29]).

The previous examples have the common feature that they can be modelled
as long slender elastic tubes or rods deforming in space where the constraint pro-
hibiting interpenetration cannot be neglected. In particular, special side conditions
and topological constraints force the tubular surface to touch itself. Based on the
Cosserat theory, describing deformations of nonlinearly elastic rods in space that
can undergo flexure, extension, shear, and torsion, the existence of energy-mini-
mizing configurations for that class of problems is shown in [10, 21]. In the present
paper we derive the Euler-Lagrange equation and further regularity results as nec-
essary conditions for energy-minimizing configurations of rods without interpen-
etration and subjected to topological constraints where we restrict our investiga-
tion to inextensible unshearable rods. Starting with solutions whose existence is
proved in particular in [10], we do not hypothesize additional regularity of the rod
or a particular position and direction of the contact forces. It should be empha-
sized that such a rigorous derivation of variational equations in nonlinear elasticity
taking into account self-contact has never been done before. Furthermore, most
investigations on contact problems in the literature are based on much simpler
mechanical models enjoying nice convexity properties, which are thus accessi-
ble to variational inequalities. These in turn, however, do not contain any explicit
term describing the contact reaction. In our more general situation, on the other
hand, we cannot hope for such convexity properties but, by employing nonsmooth
tools more subtle than convex analysis, we are able to derive the explicit contact
term as a Lagrange multiplier, which provides additional structural information
about the contact reactions. Moreover this allows us to obtain further regulari-
ty properties of the minimizing configuration. In particular, we rigorously show
from our analysis that contact forces are directed normal to the lateral surface of
the rod – a physically natural fact which is usually invoked as hypothesis in the
theory.

The underlying mathematical structure for the description of deformed config-
urations of an elastic rod is that of a framed curve. Here a base curve, interpreted
as the centre line of a tube of uniform radius, is associated with an orthonormal
frame at each point, reflecting the orientation of the cross-section attached to that
point. The main difficulty in posing an appropriate variational problem modelling
the previous examples is to find a mathematically precise and analytically tractable
formulation of the condition that the tube not pass through itself, which is often
referred to as the excluded-volume constraint. On the one hand, the method used
in [21] delivers very general existence results, but it seems to be unsuitable for the
derivation of the Euler-Lagrange equation. The method used in [10], on the other
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hand, provides a geometrically exact condition for self-avoidance and correspond-
ing existence results for the smaller class of unshearable rods, but, as we shall see
in this paper, the Euler-Lagrange equation can be derived rigorously, i.e., without
hypothesizing regularity for the energy minimizer. Here the excluded-volume con-
straint, which expresses global injectivity for the mapping assigning the deformed
position to each material point of the rod, is mathematically transferred to the centre
line as a bound on its global curvature. This is a nonlocal quantity whose inverse,
the global radius of curvature, was introduced by Gonzalez & Maddocks [9]
in the context of ideal knots. Since this notion is not restricted to smooth curves
(as is the case, e.g., for the classical normal injectivity radius), global curvature
turns out to be appropriate for the direct methods in the calculus of variations. Let
us mention that the use of repulsive potentials along the centre line of the rod to
model self-avoidance (as an alternative to our geometrically exact excluded-vol-
ume constraint) leads to non-trivial analytical and computational difficulties (see
[8, 16, 30]). For an appropriate description of self-contact problems for rods, we
take into account also topological restrictions for the framed curve as a given knot
class for the centre line and a prescribed link between the centre line and a curve
on the lateral boundary of the rod.

The mathematical challenge for deriving the Euler-Lagrange equations in the
present context lies in the fact that a bound on the global curvature furnishes a
nonsmooth nonconvex side condition for the variational problem. Thus, standard
arguments leading to variational inequalities are not applicable (see [13]). Fur-
thermore, it would be desirable to obtain explicit structural information about the
contact forces, which remains hidden when using variational inequalities. It turns
out that, as in the treatment of contact between nonlinearly elastic bodies and rig-
id obstacles (see [18–20]), Clarke’s calculus of generalized gradients of locally
Lipschitz continuous functionals is the key to success (see [4]). It provides a gener-
al Lagrange-multiplier rule applicable to our situation, and suitable tools to evaluate
the structure of the Lagrange multiplier corresponding to the nonsmooth exclud-
ed-volume constraint. The resulting Euler-Lagrange equation stated in Theorem 1
contains an explicit contact term and corresponds to the mechanical equilibrium
condition of the rod theory, at least if certain transversality conditions are satisfied.
In this way we recover apparently obvious mechanical properties of frictionless
contact forces in a mathematically rigorous way.

In contrast to most treatments for contact problems, our approach allows us to
obtain higher regularity properties for energy-minimizing states of (unshearable
inextensible) rods exhibiting self-contact without hypothesizing smoothness, but
merely based on the smoothness of the data. If the density of the elastic energy is
strictly convex and sufficiently smooth, then the moments, the first derivatives of
the frame field, and the second derivatives of the centre line of the rod in equilib-
rium have to be Lipschitz continuous; cf. Corollaries 2 and 4. This, in particular,
excludes concentrated contact moments and answers a long standing open question
in the engineering community. Our regularity results, including the explicit struc-
tural information about contact forces, may turn out to be quite useful for numerical
computations, where a thorough understanding of contact sets and contact forces
seems crucial; see [6].
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In Section 2 the reader is introduced to the Cosserat theory of nonlinearly elastic
rods to an extent necessary for the purposes of this paper. In particular, the theory
is specialized to materials where shear and extension can be neglected and to rods
where all cross-sections are circular with the same radius. But we generalize the
usual treatments by considering forces as vector-valued measures in order not to
invoke a priori structural restrictions for contact forces that, e.g., can indeed have
concentrations.

Section 3 is devoted to the geometric and topological constraints to be invoked
in our rod problems. First we describe the excluded-volume constraint in terms of
the global curvature, which guarantees global injectivity of the deformation; see
Lemma 1. For this purpose we review the definition of global curvature and its
basic properties. Then the formulation of topological constraints such as a given
knot class for the centre curve and a given link class for a framed curve is intro-
duced by using the notion of isotopy and the Gaussian linking number, where we
employ an analytic formula for the latter avoiding topological degree theory. We
extend this concept to the case where the frame field is not closed as a curve in
SO(3). In this way we are able to distinguish the infinitely many equilibrium states
having the same boundary conditions but differing in knotting and linking (number
of rotations of the frame around the centre line).

In Section 4 we state a general variational problem for nonlinearly elastic rods
subjected to the geometric excluded-volume constraint, to topological restrictions,
and to boundary conditions. Then we formulate the Euler-Lagrange equation for
that problem, a number of structural properties for contact forces which may occur
in the case of self-touching, and further regularity results for the moments and the
shape of the rod. In particular we consider the case of a quadratic elastic energy
which is important for various applications.

Section 5 contains all the proofs. In Section 5.1 we prove Theorem 1 and
Corollary 1 in several steps. First we show that the topological properties (knot
class and link type) of the minimizing solution are stable under small perturba-
tions in an appropriate space of variations. Furthermore, we remove some re-
dundancies in the side conditions. In this way we obtain a reduced variational
problem without topological constraints, a solution of which is given by the so-
lution of the original problem; see Lemma 8. We then assert that a nonsmooth
Lagrange-multiplier rule is applicable to the reduced variational problem. In or-
der to prove this assertion we have to compute the derivative of the energy
(Lemma 10), the derivatives of the functionals occurring in the boundary conditions
(Lemma 11), and the generalized gradient of a functional involving the global curva-
ture (Lemma 14). The Euler-Lagrange equation then follows.Analyzing the proper-
ties of the contact forces and certain transversality conditions, we finish the proof of
Theorem 1. The remaining regularity assertions in Corollaries 2–5 are verified in
Section 5.2.

In Appendix A we provide the quite technical computation of the derivative
of the mapping assigning the frame vectors to certain shape variables of the rod.
Analytically this means we have to determine the derivative of a solution of an or-
dinary differential equation with respect to a parameter in a Banach space. A short
summary of the relevant facts regarding Clarke’s calculus of generalized gradients
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can be found in Appendix B. Here we present a variant of a nonsmooth chain rule
adapted to our application.

Notation. We use x · y to denote the standard Euclidean inner product of x and y

in R
3, and x∧y for their cross product. The (intrinsic) distance between two points

in R
3 or in some parameter set J ⊂ R, depending on the context, is denoted by

| · |. To denote the enclosed (smaller) angle between two non-zero vectors x and y

in R
3 we use <)(x, y) ∈ [0, π ]. The distance between a point x ∈ R

3 and a subset
� ⊂ R

3 will be denoted by dist(x, �) and the diameter of � will be denoted by
diam(�). For any δ > 0 we define open neighbourhoods of x and � by

Bδ(x) = {y ∈ R
3 | |y − x| < δ}, Bδ(�) = {y ∈ R

3 | dist(y, �) < δ}.
The interior of a set � is denoted by int�. For Sobolev spaces of functions on the
interval [0, L] whose weak derivatives up to order m are p-integrable, we use the
standard notation Wm,p([0, L]), and the class of functions of bounded variation
is denoted by BV ([0, L]). For general Banach spaces X with dual space X∗, we
denote the duality pairing on X∗ ×X by 〈., .〉X∗×X.

2. Rod theory

In this section we provide a brief introduction to the special Cosserat theory
which describes the behaviour of nonlinearly elastic rods that can undergo large
deformations in space by suffering flexure, torsion, extension, and shear. General
nonlinear constitutive relations appropriate for a large class of applications can be
taken into account. Though mathematically one-dimensional, this theory allows
a mechanically natural and geometrically exact three-dimensional interpretation
of deformed configurations which is of particular importance for problems where
contact occurs. In this paper we restrict our attention to rods where shear and ex-
tension can be neglected. This special case can be obtained from the general theory
by a simple material constraint. For a more comprehensive presentation we refer
to Antman [3, Chapter VIII].

Kinematics. We assume that the position p of the deformed material points of a
slender cylindrical elastic body can be described in the form

p(s, ξ1, ξ2) = r(s)+ ξ1d1(s)+ ξ2d2(s) for (s, ξ1, ξ2) ∈ �, (1)

where the parameter set � is given by

� := { (s, ξ1, ξ2) ∈ R
3 | s ∈ [0, L], (ξ1)2 + (ξ2)2 � θ2}. (2)

Here, r : [0, L] → R
3 describes the deformed configuration of the centre line of

the body. d1(s) and d2(s) are orthogonal unit vectors describing the orientation
of the deformed cross-section at the point r(s) ∈ [0, L]. We interpret s as length
parameter and ξ1, ξ2 as thickness parameters of the rod. With

d3 := d1 ∧ d2
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we get a right-handed orthonormal basis {d1, d2, d3} at each s ∈ [0, L], whose
vectors are called directors, and which can be identified with an orthogonal matrix
D = (d1|d2|d3) ∈ SO(3) (the right-hand side denotes the matrix with columns
d1, d2, d3). A deformed configuration of the rod is thus determined by functions
r : [0, L] → R

3 and D : [0, L] → SO(3), where it is reasonable to consider
r ∈ W 1,q([0, L],R3) and D ∈ W 1,p([0, L],R3×3), p, q � 1.

In the special case of an inextensible unshearable rod we assume that s is the
arc length of the deformed centre curve r(·) and that the deformed cross-sections
are orthogonal to the base curve, i.e.,

r ′(s) = d3(s) for all s ∈ [0, L] (3)

(note that |d3(s)| = 1). Thus, the requirement that d3 ∈ W 1,p([0, L],R3) implies
that r ∈ W 2,p([0, L],R3). (Observe that d3(·) is continuous and admits deriva-
tives a.e. on [0, L].) Specializing [10, Lemma 6] to this case, we see that each such
configuration uniquely corresponds to shape and placement variables

w = (u, r0,D0) with u ≡ (u1, u2, u3),

in the space
X
p
0 := Lp([0, L],R3)× R

3 × SO(3),

such that

d ′k(s) =
[

3∑
i=1

ui(s)d i (s)

]
∧ dk(s) for a.e. s ∈ [0, L], k = 1, 2, 3,

D(0) = D0,

r(s) = r0 +
∫ s

0
d3(τ ) dτ.

(4)

The function u is called the strain and fixes the shape of the rod while (r0,D0)

determine its spatial placement. We use the notation p[w], r[w], etc. to indicate
that the values are calculated for w = (u, r0,D0) ∈ X

p
0 . Notice that Xp

0 is a subset
of the Banach space

Xp := Lp([0, L],R3)× R
3 × R

3×3.

By wo := (uo, r0,D0) we identify the relaxed (stress-free) reference configu-
ration. Note that r[wo] need not be a straight line.

We demand that the map p preserve orientation in the sense that

det

[
∂p(s, ξ1, ξ2)

∂(s, ξ1, ξ2)

]
> 0 for a.e. (s, ξ1, ξ2) ∈ �, (5)

which, due to the special form of p, is equivalent to

1

θ
�
√
(u1)2 + (u2)2 = | r ′′| a.e. on [0, L] (6)
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(cf. [10]). Here, |r ′′| is the local curvature of the base curve r(.), since r is paramet-
rized by arc length. It can be shown that inequality (6) ensures local injectivity of
p(.) on int�, (as in the proof of [21, Proposition 3.3]). Note, on the other hand, that
global injectivity of p(.) on int�, which prevents interpenetration of the elastic
body, is an important and natural requirement in continuum mechanics. While this
condition is neglected in many treatments in elasticity, its consideration is a major
objective of our investigation here.

In this paper we are particularly interested in configurations where the rod is
closed to a ring, i.e., we assume that

r(0) = r(L), d3(0) = d3(L), (7)

and call it a closed configuration. Notice that the centre line r is closed in the C1

sense, i.e., the curve and its tangent closes up at the end points. For the rod this can
be rephrased by saying that the cross-sections at the end points coincide, but the
directors d1(0), d2(0), may be different from d1(L) and d2(L), respectively.

Forces and equilibrium conditions. In contact problems as considered in the
present work, contact forces may occur, which are possibly concentrated, e.g.,
at some isolated point. Thus we need a more general approach for the treatment of
forces than usual (for a more detailed discussion see Schuricht [18]). In particular,
we cannot assume integrable force densities in general. We identify sub-bodies of
the rod with corresponding subsets of �. In particular, we set

�J := {(s, ξ1, ξ2) ∈ � : s ∈ J } for J ⊂ [0, L], and �s := �[s,L]. (8)

For a given configuration, the material of �s exerts a resultant force n(s) and a re-
sultant couple m(s) across section s on the material of �[0,s). This definition does
not make sense for s = 0, but it is convenient to set (cf. comment after equation
(16) below)

n(0) := 0 and m(0) := 0. (9)

Remark. Below we study configurations where the lateral cross-sections are glued
together, which can be described by suitable boundary conditions. In that case (9)
might appear to be unnatural. However, the boundary conditions are maintained by
an external force and an external moment acting at the terminal cross-sections and
entering the theory as Lagrange multipliers. They replace the force and the couple
exerted across the terminal cross-sections by the elastic material which would occur
in a theory for an originally ring-shaped rod.

We assume that all forces other than n acting on the body can be described by
a finite vector-valued Borel measure

�′ �→ f(�′), (10)

assigning the resultant force to sub-bodies which correspond to Borel sets �′ ⊂ �.

We call f the external force. It generates the induced couple of f given by

lf(�
′) :=

∫
�′
[ξ1d1(s)+ ξ2d2(s)] ∧ df(s, ξ1, ξ2). (11)
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Analogously we assume that all couples apart from m and lf can be given by a finite
vector-valued Borel measure

�′ → l(�′), (12)

which we call the external couple.
A configuration of the rod is in equilibrium if the resultant force and the resultant

torque about the origin vanish for each part of the rod. In terms of the distribution
functions

f (s) :=
∫
�s

df(σ, ξ1, ξ2), l(s) :=
∫
�s

dl(σ, ξ1, ξ2), (13)

lf (s) :=
∫
�s

dlf(σ, ξ
1, ξ2) =

∫
�s

[ξ1d1(σ )+ ξ2d2(σ )] ∧ df(σ, ξ1, ξ2), (14)

these requirements are equivalent to the equilibrium conditions in integral form

n(s)− f (s) = 0 for s ∈ [0, L], (15)

m(s)−
∫ L

s

r ′(σ ) ∧ n(σ ) dσ − lf (s)− l(s) = 0 for s ∈ [0, L]. (16)

Notice that the resultant force and the resultant couple of all external actions for
the whole body must vanish by (9). For sufficiently smooth external forces and mo-
ments we obtain the classical form of the equilibrium conditions by differentiating
(15), (16).

Constitutive Relations. We assume that the material of the rod is elastic, which
means that there is a constitutive function m̂, such that m is determined by the strain
through

m(s) = m̂(u(s), s), (17)

where m̂ is usually assumed to be continuously differentiable in u. Note that (17)
can provide the correct values of m only a.e. on [0, L], if the strains are discon-
tinuous as, e.g., in the case where concentrated forces or couples are present (cf.
[18]). Let us mention that the resultant force n cannot be determined by a constit-
utive function in the unshearable inextensible case – rather it enters the theory as a
Lagrange multiplier.

The material is called hyperelastic if there is a stored energy density W :
R

3 × [0, L] → R ∪ {+∞}, such that

m̂(u, s) =
3∑

i=1

Wui (u, s)d i (s). (18)

The total stored energy of the rod is given by

Es(u) =
∫ L

0
W(u(s), s) ds. (19)
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For our analysis we assume that

(W1) W(., s) is continuously differentiable on R
3 for a.e. s ∈ [0, L],

(W2) W(u, .) is Lebesgue-measurable on [0, L] for all u ∈ R
3.

As a natural condition we require W(., s) to be convex, i.e., the matrix(
∂m̂

i

∂uj

)3

i,j=1

has to be positive-definite. If the rod theory is considered to be derived from three-
dimensional theory by suitable material constraints, this condition is a consequence
of the Strong Ellipticity Condition in nonlinear elasticity. It is reasonable to require
that the energy density W approaches ∞ under complete compression of the ma-
terial, i.e.,

W(u, s)→∞ as
1

θ
−
√
(u1)2 + (u2)2 → 0. (20)

Energy densities with this blow-up behaviour require a special analytical treatment.
It seems that this could be handled by available techniques (cf. [3, VII. 5], [18]),
but doing so would not promote the main purpose of the present paper. Thus we
focus on energy densities without such a degeneracy.

In the following we assume that there are no prescribed external couples l
and, for simplicity, that the given external force depends only on the coordinates
(s, ξ1, ξ2), but not on the configuration p[w]; we denote this special force by fe in
contrast to general external forces f introduced in (10).

Then fe is conservative and has the potential energy

Ep(w) := Ep(p[w]) := −
∫
�

p[w](s, ξ1, ξ2) · dfe(s, ξ
1, ξ2)

= −
∫
�

[r[w](s)+ ξ1d1[w](s)+ ξ2d2[w](s)] · dfe(s, ξ
1, ξ2). (21)

Thus we can account for external forces such as weight or prescribed terminal
loads. However, in our investigation later, we also consider self-contact forces
which do depend on the configuration p[w]. But such forces do not enter our
analysis through the potential energy, but occur naturally as Lagrange multipli-
ers of some constrained variational problem. In particular, we are going to derive
the Euler-Lagrange equation for energy-minimizing configurations subjected to
an analytical condition preventing interpenetration and to topological constraints
described in the next section.

3. Constraints

Global injectivity. In [10] an analytical condition ensuring global injectivity of
the mapping p is introduced by means of the global radius of curvature, a nonlocal
geometric quantity for curves that goes back to Gonzalez & Maddocks [9], and
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which is further analyzed in [23]. Note that elements (r,D) determining a configu-
ration of a rod are referred to as framed curves in the geometric context of [10] and
[23]. We shall recall the definition of the global radius of curvature, and present the
related notion of global curvature and its important properties that our analysis is
later based on.

Recall that throughout our developments we exclusively deal with centre lines
r : [0, L] → R

3 parametrized by arc length, and with closed configurations; see
(7). Therefore it will often be useful to identify the interval [0, L] with the circle
SL ∼= R/(L · Z). The curve r is said to be simple if r : SL → R

3 is injective.
Otherwise there exist s, t ∈ SL (s �= t) for which r(s) = r(t). Any such pair will
be called a double point of r .

For a closed curve r : SL → R
3 the global radius of curvature ρG[r](s) at

s ∈ SL is defined as

ρG[r](s) := inf
σ,τ∈SL\{s}

σ �=τ
R(r(s), r(σ ), r(τ )), (22)

where R(x, y, z) � 0 is the radius of the smallest circle containing the points x,
y, z ∈ R

3. For collinear but pairwise distinct points x, y, z we set R(x, y, z) to
be infinite. When x, y and z are non-collinear (and thus distinct) there is a unique
circle passing through them and

R(x, y, z) = |x − y|
|2 sin[<)(x − z, y − z)]| . (23)

If two points coincide, however, say x = z or y = z, then there are many circles
through the three points and we take R(x, y, z) to be the smallest possible radius
namely the distance |x − y|/2. We should point out that with this choice, the func-
tion R(x, y, z) fails to be continuous at points where at least two of the arguments
x, y, z, coincide. Notice nevertheless that, by definition, R(x, y, z) is symmetric
in its arguments.

The global radius of curvature of r is defined as

R[r] := inf
s∈SL

ρG[r](s). (24)

If R[r] > 0, then r is simple and r ∈ C1,1 ∼= W 2,∞; see [10, Lemma 2],1 i.e., r

has a Lipschitz continuous tangent field r ′. Furthermore,

‖r ′′‖L∞ � 1

R[r] . (25)

Moreover, R[r] equals the radius of the largest open ball placed tangent to r(SL)

at any point r(s) that can be rotated around the tangent vector r ′(s) without inter-
secting the curve r(SL), [10, Lemma 3]. This geometric property gives an intuitive
idea of why deformed rods with a centre line r satisfying R[r] � θ might have no
self-intersections. The following result confirms that unshearable inextensible rods

1 Conversely, if r is simple and of class C1,1, then R[r] > 0; see [23].
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with such a positive lower bound on the global radius of curvature are indeed glob-
ally injective. A more general version for unshearable extensible rods extending
the following lemma can be found in [10, Lemma 7].

Lemma 1. Consider a closed configuration (r[w],D[w]) ∈ W 2,p×W 1,p, p � 1,
for w ∈ X

p
0 , and suppose that R[r[w]] > 0. Then p[w]|int (�) : int (�) → R

3 is
globally injective if and only if R[r[w]] � θ > 0.

For our further analysis it is necessary to work with the notion of global cur-
vature investigated in detail in [23], which has better regularity properties than the
global radius of curvature. The global curvature of r at s ∈ SL is defined as

κG[r](s) := sup
σ,τ∈SL\{s}

σ �=τ

1

R(r(s), r(σ ), r(τ ))
. (26)

Notice that κG[r](.) can take values in (0,∞]. In analogy to R[r] we define the
global curvature of r by

K[r] := sup
s∈SL

κG[r](s). (27)

It is an immediate consequence of the definitions that

κG[r](s) = 1

ρG[r](s) for all s ∈ SL , (28)

K[r] = 1

R[r] . (29)

In light of (25) together with (29), we say for curves r with R[r] > 0 that the
global curvature K[r] is not attained locally if and only if

‖r ′′‖L∞ < K[r]. (30)

For curves r with R[r] > 0 we have an alternative analytically more tractable
characterization of K[r]. For that let x, y, t ∈ R

3 be such that the vectors x − y

and t are linearly independent. By P we denote the plane spanned by x − y and t .
Then there is a unique circle contained in P through x and y and tangent to t in the
point y. We denote the radius of that circle by r(x, y, t) and set r(x, y, t) := ∞,

if x �= y, and x − y and t are collinear. Elementary geometrical arguments show
that r may be computed as

r(x, y, t) = |x − y|
2
∣∣∣ x−y
|x−y| ∧ t

|t |
∣∣∣ , (31)

which shows that r(x, y, t) is continuous on the set of triples (x, y, t) with the
property that x − y and t are linearly independent. But it fails to be continuous
at points where, e.g., x and y coincide. Recall that curves r with R[r] > 0 are
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of class C1,1. Hence, for every pair (s, σ ) ∈ SL × SL, we can look at the ra-
dius r(r(s), r(σ ), r ′(σ )), and it can be shown that the global curvature K[r] is
characterized by

K[r] = sup
s,σ∈SL
s �=σ

1

r(r(s), r(σ ), r ′(σ ))
if R[r] > 0; (32)

(cf. [9, 23]).
The following set A[r], where the supremum in (32) is attained, will be of

particular interest when deriving the structure of the contact term in the Euler-Lag-
range equation in the next section, since it identifies the cross-sections touching
each other if K[r] = θ−1.

A[r] :=
{
(s, σ ) ∈ [0, L] × [0, L], σ � s : K[r] = 1

r(r(s), r(σ ), r ′(σ ))

}
.

(33)

The condition σ � s in the previous definition (which is not part of the correspond-
ing definition in [23]) ensures that each pair of touching cross-sections is counted
only once. Since r(r(s), r(σ ), r ′(σ )) is not defined for r(s) = r(σ ), in particular
for s = σ , the definition (33) implies s �= σ for all (s, σ ) ∈ A[r]. On the other
hand, all pairs of touching cross-sections are contained in the set A[r]. To see this
we recall from [23] that for closed curves r with R[r] > 0 and satisfying (30), the
identities

|r(s)− r(σ )| = 2R[r], (34)

r ′(s) · (r(s)− r(σ )) = r ′(σ ) · (r(s)− r(σ )) = 0 (35)

hold for all (s, σ ) ∈ A[r]. Consequently, by (31),

r(r(s), r(σ ), r ′(σ )) = r(r(σ ), r(s), r ′(s)) = R[r]
for (s, σ ) ∈ A[r].Hence, if K[r] = θ−1, θ > 0, all pairs of cross-sections touching
each other are indeed detected byA[r], which we call the set of contact parameters.

For our variational approach in Section 4 we need the following continuity
result for global curvature proved in more generality in [23].

Lemma 2. Let L ⊂ C1,1([0, L],R3) be the set of closed curves r of fixed length
L(r) = L > 0 and parametrized by arc length. Then K[.] (and hence R[.]) is
continuous on L.

Topological constraints. We are interested in elastic rods that form a knot of a
prescribed type, which can be described by the closed centre line lying in a given
knot class. To make this precise we introduce the topological concept of isotopy.

Two continuous closed curves K1,K2 ⊂ R
3 are isotopic, denoted as K1 � K2,

if there are open neighbourhoods N1 of K1, N2 of K2, and a continuous mapping
/ : N1×[0, 1] → R

3 such that/(N1, τ ) is homeomorphic toN1 for all τ ∈ [0, 1],
/(x, 0) = x for all x ∈ N1, /(N1, 1) = N2, and /(K1, 1) = K2.
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For simplicity, we will frequently write r1 � r2 instead of r1(SL1) � r2(SL2)

for two closed isotopic curves r1 : SL1 → R
3 and r2 : SL2 → R

3. Roughly speak-
ing, two curves are in the same isotopy class if one can be continuously deformed
onto the other.

In [23] the following lemma concerning C0 perturbations of knotted curves
with a bounded global curvature is shown.

Lemma 3. Let r be a rectifiable closed continuous curve satisfying

K[r] � C0 (36)

for some fixed constant C0 < ∞. Then there exists ε = ε(r, C0) > 0, such that
r � r̃ for all rectifiable closed continuous curves r̃ with K[r̃] � C0 and

‖r − r̃‖C0 � ε. (37)

The statement of the lemma is no longer true if the assumptions on the glob-
al curvature are removed, small knotted regions might pull tight in the uniform
topology.

A pair (r,D) of a curve r and an associated frame field D is said to be a framed
curve. Here we consider framed curves with r(0) = r(L) and satisfying (3), which
we call closed framed curves. If we prescribe the knot type for the curve r and
boundary conditions as, e.g., D(0) = D(L), there are still infinitely many topolog-
ically distinct components in the space of closed framed curves. Indeed, every full
rotation of the pair d1(L), d2(L) within the cross-section respects the boundary
conditions, but changes the linking number (a topological invariant) between the
centre line and the curve r(.)+ (θ/2)d1(.). Since such a change of topological type
is accompanied by an (often drastic) change of the equilibrium configuration for an
elastic rod, we need to prescribe the linking number in order to identify particular
solutions; see also the discussion in [2]. The approach in [10] using the concept of
homotopies in SO(3) distinguishes only two topologically different classes, since
the fundamental group of SO(3) is Z2.

One way to determine the link between two disjoint closed (but not necessarily
simple) curves is to compute the Gaussian linking number, which is usually defined
in terms of the topological degree; see, e.g., [27, p. 402]. For a pair of absolutely
continuous disjoint curves, however, there is an analytically more convenient for-
mula, which we adopt as a definition for the linking number. For closed curves
r1, r2 ∈ W 1,1([0, L],R3) with r1([0, L]) ∩ r2([0, L]) = ∅, the linking number
l(r1, r2) is given by (cf. [27, p. 402])

l(r1, r2) = 1

4π

∫ L

0

∫ L

0

r1(s)− r2(t)

|r1(s)− r2(t)|3 · [r
′
1(s) ∧ r ′2(t)] ds dt. (38)

It can be shown that l(r1, r2) is integer-valued and stable with respect to smooth
perturbations preserving the non-intersection property.

For a closed framed curve respecting (3) we want to consider the linking num-
ber of the curves r(.) and r(.) + (θ/2)d1(.). The problem here is that the second
curve might not be closed and that the two curves might intersect each other. The
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Fig. 1. The figure shows how the curve βD(.) is closed in a neighbourhood of the cross-
section s = 0.

first problem can be solved by closing up the curve r(.) + (θ/2)d1(.) in a unique
way, namely by

βD(s) :=




r(s)+ θ
2 d1(s) for s ∈ [0, L],

r(L)+ θ
2 [cos(φD(s − L))d1(L)+ sin(φD(s − L))d2(L)]

for s ∈ [L,L+ 1],
(39)

where φD ∈ [0, 2π) is the angle between d1(0) and d1(L), such that φD − π has
the same sign as (d1(0) ∧ d1(L)) · d3(0); see Fig. 1.

For technical reasons we identify r with its trivial extension onto [0, L + 1]
according to

r(s) := r(L) for s ∈ [L,L+ 1]. (40)

Notice that r,βD ∈ W 1,q([0, L+ 1],R3), 1 � q � ∞, if r ∈ W 1,q([0, L],R3),

and that r and βD are closed. Demanding the global curvature bound K[r] � θ−1

we ensure that

r([0, L+ 1]) ∩ βD([0, L+ 1]) = ∅ (41)

by Lemma 1 and (29). Thus the linking number of a closed framed curve (r,D)

satisfying (3) and

K[r] � θ−1, r ∈ W 1,1([0, L],R3), D ∈ W 1,1([0, L],R3×3),

is well defined by

l(r,D) := l(r,βD). (42)

The following perturbation result for l(r,D) is shown in [23, Theorem 6].
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Lemma 4. Let (r,D) ∈ W 1,p([0, L],R3) × W 1,p([0, L],R3×3), p > 1, be a
closed framed curve satisfying (3) and K[r] � θ−1. Then there is ε > 0, such that
l(r̃, D̃) is well defined and

l(r,D) = l(r̃, D̃) (43)

for all closed framed curves (r̃, D̃) ∈ W 1,p([0, L],R3) × W 1,p([0, L],R3×3)

satisfying

‖r − r̃‖W 1,p � ε, ‖D − D̃‖W 1,p � ε, φ
D̃
= φD. (44)

4. Variational problem, Euler-Lagrange equations and regularity

The variational problem. In this section we state a general variational problem
where we seek energy-minimizing closed configurations of elastic rods that are
globally injective and belong to prescribed knot and link classes. Then we formu-
late the corresponding Euler-Lagrange equations satisfied by configurations with
minimal energy. Finally we provide regularity results.

For elastic rods determined by elements w = (u, r0,D0) ∈ X
p
0 , we consider

stored-energy functionals Es of the form (19) where the stored-energy density sat-
isfies (W1), (W2); see Section 2. In addition we consider potential energies Ep as
given in (21). Let D0 = (d01|d02|d03) and D1 = (d11|d12|d13) be given matrices
in SO(3) with equal third column vectors d03 = d13. Furthermore, let θ > 0 be
a given positive constant, r0 ∈ R

3 be a given vector, K0 a simple closed curve in
R

3, as a representative for a prescribed knot class, and l0 ∈ Z representing a given
link class.

Then we look at the minimization problem

E(w) := Es(w)+ Ep(w) → Min! , w ∈ X
p
0 (45)

under the constraints

r[w](L) = r0, (46)

D[w](L) = D1, (47)

R[w] � θ, (48)

r[w] � K0, (49)

l[w] = l0. (50)

Here and from now on we use the short notation R[w],K[w], A[w], l[w] for
R[r[w]], K[r[w]], A[r[w]] and l[r[w]]. Note that (50) is well defined because of
the constraint (48).

Geometrically, the boundary conditions (46) and (47) lead to closed configu-
rations (r,D) with a prescribed angle between d1[w](0) and d1[w](L), and (48)
guarantees that deformations are globally injective by Lemma 1. For the derivation
of the Euler-Lagrange equations later on we will have to reformulate the variational
problem (45)–(50) with a minimum number of equations; see Section 5.
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The existence of solutions for the variational problem (45)–(50) was proved in
[10, Section 4.2.1] under a natural coercivity condition onW but based on the more
restrictive notion of link classes in terms of homotopies in SO(3). By [23, Lemma
5] these results can be extended to link classes as considered here.

Euler-Lagrange equations. The basic issues we shall address here are the der-
ivation of the Euler-Lagrange equations for solutions of the variational problem
described above and the presentation of regularity results for the minimizing con-
figurations. We impose the standard growth condition on Wu, that is,

(W3) |Wu(u, s)| � c|u|p + g(s) for a.e. s ∈ [0, L],
where c � 0 is a constant and g ∈ L1([0, L]). With this condition we exclude
energy densities with the property (20) to avoid technical details which would not
promote the main purpose of the paper. The existence theory, however, covers these
more general energies (cf. [10, 21]).

Theorem 1. Suppose W is a stored-energy density satisfying (W1)–(W3). Let w =
(u, r0,D0) ∈ X

p
0 be a solution of the variational problem (45)–(50), such that the

global curvature K[w] is not attained locally. Then there exist Lagrange multipliers
λE � 0, f 0 ∈ R

3, m0 ∈ R
3 and a Radon measure µ on [0, L] × [0, L] supported

in A[w] (cf. (33)), not all zero, such that the following Euler-Lagrange equations
hold:

0 = λE

[
m̂(u(s), s)−

∫
�s

[
ξ1d1[w](t)+ ξ2d2[w](t)

]
∧ dfe(t, ξ

1, ξ2)

]

− λE

∫ L

s

d3[w](t) ∧
∫
�t

dfe(σ, ξ
1, ξ2) dt

+m0 +
∫ L

s

d3[w](t) ∧ (f 0 − f c(t)) dt for a.e. s ∈ [0, L], (51)

0 = λE

∫
�

dfe(t, ξ
1, ξ2), (52)

0 =
∫ L

0
d3[w](t) ∧

[
f 0 − f c(t)− λE

∫
�t

dfe(s, ξ
1, ξ2)

]
dt,

−λE
∫
�

[ξ1d1[w](t)+ ξ2d2[w](t)] ∧ dfe(t, ξ
1, ξ2), (53)

where for τ ∈ [0, L],

f c(τ ) :=
∫
Qτ

r[w](s)− r[w](σ )
|r[w](s)− r[w](σ )| dµ(s, σ ), (54)

Qτ := {(s, σ ) ∈ [0, L] × [0, L] : σ � τ � s} for τ ∈ [0, L]. (55)

(Identity (18) was used in (51).)
Moreover, if R[w] > θ in condition (48), then µ is the zero measure. In addi-

tion, λE can be taken to be 1, if one of the following transversality conditions is
satisfied:
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(a) p[w] admits an isolated active contact pair, i.e., there is a point (s, σ ) ∈ suppµ,
and some ε > 0, such that[

(Bε(s)× [0, L]) ∪ ([0, L] × Bε(σ ))
]
∩ suppµ = (s, σ ); (56)

(b) p[w] has a curved contact-free arc, i.e., there is an open nonempty interval
J ⊂ SL with d3[w] �= const. on J , and such that

r(r[w](s), r[w](σ ), r ′[w](σ )) > θ for all s ∈ J, σ ∈ [0, L], s �= σ. (57)

(c) There is s ∈ [0, L], such that r ′′[w](s) exists, and such that

r ′′[w](s) �∈ conv({ρ(r[w](σ )− r[w](s)) : ρ > 0, (s, σ ) ∈ suppµ}). (58)

Remarks. 1. Using the notation introduced in (13), (14), we recover from (51) the
integral form of the equilibrium conditions including the contact term involving fc,
if λE = 1. Moreover, (52) and (53) for λE = 1 state that the resultant force of all
external actions must vanish for the whole rod, whereas the resultant couple of all
the external actions for the whole rod balances the couple induced by the contact
action. Note that the term

∫ L

0 d3[w](t) ∧ f 0 dt in (53) in fact vanishes due to the
special boundary condition (46).

2. Observe that the transversality conditions (a) and (c) are only relevant in the
case of contact. If R[w] > θ, then we can omit the assumption that K[w] is not
attained locally, and we always have λE = 1. Condition (58) in (c) excludes cer-
tain “clamped” or rigid configurations where one cannot expect transversality, e.g.,
as in tightly knotted curves with multiple contact points everywhere. In fact, ide-
al knots, i.e., length-minimizing knotted curves with prescribed thickness, exhibit
such rigidity; in particular such curves consist of curved arcs in mutual contact,
possibly composed with straight segments without contact; see [24]. Coleman
et al. constructed initially straight, homogeneous inextensible rods furnishing strict
local minima for certain quadratic elastic energies with points and lines of self-
contact; see [5]. It is unclear, however, whether global minimizers obtained by our
existence result may exhibit self-contact everywhere along the curve. Even if this
happened to be the case, it appears to be very unlikely apart from very specific cases
that all contact points violate (58) in condition (c). In view of this we believe that
our transversality conditions (a), (b), (c) cover the generic situation for minimizing
configurations, at least if the rod is long compared to the global curvature bound and
the complexity of the prescribed knot type. Notice that if multiple contact points
are excluded, i.e., if

9{σ ∈ SL\{s} : (s, σ ) ∈ suppµ} � 1 for all s ∈ SL,

then (c) says that we have to find only one active contact pair (s, σ ) ∈ suppµ,
such that r[w](s)− r[w](σ ) is not parallel to r ′′[w](s), when the latter exists.

3. Note that A[w] does not contain a certain neighbourhood of the diagonal
in [0, L] × [0, L], since we have assumed that K[w] is not attained locally. Thus
cross-sections touching each other cannot be arbitrarily close to each other in arc
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length. We can even find a constant η = η(r) > 0 such that |s − σ | � η for all
(s, σ ) ∈ A[w] (cf. Lemma 12 in Section 5.1).

4. The measureµ is defined on [0, L]2 and supported onA[w], which is merely
a subset of the triangle {(s, σ ) ∈ [0, L]2 : σ < s}. This ensures in particular that
each pair of touching cross-sections occurs only once in A[w]. According to (35),
proved in Lemma 12 in Section 5.1, the vector r[w](s)− r[w](σ ) is perpendicular
to the tangent vectors r ′[w](s) and r ′[w](σ ) for all (s, σ ) ∈ A[w]. This together
with part (iv) of the following corollary have the mechanical interpretation that
when R[r] = θ , the contact forces are perpendicular to the curve r .

5. A fundamental requirement for the methods used in the proof of the theorem
is that small perturbations of the solution have to preserve the property that the
global curvature of the centre line is finite and that it is not attained locally. This
allows merely variations of u in L∞ instead of Lp. In the more general case of
shearable rods, each configuration with a smooth centre line has arbitrarily close
neighbours, in the topology of L∞ perturbations of the strains, having a “corner”
in the centre curve, i.e., both local and global curvature are infinite. Thus we would
have to choose smooth perturbations of the shear strains to make our arguments
work in that case. Since the bound on the global curvature is only an approximation
for the excluded-volume constraint in the shearable case and since smooth varia-
tions do not suffice for the techniques treating (20), we did not extend our analysis
to shearable rods. How our methods work for extensible rods can be seen in [24]
in the special case of ideal knots.

6. For minimizers u of an elastic energy with the degeneracy (20) (and thus
violating (W3)) the local curvature of the centre curve may be equal to θ only on
a parameter set with measure zero and, presumably, even nowhere. On the other
hand, even for energies violating (20) it seems that local curvature is smaller than
global curvature at cross-sections in contact. Furthermore numerical simulations
of boundary value problems for rods without contact based on linear elasticity, i.e.,
with quadratic energy densities of the form (65) (which satisfy (W3)), indicate that
it is unlikely that global curvature is attained locally on a loop without self-con-
tact. Therefore we believe that the assumption that global curvature is not attained
locally is not really restrictive for most of the practically relevant applications.

For notational convenience we set

F(s, σ ) := r[w](s)− r[w](σ )
|r[w](s)− r[w](σ )| for (s, σ ) ∈ [0, L]2. (59)

Corollary 1. Let f c be as in Theorem 1. Then

(i) f c ∈ BV ([0, L],R3) and thus, it is bounded.
(ii) The right and the left limits of f c, denoted by f c(τ±), exist for each τ ∈ SL,

and

[f c](τ ) := f c(τ+)− f c(τ−)
= −

∫
{τ }×[0,L]

F(s, σ ) dµ(s, σ )+
∫
[0,L]×{τ }

F(s, σ ) dµ(s, σ ). (60)
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(iii) For a.e. τ ∈ [0, L] there is a nonnegative Radon measure µτ on [0, L] such
that

f ′
c(τ ) = −

∫ L

0
F(τ, σ ) dµτ (σ ).

(iv) The following equalities hold:

[f c](τ ) · r ′[w](τ ) = 0 for all τ ∈ [0, L], (61)

f ′
c(τ ) · r ′[w](τ ) = 0 for a.e. τ ∈ [0, L]. (62)

(v) The tangential component τ �→ f c(τ ) · r ′[w](τ ) is of class W 1,∞([0, L]).
From the Euler-Lagrange equations we can derive further regularity results for
r[w], D[w], and m(s) = m̂(u(s), s).

Corollary 2. If all the hypotheses of Theorem 1 including one of the transversality
conditions (a), (b) or (c) hold, then m ∈ BV ([0, L],R3). If fe has an integrable
density φe, i.e., if

dfe(t, ξ
1, ξ2) = φe(t, ξ

1, ξ2) dt dξ1 dξ2 (63)

with φe ∈ L1(�,R3), then m ∈ W 1,1([0, L],R3) with

m′(s) =− d1[w](s) ∧
∫
D

ξ1φe(s, ξ
1, ξ2) dξ1 dξ2

− d2[w](s) ∧
∫
D

ξ2φe(s, ξ
1, ξ2) dξ1 dξ2

+ r ′[w](s) ∧
[
f 0 − f c(s)−

∫ L

s

∫
D

φe(t, ξ
1, ξ2) dξ1 dξ2 dt

]
(64)

for a.e. s ∈ SL, where D := Bθ(0) ⊂ R
2. In particular, if φe is bounded on �,

then m ∈ W 1,∞([0, L],R3). If fe = 0, then m′ ∈ BV ([0, L],R3) in addition.

Let us point out that (64) is the classical differential form of the equilibrium equa-
tion. Furthermore, we note that W 1,1([0, L]) ⊂ C0([0, L]).

Under additional assumptions on the stored-energy density W we can derive
higher regularity for the strain u, the centre curve r[w] and the corresponding frame
field D[w]. Instead of (W1)–(W3) we consider W satisfying (W3) and

(W4) W(., .) is of class C2(R3 × [0, L]) with Wuu(u, s) positive-definite
for all u ∈ R

3 and s ∈ [0, L].
Note that (W4) implies (W1) and (W2). For the following result it actually suffices
to assume a C2 dependence of W with respect to u ∈ R

3 and only a C1 dependence
with respect to s ∈ [0, L].
Corollary 3. Let all the hypotheses of Theorem 1 together with one of the trans-
versality conditions (a), (b), or (c), be satisfied and let W satisfy (W3)–(W4). Then
u ∈ BV ([0, L],R3), D[w] ∈ W 1,∞([0, L],R3×3), D′[w] ∈ BV ([0, L],R3×3),

r[w] ∈ W 2,∞([0, L],R3), and r ′′[w] ∈ BV ([0, L],R3).
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To deduce higher regularity we assume for simplicity that there are no external
forces (instead of assuming higher regularity of fe).

Corollary 4. Let the hypotheses in Corollary 3 hold and let fe = 0. Then u ∈
W 1,∞([0, L],R3),D[w] ∈ W 2,∞([0, L],R3×3), r[w] ∈ W 3,∞([0, L],R3).

Note that this last result implies that the curvature |r ′′[w]| is Lipschitz contin-
uous.

If there is a contact-free arc, i.e. an interval J ⊂ SL, such that (57) holds,
then the standard bootstrap arguments for problems without contact yield higher
regularity for u,D, r and m on J , as long as W(., .) and fe are sufficiently smooth.

The special case where W is a quadratic function in u plays an important role
in various applications:

W(u, s) := 1
2 C(s)(u(s)− uo(s)) · (u(s)− uo(s)), (65)

where C : [0, L] → R
3×3 is a Lebesgue measurable function such that C(σ) is

symmetric with λCmin(σ ) � c > 0 for a.e. σ ∈ [0, L], where λCmin(σ ) denotes the
smallest eigenvalue of C(σ). The function uo(σ ) is the stress-free reference strain
as a prescribed material parameter. In this special situation we have more detailed
regularity information for u and thus also for r[w] and D[w]. For simplicity, we
assume again that there are no external forces present.

Corollary 5. Let fe = 0 and let one of the transversality conditions (a), (b) or (c)
hold.

(i) If uo ∈ Lr([0, L],R3) and C ∈ L2r ([0, L],R3×3) with p � r � ∞,

then u ∈ Lr([0, L],R3). Moreover, D[w] ∈ W 1,r ([0, L],R3×3) and r[w] ∈
W 2,r ([0, L],R3).

(ii) If uo ∈ W 1,∞([0, L],R3) and C ∈ W 1,∞([0, L],R3×3), then u is of class
W 1,∞([0, L],R3). Moreover, D[w] ∈ W 2,∞([0, L],R3×3) and r[w] ∈
W 3,∞([0, L],R3).

As before, by virtue of bootstrap arguments, we get higher regularity of
u,D[w], r[w] and m on parts of the rod without contact if C, uo and fe are smooth
enough.

5. Proofs

5.1. Proof of Theorem 1 and Corollary 1

We proceed in several steps always assuming that w = (u, r0,D0) ∈ X
p
0 is a

solution of the variational problem (45)–(50) such that the global curvature K[w]
is not attained locally.

Modified variational problem. First we provide a method to represent small vari-
ations of D0 on the manifold SO(3) by variations in a linear space. Notice that small

perturbations of D0 have the form D0
$
D, where

$
D∈ SO(3) is close to the identity.
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Such matrices
$
D can be represented in a unique way by means of the rotation vector

$
α= $

α (
$
D) ∈ R

3, where the direction of
$
α describes the rotation axis of

$
D, and the

length |$α| equals the positively oriented rotation angle in [0, π). In a neighbour-

hood of the identity in SO(3), the mapping
$
D �→ $

α (
$
D) is continuous and has a

continuous inverse mapping U in a neighbourhood of the origin in R
3. In particular,

we have
$
α (Id) = 0 ∈ R

3 and U(0) = Id ∈ SO(3). Thus small perturbations of

D0 ∈ SO(3) have the form D0U(
$
α) with

$
α∈ R

3,
$
α close to 0 ∈ R

3, and we can
identify each slightly perturbed configuration

(u+ $
u, r0+ $

r0,D0
$
D) ∈ X

p
0

with an element
$
w= (

$
u,

$
r0,

$
α) ∈ Lp([0, L],R3)× R

3 × R
3

by
$
D= U(

$
α).

Since certain arguments in our proof below only work as long as we consider
perturbed configurations where the global curvature is not attained locally, we have
to restrict our analysis to variations of the form

$
w:= (

$
u,

$
r0,

$
α) ∈ L∞([0, L],R3)× R

3 × R
3 =: Y (66)

instead of taking
$
u∈ Lp([0, L],R3). With the norm

‖ $
w‖Y := ‖ $u‖L∞ + |$r0 | + | $α | for

$
w= (

$
u,

$
r0,

$
α) ∈ Y (67)

(Y, ‖.‖Y ) is a Banach space, whereas the original set Xp
0 is not a linear space. For

notational convenience we introduce the modified energy function

Ĕ(
$
w) := E((u+ $

u, r0+ $
r0,D0U(

$
α))) for

$
w∈ Bδ(0) ⊂ Y, (68)

where Bδ(0) is a small neighbourhood of 0 ∈ Y with δ > 0 not fixed yet but

sufficiently small. Analogously, we define Ĕs(
$
w), Ĕp(

$
w) , r̆[ $w], D̆[ $w], R̆[ $w], etc.

Note that r̆[0] = r[w], D̆[0] = D[w], etc.
Now we consider the modified variational problem

Ĕ(
$
w) −→ Min!,

$
w∈ Y, (69)

subject to

r̆[ $w](L) = r0+ $
r0, (70)

D̆[ $w](L) = D1U(
$
α), (71)

R̆[ $w] � θ, (72)

r̆[ $w] � K0, (73)

l̆[ $w] = l0. (74)
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Notice as before that the linking number l̆[ $w] is well defined by (42) for
$
w∈ Y, by

(72) and Lemma 1. Since L∞([0, L],R3) ↪→ Lp([0, L],R3),
$
w= 0 is a local minimizer of (69)–(74). (75)

Reduction of the modified problem. It turns out that some of the constraints of
the modified variational problem are redundant, which would imply difficulties in
obtaining λE = 1 as we assert in the second part of Theorem 1. Furthermore, we
will replace condition (72) by an equivalent condition with a functional having
better differentiability properties than R̆[.].

First we state the following simple regularity and convergence results for the
solutions of the system (4).

Lemma 5. (i) Let l be a nonnegative integer and 1 � r � ∞. If u ∈ Wl,r (I,R3),
then D ∈ Wl+1,r (I,R3×3) and r ∈ Wl+2,r (I,R3×3). If u ∈ Cl,α(I,R3) for some
α ∈ [0, 1], then D ∈ Cl+1,α(Ī ,R3×3) and r is of class Cl+2,α(Ī ,R3×3).

(ii) Let 1 < p <∞. If wn ⇀ w in Xp, where {wn} ⊂ X
p
0 , then w ∈ X

p
0 and

Dn → D in C0(Ī ,R3×3), rn → r in C1(Ī ,R3), (76)

Dn ⇀ D in W 1,p(I,R3×3), rn ⇀ r in W 2,p(I,R3), (77)

where rn := r[wn], r := r[w], Dn := D[wn], D := D[w].
(iii) Let 1 < p � ∞. If wn → w in Xp, where {wn} ⊂ X

p
0 , then

dk,n → dk in W 1,p(I,R3), k = 1, 2, 3, and rn → r in W 2,p(I,R3). (78)

Proof. (i) We start with l = 0, i.e., u ∈ Lr(I,R3). Then the right-hand side
of the first equation in (4) is in Lr(I,R3); hence d ′k , k = 1, 2, 3, is also in
Lr(I,R3), since on the right-hand side, dk ∈ W 1,p(I,R3) ↪→ C0(Ī ,R3). Thus
D ∈ W 1,r (I,R3×3). For l � 1 we use bootstrap arguments inductively. The other
results follow easily from the last equation in (4).

Part (ii) was essentially proved in [10, Lemma 8]. The stronger convergence
for {rn} follows from the last equation in (4).

(iii) Let k = 1, (k = 2, 3 can be treated in the same way). Using the orthonor-
mality of the d i we can rewrite the equation for d1 in (4) as

d ′1(s) = u3(s)d2(s)− u2(s)d3(s) for a.e. s ∈ I. (79)

Subtracting (79) from the corresponding equation for d1,n we obtain

d ′1,n(s)− d ′1(s) = (u3
n − u3)d2,n(s)+ u3(d2,n(s)− d2(s))

−(u2
n − u2)d3,n(s)− u2(d3,n(s)− d3(s)) (80)

for a.e. s ∈ I. Taking the Lp norm, we get

‖d ′1,n − d ′1‖Lp �
3∑

i=2

‖uin − ui‖Lp‖Dn‖C0

+
3∑

i=2

‖d i,n − d i‖C0‖u‖Lp → 0 as n→∞,
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where we used (76) on the right-hand side, which holds even for p = ∞, since
strong convergence in L∞(I,R3) implies weak convergence in Lp̃(I,R3) for all
p̃ ∈ [1,∞). Thus d ′1,n → d ′1 in Lp([0, L],R3) and d1,n → d1 in Lp([0, L],R3)

by (76), which implies the first statement in (78). For the second statement in (78)
we argue in the same way and use the last equation in (4). '(

For the minimizing configuration we deduce the following regularity properties:

Lemma 6. Let w = (u, r0,D0) ∈ X
p
0 be a solution of the variational problem

(45)–(50). Then

(i) u1, u2 ∈ L∞([0, L]),
(ii) d3[w], d̆3[ $w] ∈ W 1,∞([0, L],R3), and r[w], r̆[ $w] ∈ W 2,∞([0, L],R3) for

any
$
w∈ Bδ(0) ⊂ Y.

Proof. Since R[w] � θ > 0, (6), (25), (48) imply√
(u1(s))2 + (u2(s))2 � ‖r ′′‖L∞ � R[w]−1 � θ−1 <∞ for a.e. s ∈ SL,

i.e., u1, u2 ∈ L∞([0, L]), which shows part (i).
By the differential system (4) we have

d ′3[w] = u2d1[w] − u1d2[w] and r ′[w] = d3[w].
Arguing as in the proof of Lemma 5 we obtain (ii) for d3[w], r[w]. If we replace

w = (u, r0,D0) with (u+ $
u, r0+ $

r0,D0U(
$
α)) and solve the perturbed differen-

tial system

d̆k
′[ $w](s) =

[
3∑

i=1

(ui+ $
u i)(s)d̆ i[ $w](s)

]
∧ d̆k[ $w](s),

r̆ ′[ $w](s) = d̆3[ $w](s),
r̆[ $w](0) = r0+ $

r0, D̆[ $w](0) = D0U(
$
α),

(81)

for a.e. s ∈ [0, L], k = 1, 2, 3, then we get the remaining statement in part (ii) in
the same way. '(

As a consequence of Lemma 6 we observe that small variations ofw of the kind
described above do not violate the topological constraints.

Lemma 7. Let w = (u, r0,D0) ∈ X
p
0 be a solution of the variational problem

(45)–(50). Then

(i) r̆[ $w] � r[w] for all
$
w satisfying (70) with ‖ $

w‖Y sufficiently small;

(ii) l̆[ $w] = l[w] = l0 for all ‖ $
w‖Y sufficiently small satisfying

r̆[ $w](L) = r̆[ $w](0), D̆[ $w](L) = D1U(
$
α). (82)
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Proof. (i) Limit (78) of Lemma 5 implies that

‖r[w] − r̆[ $w]‖W 2,∞ + ‖D[w] − D̆[ $w]‖W 1,p → 0 as ‖ $
w‖Y → 0. (83)

Note that the convergence in W 2,∞ is equivalent to convergence in C1,1. Hence

for ‖ $
w‖Y sufficiently small we have

K̆[ $w] � 2θ−1, (84)

by the continuity of K[.] with respect to the convergence in (83); see Lemma 2.

Now apply Lemma 3 for r = r[w] and C0 = 2θ−1 with ‖ $
w ‖Y so small that

‖r[w] − r̆[ $w]‖C0 � ε, where ε = ε(r, 2θ−1) is as in Lemma 3.

(ii) If we extend the curves r[w], r̆[ $w], and r[w] + (θ/2)d1[w], r̆[ $w ] +
(θ/2)d̆1[ $w] according to (40) and (39), respectively, we readily infer from (82)
that all these curves have the interval [0, L + 1] as their common domain. Now

apply Lemma 4 for ‖ $
w‖Y sufficiently small to conclude the proof. '(

Lemma 7 implies that the topological constraints are stable with respect to small

variations in Y. Thus they can be removed without affecting the fact that
$
w= 0 is

a local minimizer of the modified variational problem.
In order to replace (72) by an equivalent condition we introduce the functions

P [ $w](s, σ ) := (r̆[ $w](s), r̆[ $w](σ ), r̆ ′[ $w](σ )), (85)

H(x, y, t) := 4|(x − y) ∧ t |2
|x − y|4|t |2 for x, y, t ∈ R

3, x �= y, t �= 0, (86)

and note that according to (31), (32) we may write

K̆[ $w]2 = sup
s,σ∈SL
s �=σ

H(P [ $w](s, σ )). (87)

By (29) we can replace (72) with

g(
$
w) := K̆[ $w]2 − θ−2 � 0. (88)

To remove the redundancies in the boundary conditions we are going to replace
the nine scalar conditions (71) by just three scalar equations; see (92)–(94) below.
(Note that an element of SO(3) has merely three degrees of freedom.)

In this way we get the reduced variational problem

Ĕ(
$
w) → Min! , $

w∈ Y, (89)
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subject to

g(
$
w) � 0, (90)

g0(
$
w) := r̆[ $w](L)− (r0+ $

r0) = 0, (91)

g1(
$
w) := d̆1[ $w](L) · (D1U(

$
α))2 = 0, (92)

g2(
$
w) := d̆3[ $w](L) · (D0U(

$
α))1 = 0, (93)

g3(
$
w) := d̆3[ $w](L) · (D0U(

$
α))2 = 0, (94)

where, for M ∈ R
3×3, we denoted the k-th column vector by (M)k , k = 1, 2, 3.

Lemma 8. The reduced variational problem (89)–(94) has a local minimizer at
$
w= 0.

Proof. In Lemma 7 it was shown that small variations do not violate the topological

constraints; hence (73) and (74) hold for all ‖ $
w ‖Y sufficiently small. Conditions

(92)–(94) force the frame D̆[ $w](L) to be equal to D1(U(
$
α)). Indeed, d13 = d03

by assumption on D1.Thus (93), (94) force d̆3[ $w](L) to be parallel to (D1U(
$
α))3,

and by continuity (see Lemma 5) we get d̆3[ $w](L) = (D1U(
$
α))3 for ‖ $

w‖Y small.

Now (92) implies that d̆1[ $w](L) is perpendicular to (D1U(
$
α))2, and d̆1[ $w](L) is

automatically perpendicular to (D1U(
$
α))3 = d̆3[ $w](L). Again by continuity, we

get d̆1[ $w](L) = (D1U(
$
α))1 for ‖ $

w‖Y small. Since D̆[ $w], D1U(
$
α) ∈ SO(3), we

still obtain d̆2[ $w](L) = (D1U(
$
α))2 for ‖ $

w‖Y small. Thus D̆[ $w](L) = D1U(
$
α),

i.e., (92)–(94) imply (71). Relations (70) and (72) are obviously equivalent to (91)

and (90), respectively. Since
$
w= 0 is a local minimizer of (69)–(74), it is also a

local minimizer of (89)–(94). '(
We now derive the Euler-Lagrange equations for the reduced variational prob-

lem, instead of (45)–(50) or (69)–(74). For this purpose we have to compute a
number of derivatives.

Differentiability of the base curve and the directors. In order to analyse the de-
pendence of the energy functions Ĕs, Ĕp, and the side conditions on perturbations
$
w∈ Y, we need to understand how the solutions of the perturbed differential sys-

tem (81) depend on
$
w . According to [22, Theorem 2.1] the solutions of (81) are

continuously differentiable in the perturbations
$
u∈ L∞([0, L],R3),

$
r0∈ R

3, and
$
D∈ SO(3). Since the mapping

$
α �→ U(

$
α) is smooth in a small neighbourhood of

0 ∈ R
3, we obtain

Lemma 9. Let w be a solution of (45)–(50). Then the mapping

(
$
w, s) �→ (r̆[ $w](s), D̆[ $w](s))
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from Bδ(0)× [0, L] into R
3 × R

3×3 is continuously differentiable for some suffi-
ciently small δ > 0 (depending on w), i.e.,

(r̆[.](.), D̆[.](.)) ∈ C1(Bδ(0)× [0, L],R3 × R
3×3). (95)

Remark. Since we study continuity and differentiability near the origin in Y , it
is sufficient to take a bounded neighbourhood of the origin in L∞([0, L],R3) as

parameter set C in [22, Theorem 2.1], which corresponds to perturbations
$
u . Thus

[22, Theorem 2.1] yields the desired regularity (95), but only for small intervals
instead of for [0, L]. Since the system (81) is always uniquely solvable on [0, L]
and, by uniform boundedness of the solution, even on [−ε, L + ε] for any given
ε > 0 (cf. [10, Lemma 6]), we obtain (95) with [0, L] by a covering argument using
the compactness of [0, L].

Since r and dk enter explicitly into the potential energy Ĕp(.) and the side
conditions (90)–(94), we need to calculate the Fréchet derivative of the mappings
$
w �→ r̆[ $w](s) and

$
w �→ d̆k[ $w](s), k = 1, 2, 3, at the origin 0 ∈ Y, which we

denote by ∂w r̆[0](s), ∂wd̆k[0](s), respectively. Lemma 16 in the Appendix shows
that

∂wd̆k[0](s) $
w = z(s) ∧ dk[w](s), k = 1, 2, 3, (96)

and thus

∂w r̆[0](s) $
w =$

r0 +
∫ s

0
z(τ ) ∧ d3[w](τ ) dτ (97)

for all s ∈ [0, L], $
w= (

$
u,

$
r0,

$
α) ∈ Y.Here, z = z[$u, $α] is a special characterization

of elements
$
u∈ L∞([0, L],R3) by the uniquely assigned function

z(s) = z(0)+
∫ s

0

3∑
i=1

$
u i(τ )d i[w](τ ) dτ (98)

with

z(0) ∧ dk[w](0) = (D0U
′(0) $

α)k, k = 1, 2, 3, (99)

where U ′ denotes the derivative of U with respect to α at 0 ∈ R
3; see the remark

immediately following the proof in Appendix A. Note that z ∈ W 1,∞([0, L],R3).

In particular,

z(0) = 0 for
$
w= (

$
u,

$
r0, 0) ∈ Y. (100)
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Differentiability of the energy E.

Lemma 10. Let w be a solution of (45)–(50). Then the energy functions

Ĕs, Ĕp : Bδ(0) ⊂ Y −→ R

are continuously differentiable for some sufficiently small δ > 0 (depending on w),
and

Ĕ′
s(0)

$
w =

∫ L

0
Wu(u(t), t)· $u (t) dt

=
∫ L

0
z′(t) ·

3∑
i=1

Wui (u(t), t)d i[w](t) dt, (101)

Ĕ′
p(0)

$
w = − $

r0 ·
∫
�

dfe(t, ξ
1, ξ2)

−
∫ L

0
z′(t) ·

∫ L

t

d3[w](τ ) ∧
∫
�τ

dfe(s, ξ
1, ξ2) dτdt

−
∫ L

0
z′(t) ·

∫
�t

[
ξ1d1[w](τ )+ ξ2d2[w](τ )

]
∧ dfe(τ, ξ

1, ξ2) dt

− z(0) ·
∫
�

[
ξ1d1[w](t)+ ξ2d2[w](t)

]
∧ dfe(t, ξ

1, ξ2)

− z(0) ·
∫ L

0
d3[w](t) ∧

∫
�t

dfe(σ, ξ
1, ξ2) dt, (102)

for all
$
w= (

$
u,

$
r0,

$
α) ∈ Y , where z ∈ W 1,∞([0, L],R3) is given by (98), (99).

Proof. Recall that

Ĕs(
$
w) =

∫ L

0
W(u(s)+ $

u (s), s) ds, (103)

Ĕp(
$
w) = −

∫
�

(r̆[ $w](s)+ ξ1d̆1[ $w](s)+ ξ2d̆2[ $w](s)) · dfe(s, ξ
1, ξ2). (104)

Conditions (W1)–(W3) on W imply that Ĕs(.) is Fréchet-differentiable, and we
obtain (101) by standard arguments and (98). (Notice that the integral on the right-
hand side exists by (W3) and the fact that u ∈ Lp([0, L],R3).) We can differentiate

in (104) with respect to
$
w under the integral sign, because the integrand as well

as its Fréchet derivative have integrable majorants. Using (96)–(99) we obtain, for
$
w= (

$
u,

$
r0,

$
α) ∈ Y ,

Ĕ′
p(0)

$
w = −

∫
�

[
$
r0 +

∫ s

0
z(t) ∧ d3[w](t) dt

]
· dfe(s, ξ

1, ξ2)

−
∫
�

[
ξ1z(s) ∧ d1[w](s)+ ξ2z(s) ∧ d2[w](s)

]
· fe(s, ξ1, ξ2). (105)
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Applying Fubini’s Theorem and integrating by parts we calculate∫
�

∫ s

0
z(t) ∧ d3[w](t) dt · dfe(s, ξ

1, ξ2)

=
∫ L

0

[
z(t) ∧ d3[w](t)

]
·
∫
�t

dfe(s, ξ
1, ξ2) dt

=
∫ L

0
z(t) ·

[
d3[w](t) ∧

∫
�t

dfe(s, ξ
1, ξ2)

]
dt

= −
∫ L

0
z′(t) ·

∫ t

0
d3[w](τ ) ∧

∫
�τ

dfe(s, ξ
1, ξ2) dτ dt

+
[
z(t) ·

∫ t

0
d3[w](τ ) ∧

∫
�τ

dfe(s, ξ
1, ξ2)dτ

]t=L
t=0

= −
∫ L

0
z′(t) ·

∫ t

0
d3[w](τ ) ∧

∫
�τ

dfe(s, ξ
1, ξ2) dτ dt

+z(L) ·
∫ L

0
d3[w](τ ) ∧

∫
�τ

dfe(s, ξ
1, ξ2)dτ

= −
∫ L

0
z′(t) ·

∫ t

0
d3[w](τ ) ∧

∫
�τ

dfe(s, ξ
1, ξ2) dτ dt

+
[
z(0)+

∫ L

0
z′(t)

]
·
∫ L

0
d3[w](τ ) ∧

∫
�τ

dfe(s, ξ
1, ξ2) dτ dt

=
∫ L

0
z′(t) ·

∫ L

t

d3[w](τ ) ∧
∫
�τ

dfe(s, ξ
1, ξ2) dτ dt

+z(0) ·
∫ L

0
d3[w](τ ) ∧

∫
�τ

dfe(s, ξ
1, ξ2)dτ. (106)

Similarly, for i = 1, 2, we obtain∫
�

ξi(z(t) ∧ d i[w](t)) · dfe(t, ξ
1, ξ2)

=
∫
�

ξi
([

z(0)+
∫ t

0
z′(τ ) dτ

]
∧ d i[w](t)

)
· dfe(t, ξ

1, ξ2)

= z(0) ·
∫
�

ξ1d i[w](t) ∧ dfe(t, ξ
1, ξ2)

+
∫ L

0
z′(t) ·

∫
�t

ξ id i[w](s) ∧ dfe(s, ξ
1, ξ2) dt. (107)

Equations (105)–(107) satisfy (102). '(
Differentiability of g0,g1,g2,g3.

Lemma 11. For some sufficiently small δ > 0 (depending on the minimizer w) the
functions g0, gi, i = 1, 2, 3, given in (91)–(94) are continuously differentiable
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on Bδ(0) ⊂ Y with

g′0(0)
$
w = z(0) ∧

∫ L

0
d3[w](t) dt

+
∫ L

0
z′(t) ∧

∫ L

t

d3[w](τ ) dτ dt, (108)

g′1(0)
$
w =

∫ L

0
z′(t) · d03 dt, (109)

g′2(0)
$
w =

∫ L

0
z′(t) · d02 dt, (110)

g′3(0)
$
w = −

∫ L

0
z′(t) · d01 dt, (111)

where z ∈ W 1,∞([0, L],R3) is given by (98), (99).

Note that
∫ L

0 d3[w](t) dt in (108) in fact vanishes due to (46).

Proof. We use (97) to differentiate g0(.) in (91) and obtain

g′0(0)
$
w =

∫ L

0
z(t) ∧ d3[w](t) dt

= −
∫ L

0
z′(t) ∧

∫ t

0
d3[w](τ ) dτ dt

+
[
z(t) ∧

∫ t

0
d3[w](τ ) dτ

]t=L
t=0

= −
∫ L

0
z′(t) ∧

∫ t

0
d3[w](τ ) dτ dt + z(L) ∧

∫ L

0
d3[w](τ ) dτ

= −
∫ L

0
z′(t) ∧

∫ t

0
d3[w](τ ) dτ dt

+
[
z(0)+

∫ L

0
z′(t) dt

]
∧
∫ L

0
d3[w](τ ) dτ

=
∫ L

0
z′(t) ∧

∫ L

t

d3[w](τ ) dτ dt + z(0) ∧
∫ L

0
d3[w](t) dt, (112)

thus proving (108). Differentiating (92) we get

g′1(0)
$
w = (z(L) ∧ d1[w](L)) · (D1U(0))2 + d̆1[0](L) · (D1U

′(0) $
α)2

=
([

z(0)+
∫ L

0
z′(t) dt

]
∧ d11

)
· d12

+d11 · (D1D
−1
0 D0U

′(0) $
α)2. (113)
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To evaluate the last term we use (99) and notice that the matrix D1D
−1
0 is orthog-

onal; hence

d11 · (D1D
−1
0 D0U

′(0) $
α)2 = d11 · (D1D

−1
0 (D0U

′(0) $
α)2)

= d11 · (D1D
−1
0 (z(0) ∧ d02))

= ((D1D
−1
0 )−1d11) · (z(0) ∧ d02)

= (D0D
−1
1 d11) · (z(0) ∧ d02)

= d01 · (z(0) ∧ d02)

= z(0) · (d02 ∧ d01)

= −z(0) · d03. (114)

Inserting this into (113) leads to the desired formula (109) since d03 = d13. Similar
but simpler is the computation for g′2(0):

g′2(0)
$
w = (z(L) ∧ d3[w](L)) · (D0U(0))1 + d̆3[0](L) · (D0U

′(0) $
α)1

=
([

z(0)+
∫ L

0
z′(t) dt

]
∧ d13

)
· d01 + d03 · (D0U

′(0) $
α)1

=
([

z(0)+
∫ L

0
z′(t) dt

]
∧ d03

)
· d01 + d03 · (z(0) ∧ d01)

=
(∫ L

0
z′(t) dt ∧ d03

)
· d01 =

∫ L

0
z′(t) · d02. (115)

This shows (110), and (111) is proved in the same way. '(
Differentiability of g. We intend to compute the generalized gradient ∂g(0) by
the methods presented in Appendix B. In order to guarantee that the function g

is accessible to these methods we must show that g is Lipschitz continuous in a

neighbourhood of
$
w= 0, and for this the functions H(., ., .) and P [.](., .) have to

meet certain differentiability properties. This is the first and only instance where
we actually need the global curvature K[w] of the minimizer to be not attained
locally. For curves r satisfying (30) the global curvature K[r] can be character-
ized by a maximum over pairs of parameters in a well-defined compact subset of
[0, L] × [0, L] away from the diagonal; for the proof see [23] and our remark
concerning the set A[r] in Section 3.

Lemma 12. Let r be a curve with R[r] > 0, such that K[r] is not attained locally
and set

η(r) := 1−R[r] · ‖r ′′‖L∞
‖r ′′‖L∞ , (116)

Q = Q[r] := {(s, σ ) ∈ [0, L] × [0, L] : L− η(r) � s − σ � η(r)}. (117)

Then

(i) 0 < η(r) < L/(2π),
(ii) A[r] ∩Q �= ∅, i.e.,
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K[r] = max
(s,σ )∈Q

1

r(r(s), r(σ ), r ′(σ ))
, (118)

(iii) K[r] > (r(r(s), r(σ ), r ′(σ )))−1 for all (s, σ ) ∈ [0, L]2 such that (s, σ ) �∈ Q
and (σ, s) �∈ Q.

The key observation of Lemma 12 is that in this case the global curvature is char-
acterized by a maximum over a fixed set. It is important to notice that this charac-
terization is stable with respect to small variations in Y :

Lemma 13. Let w be a minimizing configuration for (45)–(50), such that K[w]
is not attained locally. Then there are constants δ > 0 and η̃ ∈ (0, L/2π) (both
depending on the minimizer w) such that

g(
$
w) = max

(s,σ )∈Q̃
H(P [ $w](s, σ ))− θ−2 for all

$
w∈ Bδ(0) ⊂ Y, (119)

where

Q̃ := {(s, σ ) ∈ [0, L] × [0, L] : L− η̃ � s − σ � η̃ }. (120)

In particular, A[r̆[ $w]] ⊂ Q̃ for all
$
w∈ Bδ(0).

Proof. By (78) of Lemma 5 and by Lemma 2 we know that K̆[.] and hence also
R̆[.] according to (29), are continuous on Y , i.e.,

K̆[ $w] → K̆[0] = K[w] and R̆[ $w] → R̆[0] = R[w] as ‖ $
w‖Y → 0. (121)

By virtue of (30), which holds for the minimizing configuration r[w], and by (48),
(29) we obtain

‖r̆ ′′[ $w]‖L∞ < K̆[ $w] � 2θ−1 for ‖ $
w‖Y sufficiently small. (122)

Consequently, Lemma 12 is applicable to r̆[ $w] for ‖ $
w ‖Y sufficiently small and,

by (118),

K̆[ $w] = max
(s,σ )∈Q[r̆ [$w]]

1

r(r̆[ $w](s), r̆[ $w](σ ), r̆ ′[ $w](σ ))
.

From (116) we see that
$
w �→ η(r̆[ $w]) is continuous near the origin in Y. Thus we

can assume that
L

2π
> η(r̆[ $w]) � 1

2
η(r̆[0]) = 1

2
η(r[w]) =: η̃

for all
$
w∈ Bδ(0) ⊂ Y, δ > 0 sufficiently small. Lemma 12 (iii) implies that

K̆[ $w] = max
(s,σ )∈Q̃

1

r(r̆[ $w](s), r̆[ $w](σ ), r̆ ′[ $w](σ ))
with Q̃ defined in (120). By (31), (85), (86) and (88) we finally obtain (119). By

the definition of η̃ and by Lemma 12 we see that A[r̆[ $w]] ⊂ Q̃ for all
$
w∈ Bδ(0).

'(
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Due to the characterization (119) of g we can apply the nonsmooth chain rule
proved in Proposition 2 of Appendix B to analyze the structure of the generalized
gradients ∂g(0). This leads to

Lemma 14. Let w be a minimizer of (45)–(50) such that K[w] is not attained lo-
cally. Then the function g as defined in (88) is Lipschitz continuous on Bδ(0) ⊂ Y

for some small δ > 0 depending on w, and ∂g(0) exists. Furthermore, for any
g∗ ∈ ∂g(0) there is a Radon measure µ∗ on [0, L]× [0, L] with nonempty support
on A[w] (see (33)) such that

〈g∗, $
w〉Y ∗×Y = −

∫ L

0
z′(t) ·

∫ L

t

d3(τ ) ∧ f ∗
c (τ ) dτ dt

− z(0) ·
∫ L

0
d3(t) ∧ f ∗

c (t) dt, (123)

where

f ∗
c (τ ) :=

∫
Qτ

r[w](s)− r[w](σ )
|r[w](s)− r[w](σ )| dµ

∗(s, σ ), (124)

Qτ := {(s, σ ) ∈ [0, L] × [0, L] : σ � τ � s} for τ ∈ [0, L]. (125)

Proof. We consider the representation (119) of g. To verify the assumptions
(a)–(c) of Proposition 2 we observe that the set T := Q̃ ⊂ R

2 is compact. We
set X := Y,U := Bδ(0) ⊂ Y for some sufficiently small δ > 0. Furthermore,
define p(., .) := P [.](.), G := H, and

N := BR(r0)× BR(r0)× Bδ̄(S
2)\{(x, y, t) ∈ [R3]3 : |x − y| < β} (126)

for δ̄, β > 0 sufficiently small, where BR(r0) ⊂ R
3 with

R � 2 diam r[w]. (127)

Note that then p(U, T ) ⊂ N.

According to Lemma 9 hypothesis (b) of Proposition 2 holds. (Note that r̆ ′[ $w]
= d̆3[ $w], to which Lemma 9 applies.) By (127) the set N is an open neighbour-

hood of the set P [Bδ(0)](Q̃), since r̆[ $w] is uniformly close to r[w] by Lemma 5

for small ‖ $
w‖Y and |r̆ ′[ $w]| = 1 on [0, L] by (81). Furthermore,

r̆[ $w](s) �= r̆[ $w](σ ) for all (s, σ ) ∈ Q̃,

because the diagonal is excluded in Q̃ and r̆[ $w] is simple for ‖ $
w ‖Y sufficiently

small, according to R̆[ $w] > 0 ; see (48), (121), and [10, Lemma 1].
The function H = H(x, y, t) as defined in (86) is continuously differentiable

on N with differential

H ′(x, y, t) · ($x, $y, $t )
= 8

|x − y|4
{
(
$
y − $

x)
[
((x − y) · t)t − |t |2(x − y) + 2|(x − y) ∧ t |2

|x − y|2 (x − y)
]

+ $
t ·

[
| x − y|2t − ((x − y) · t)(x − y)

]}
for

$
x,

$
y,

$
t∈ R

3, (128)
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where H ′ is bounded on N and thus satisfies (B.180). Hence we have verified
assumptions (a)–(c) and can apply Proposition 2, i.e., g is Lipschitz continuous

near
$
w= 0 and for any g∗ ∈ ∂g(0) there is a probability Radon measure µ̄ on Q̃

supported on A[w] ⊂ Q̃, such that

〈g∗, $
w〉Y ∗×Y =

∫
Q̃
H ′(P [0](s, σ )) · Pw[0](s, σ ) $

w dµ̄(s, σ ) (129)

for all
$
w∈ Y. Since we have to consider the integrand only on the support of µ̄, we

need to evaluate (128) merely for (x, y, t) = (r[w](s), r[w](σ ), r ′[w](σ )) with
(s, σ ) ∈ A[w].

The global curvature K[w] of the minimizer w is not attained locally, so we can
use (34) and (35) to obtain, for (s, σ ) ∈ A[w],

H ′(P [0](s, σ )) · ($x, $y, $t )
= 8

(2R[w])3

{
(
$
y − $

x) · r[w](s)− r[w](σ )
|r[w](s)− r[w](σ )|+

$
t ·r ′[w](σ )R[w]

}
.(130)

In (129) we have (
$
x,

$
y,

$
t ) = Pw[0](s, σ ) $

w for (s, σ ) ∈ A[w] and
$
w= (

$
u,

$
r0,

$
α)

∈ Y, which, by (85), (96) and (97), can be computed as

Pw[0](s, σ ) $
w =

(
$
r0 +

∫ s

0
z(t) ∧ d3[w](t) dt ,

$
r0 +

∫ σ

0
z(t) ∧ d3[w](t) dt, z(σ ) ∧ d3[w](σ )

)
. (131)

This leads to

〈g∗, $
w〉Y ∗×Y = − 1

R[w]3
∫
Q̃

r[w](s)− r[w](σ )
|r[w](s)− r[w](σ )|

·
∫ s

σ

z(t) ∧ d3[w](t) dt dµ̄(s, σ ) (132)

for g∗ ∈ ∂g(0),
$
w∈ Y. Let us extend the measure µ̄ from Q̃ to the triangle

Q̄ := {(s, σ ) ∈ [0, L] × [0, L] : s � σ } ⊃ Q̃

by zero, which we denote by µ̄ again. Then we can replace Q̃ with Q̄ in (132).
By Fubini’s Theorem and the special structure of the set Q̄, we can transform the
integral on the right-hand side in (132) further. We also use the notation given in
(124), (125) and µ∗ := R[w]−3µ̄ :
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〈g∗, $
w〉 = − 1

R[w]3
∫ L

0
z(t) ∧ d3[w](t) ·

∫
Qt

r[w](s)− r[w](σ )
|r[w](s)− r[w](σ )| dµ̄(s, σ ) dt

= −
∫ L

0
z(t) · (d3[w](t) ∧ f ∗

c (t)) dt

=
∫ L

0
z′(t) ·

∫ t

0
d3[w](τ ) ∧ f ∗

c (τ ) dτ dt

−
[
z(t) ·

∫ t

0
d3[w](τ ) ∧ f ∗

c (τ ) dτ

]t=L
t=0

=
∫ L

0
z′(t) ·

∫ t

0
d3[w](τ ) ∧ f ∗

c (τ ) dτ dt

−z(L) ·
∫ L

0
d3[w](τ ) ∧ f ∗

c (τ ) dτ

= −
∫ L

0
z′(t) ·

∫ L

t

d3[w](τ ) ∧ f ∗
c (τ ) dτ dt

− z(0) ·
∫ L

0
d3[w](t) ∧ f ∗

c (t) dt. (133)

This verifies (123). '(

Lagrange multiplier rule. By Lemma 8 we know that
$
w = 0 is a local minimizer

for the reduced variational problem (89)–(94). We are in the position to apply the
Lagrange multiplier rule, Proposition 1 (iii) in the appendix, to this variational prob-
lem, since the energy functions Ĕs, Ĕp and the constraints g,g0, gi, i = 1, 2, 3,
are Lipschitz continuous near 0 ∈ Y according to Lemmas 10, 11 and 14. Hence
there exist multipliers λE, λ � 0, λ0 ∈ R

3, λ1, λ2, λ3 ∈ R, not all zero, such that
by (B.178)

0 ∈ λE(Ĕ
′
s(0)+ Ĕ′

p(0))+ λ∂g(0)+ λ0 · g′0(0)+
3∑

i=1

λig
′
i (0) (134)

with

λg(0) = 0. (135)

In other words, there exists g∗ ∈ ∂g(0) ⊂ Y ∗, such that

0 =
〈
λE(Ĕ

′
s(0)+ Ĕ′

p(0))+ λ0 · g′0(0)+
3∑

i=1

λig
′
i (0),

$
w
〉
+ λ〈g∗, $

w〉 (136)

for all
$
w∈ Y.
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Choosing
$
w= (

$
u, 0, 0) ∈ Y, we have z(0) = 0 by (100) and

$
r0= 0.

Inserting the expressions (101), (102), (108)–(111) and (123) into (136) and
using (18) we thus arrive at

0 = λE

[∫ L

0
z′(t) · m̂(u(t), t) dt

−
∫ L

0
z′(t) ·

∫ L

t

d3[w](τ ) ∧
∫
�τ

dfe(s, ξ
1, ξ2) dτ dt

−
∫ L

0
z′(t) ·

∫
�t

[ξ1d1[w](τ )+ ξ2d2[w](τ )] ∧ dfe(τ, ξ
1, ξ2) dt

]

+
∫ L

0
z′(t) ·

(∫ L

t

d3[w](τ ) ∧ λ0 dτ

)
dt

+ λ1

∫ L

0
z′(t) · d03 + λ2

∫ L

0
z′(t) · d02 − λ3

∫ L

0
z′(t) · d01

− λ

∫ L

0
z′(t) ·

∫ L

t

d3[w](τ ) ∧ f ∗
c (τ ) dτ dt (137)

for all
$
u∈ L∞([0, L],R3). Recall that

$
u uniquely determines z′ by (98), and no-

tice that z′ can be any function in L∞([0, L],R3) by a suitable choice of
$
u∈

L∞([0, L],R3). Thus the Fundamental Lemma of the calculus of variations im-
plies the Euler-Lagrange equation (51) by means of the notation f 0 := λ0, m0 :=
λ1d03 + λ2d02 − λ3d01, and µ := λµ∗. If R[w] > θ in (48), i.e., if g(0) < 0 in
(90), then by (135), λ = 0, hence µ = 0. Notice that µ∗ has nonempty support in
A[w], but λ can vanish even if R[w] = θ.

Now we take variations
$
w= (0,

$
r0, 0) ∈ Y in (136). Thus z′ = 0 a.e. on [0, L]

and z(0) = 0, and we find by (101), (102), (108)–(111), (123) that

0 = λE

∫
�

dfe(t, ξ
1, ξ2),

which is (52). Finally we consider variations
$
w= (0, 0,

$
α) ∈ Y in (136). Note that

for any vector x ∈ R
3, there exists

$
α∈ R

3, such that x = z(0), where z(0) is given
by (99), since dk[w](0), k = 1, 2, 3, furnish an orthonormal basis of R

3; see the
remark immediately following the proof in Appendix A. Thus

0 =
∫ L

0
d3[w](t) ∧

[
f 0 − f c(t)− λE

∫
�t

dfe(s, ξ
1, ξ2)

]
dt,

−λE
∫
�

[ξ1d1[w](t)+ ξ2d2[w](t)] ∧ dfe(t, ξ
1, ξ2),

which is (53).
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Before finishing the proof of Theorem 1 we first prove Corollary 1.

Proof of Corollary 1. Set

Rτ := {(s, σ ) ∈ [0, L]2 : s � τ },
Sτ := {(s, σ ) ∈ [0, L]2 : σ > τ }.

Let π1(s, σ ) := s and π2(s, σ ) := σ be projection operators on [0, L]2, and for
Borel sets A ⊂ [0, L] define the push-forwards

µ1(A) := µ(π−1
1 (A)), µ2(A) := µ(π−1

2 (A)),

which are Radon measures on [0, L] (cf. [1, p. 32]). By [1, Theorem 2.28] there
exist Radon measures µ1

s , µ
2
σ on [0, L], s, σ ∈ [0, L], such that s �→ µ1

s (A) is
µ1-measurable and σ �→ µ2

σ (A) is µ2-measurable for all Borel sets A ⊂ [0, L],
and such that for all τ ∈ [0, L]

∫
Rτ

F (s, σ ) dµ(s, σ ) =
∫ L

τ

∫ L

0
F(s, σ ) dµ1

s (σ )dµ
1(s),

∫
[0,L]2\Sτ

F (s, σ ) dµ(s, σ ) =
∫ τ

0

∫ L

0
F(s, σ ) dµ2

σ (s)dµ
2(σ ).

Hence

f c(τ ) =
∫
Rτ \Sτ

F (s, σ ) dµ(s, σ )

=
∫ L

τ

∫ L

0
F(s, σ ) dµ1

s (σ )dµ
1(s)−

∫
[0,L]2

F(s, σ ) dµ(s, σ )

+
∫ τ

0

∫ L

0
F(s, σ )dµ2

σ (s)dµ
2(σ ), (138)

where we used the fact that suppµ ⊂ A[w] ⊂ {(s, σ ) : σ < s}.
Since s �→ ∫ L

0 F(s, σ )dµ1
s (σ ) is µ1-measurable and σ �→ ∫ L

0 F(s, σ )dµ2
σ (s)

is µ2-measurable (cf. [1, Theorem 2.28]), the function f c belongs to the space
BV ([0, L],R3), and such functions are bounded. From (138) we readily obtain
(ii), and by taking the inner product of (60) with r ′[w](τ ) we obtain (61).

By the Lebesgue Decomposition Theorem (cf. [7, p. 42]) there are nonnega-
tive functions α1, α2 ∈ L1([0, L]), representing the absolutely continuous part of
µ1, µ2, such that differentiation of (138) implies

f ′
c(τ ) = −α1(τ )

∫ L

0
F(τ, σ ) dµ1

τ (σ )+ α2(τ )

∫ L

0
F(s, τ ) dµ2

τ (s)

for a.e. τ ∈ [0, L]. Since F(s, τ ) = −F(τ, s), we use the nonnegative measure

µτ := α1(τ )µ1
τ + α2(τ )µ2

τ , τ ∈ [0, L],
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to obtain

f ′
c(τ ) = −

∫ L

0
F(τ, σ ) dµτ (σ ) for a.e. τ ∈ [0, L]. (139)

Taking the inner product of (139) with r ′[w](τ ) and using (35) we obtain (62).
For the proof of (v) we have to show that the mapping τ �→ f c(τ ) · r ′[w](τ )

is Lipschitz continuous on [0, L]. For t, τ ∈ [0, L] we have

|f c(t) · d3[w](t)− f c(τ ) · d3[w](τ )| � |d3[w](t)− d3[w](τ )||f c(t)|
+|(f c(t)− f c(τ )) · d3[w](τ )|. (140)

By Lemma 5, d3[w] ∈ W 1,∞([0, L],R3), i.e., it is Lipschitz continuous, and f c

is bounded according to assertion (i). Thus it remains to be shown that the second
term on the right-hand side is Lipschitz continuous. For t > τ , using |F(s, σ )| = 1,
we can estimate

|(f c(t)− f c(τ )) · d3[w](τ )|
=
∣∣∣ ∫

Qt−Qτ

F (s, σ ) · d3[w](τ ) dµ(s, σ )−
∫
Qτ−Qt

F (s, σ ) · d3[w](τ ) dµ(s, σ )
∣∣∣

�
∫
Qt−Qτ

|d3[w](τ )− d3[w](σ )| dµ(s, σ )+
∫
Qt−Qτ

|F(s, σ ) · d3[w](σ )| dµ(s, σ )

+
∫
Qτ−Qt

|d3[w](τ )− d3[w](s)| dµ(s, σ )+
∫
Qτ−Qt

|F(s, σ ) · d3[w](s)| dµ(s, σ ).

The second and fourth term on the right-hand side vanish by (35) and each of the two
other terms is bounded from above by lµ([0, L]2)|t − τ |, where l is the Lipschitz
constant for d3[w]. This together with (140) implies (v). '(
Transversality. We finish the proof of Theorem 1. We will show that λE = 0 in
(51)–(53) leads to a contradiction if one of the transversality conditions (a), (b) or
(c) holds. Thus λE > 0 in these cases and, by normalization, λE = 1.

If λE = 0, then (51) leads to

m0 +
∫ L

s

d3[w](t) ∧ (f 0 − f c(t)) dt = 0 for a.e. s ∈ [0, L]. (141)

Differentiating (141) leads to

d3[w](s) ∧ (f 0 − f c(s)) = 0 for a.e. s ∈ [0, L], (142)

and by (141),

m0 = 0. (143)

We infer from (142) that

f c(s) = b(s)d3[w](s)+ f 0 for a.e. s ∈ [0, L], (144)

where b ∈ BV ([0, L]), since f c ∈ BV ([0, L],R3). The only possible type of
discontinuity of f c (and hence of b) could be a jump discontinuity. Assume that
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[f c](s0) �= 0 for some s0 ∈ SL (recall the notation in (60)). The identity (144)
implies

f c(s0+) = b(s0+)d3[w](s0), (145)

f c(s0−) = b(s0−)d3[w](s0). (146)

Subtracting (146) from (145) leads to

[f c](s0) = [b](s0)d3[w](s0),

contradicting (61) of Corollary 1. Hence f c and b must be continuous, and the
identity (144) holds everywhere on [0, L]. Moreover, by Corollary 1, part (v), we
know that f = f c · d3[w] is of class W 1,∞([0, L]), so that b is also, by (144).
Consequently also f c ∈ W 1,∞([0, L],R3), and we can take derivatives in (144)
to get

f ′
c(s) = b′(s)d3[w](s)+ b(s)d ′3[w](s) for a.e. s ∈ SL. (147)

From (62) in Corollary 1 and by d3[w](s) · d ′3[w](s) = 0 we infer that

b(s) ≡ b0 = const. on [0, L]. (148)

Thus

f ′
c(s) = b0d

′
3[w](s) a.e. on SL. (149)

Now we are in the position to investigate the different transversality conditions
(a)–(c) stated in Theorem 1. We first treat (a). Applying (60) and using the fact that
there is an isolated pair (s, σ ) ∈ suppµ in the sense of (56), we find a constant
β �= 0, such that

[f c](s) = β
r[w](s)− r[w](σ )
|r[w](s)− r[w](σ )| , (150)

contradicting the continuity of f c, which we just proved. In other words, λE �= 0
in this case.

In case (b) we notice that the assumption (57) implies that[
(J × [0, L]) ∪ ([0, L] × J )

]
∩ suppµ = ∅.

For any t1, t2 ∈ J with t1 < t2, we thus obtain by (54) (using the notation
introduced in (59)),

f c(t1)− f c(t2) =
∫
Qt1

F(s, σ ) dµ(s, σ )−
∫
Qt2

F(s, σ ) dµ(s, σ )

=
∫
Qt1−Qt2

F(s, σ ) dµ(s, σ )−
∫
Qt2−Qt1

F(s, σ ) dµ(s, σ ) = 0.

Hence f c is constant on J , i.e.,

f ′
c ≡ 0 on J. (151)
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From (149) we get

0 = b0d
′
3[w] a.e. on J. (152)

The case b0 �= 0 contradicts our assumption that d3[w](s) is not constant on J .
Thus b0 = 0 and, by (144), f c(s) = f 0 on [0, L].According to Lemma 15 below,
this implies that µ is the zero measure and hence f 0 = 0. Thus, since λ0 = f 0,

all Lagrange multipliers vanish, which is impossible. Consequently, b0 = 0 also
leads to a contradiction, and thus λE �= 0 in case (b).

In case (c) we infer from (149) that

f ′
c(τ ) = b0r

′′[w](τ ) for a.e. τ ∈ [0, L],
because f c ∈ W 1,∞([0, L],R3). Now use part (iii) of Corollary 1 to conclude a
contradiction at the parameter s, where

r ′′[w](s) �∈ conv ({ρ(r[w](s)− r[w](σ )) : ρ > 0, (s, σ ) ∈ suppµ}). '(
Lemma 15. If f c = const. on [0, L], then µ = 0.

Proof. Since f c is constant, we infer from (54) (where F is defined in (59)) that
for every τ ∈ [0, L],∫

Qτ+ε
F (s, σ ) dµ(s, σ ) =

∫
Qτ−ε

F (s, σ ) dµ(s, σ ) for all ε > 0,

which implies by (55) for all τ ∈ [0, L], ε > 0, that∫
Q1

τ,ε

F (s, σ ) dµ(s, σ ) =
∫
Q2

τ,ε

F (s, σ ) dµ(s, σ ). (153)

Here we have set

Q1
τ,ε := [τ + ε, L] × (τ − ε, τ + ε] and Q2

τ,ε := [τ − ε, τ + ε)× [0, τ − ε].
Assuming thatµ �= 0, we find a point (s0, σ0) ∈ suppµ; hence (s0, σ0) ∈ Q2

s0,ε
for

all sufficiently small ε > 0 by definition of the set A[r] in (33) containing suppµ.
Thus, by the continuity of F , there exists a small radius r > 0 such that for all
ε > 0, ∫

Q2
s0,ε

∩Br((s0,σ0))

F (s, σ ) dµ(s, σ ) �= 0.

This together with (153) for τ := s0 leads to∫
Q1

s0,ε

F (s, σ ) dµ(s, σ )−
∫
Q2

s0,ε
\Br((s0,σ0))

F (s, σ ) dµ(s, σ ) �= 0.

Consequently, for each ε > 0 we either find (tε1 , t
ε
2 ) ∈ Q1

s0,ε
∩ suppµ, or (σ ε

1 , σ
ε
2 ) ∈

(Q2
s0,ε
\Br((s0, σ0))) ∩ suppµ. Since suppµ is closed, we can let ε → 0 to obtain

either
(t1, t2) ∈ ([s0, L] × {s0}) ∩ suppµ,
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in which case we set s1 := t1, or

(σ1, σ2) ∈ (({s0} × [0, s0])\Br((s0, σ0))) ∩ suppµ,

in which case we set s1 := σ2. (Note that s1 �= s0 in either case since suppµ stays
away from the diagonal according to our remark after (33); compare also Lemmas
12 and 13.) In any case, we have by (34)

|r(s1)− r(s0)| = 2θ. (154)

Moreover, we can use (153) for τ := s1, i.e., for every ε > 0 we obtain∫
Q1

s1,ε

F (s, σ ) dµ(s, σ ) =
∫
Q2

s1,ε

F (s, σ ) dµ(s, σ ). (155)

We fix ε > 0 and distinguish two cases:

Case I. If for all (τ1, τ2) ∈ Q2
s1,ε

∩ suppµ

F(τ1, τ2) · (r(s1)− r(s0)) > 0,

then ∫
Q2

s1,ε

F (s, σ ) · (r(s1)− r(s0)) dµ(s, σ ) > 0,

which implies by (155) that also∫
Q1

s1,ε

F (s, σ ) · (r(s1)− r(s0)) dµ(s, σ ) > 0.

Hence we find a point (tε3 , t
ε
4 ) ∈ Q1

s1,ε
∩ suppµ such that F(tε3 , t

ε
4 ) · (r(s1)−r(s0))

> 0, i.e.,

F(tε4 , t
ε
3 ) · (r(s1)− r(s0)) < 0. (156)

Case II. There is some point (tε5 , t
ε
6 ) ∈ Q2

s1,ε
∩ suppµ with

F(tε5 , t
ε
6 ) · (r(s1)− r(s0)) � 0. (157)

As before, using the fact that suppµ is closed we can let ε → 0 to obtain either

(t3, t4) ∈ ([s1, L] × {s1}) ∩ suppµ,

in which case we set s2 := t3, or

(t5, t6) ∈ ({s1} × [0, s1]) ∩ suppµ,

in which case we set s2 := t6. (Note again that s2 �= s1 in either case since suppµ
stays away from the diagonal.)

In any case, (156) or (157) and the continuity of F imply that

F(s1, s2) · (r(s1)− r(s0)) � 0,
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which by (154) and elementary geometric arguments leads to

|r(s2)− r(s0)| �
√
(2θ)2 + |r(s1)− r(s0)|2 = 2θ

√
2. (158)

Now we can proceed in the same manner (starting with the identity (155) with s1
replaced by s2) to obtain a sequence of points {si} ⊂ [0, L] satisfying the analogue
of (158), i.e.,

|r(si+1)− r(s0)| �
√
(2θ)2 + |r(si)− r(s0)|2 � 2θ

√
i + 1. (159)

Hence we have a divergent sequence of curve points r(si) as i → ∞ which is
absurd, since r([0, L]) is bounded. Consequently, our assumption of a nonempty
support for µ was wrong. '(

5.2. Further proofs

Proof of Corollary 2. We set λE = 1 in (51) due to transversality. The terms in-
volving the external force fe are of class BV ([0, L],R3). This implies that m ∈
BV ([0, L],R3). If, in addition, (63) holds for fe, then we may use Fubini’s Theorem
to write ∫

�s

[ξ1d1[w](t)+ ξ2d2[w](t)] ∧ dfe(t, ξ
1, ξ2)

=
∫ L

s

d1[w](t) ∧
∫
D

ξ1φe(t, ξ
1, ξ2) dµ̄(ξ1, ξ2) dt

+
∫ L

s

d2[w](t) ∧
∫
D

ξ2φe(t, ξ
1, ξ2) dµ̄(ξ1, ξ2) dt, (160)

and similarly ∫
�s

dfe(t, ξ
1, ξ2) =

∫ L

s

φe(t, ξ
1, ξ2) dµ̄(ξ1, ξ2) dt. (161)

The terms on the right-hand side of (160) and (161) are absolutely continuous, which
is also the case for all the other terms present in (51); hence m ∈ W 1,1([0, L],R3)

with (64). If φe is bounded, we get m ∈ W 1,∞([0, L],R3), since also f c is uni-
formly bounded on SL by Lemma 1, part (i). '(
Proof of Corollary 3. Note that, sincem ∈ BV ([0, L],R3),we getWui (u(.), .) =
m·d i[w] ∈ BV ([0, L]) for i = 1, 2, 3.By the Implicit Function Theorem we obtain
(first locally and, by uniqueness, then globally)

u(.) = û(Wu1(u(.), .),Wu2(u(.), .),Wu3(u(.), .), .),

where û is a continuously differentiable vector function in its four entries; hence
u ∈ BV ([0, L],R3). Now (4) implies that D′[w] ∈ BV ([0, L],R3×3). In partic-
ular, D′[w] ∈ L∞([0, L],R3×3), and thus D[w] ∈ W 1,∞([0, L],R3×3). Finally,
r ′′[w] = d ′3[w] ∈ BV ([0, L],R3) ∩ L∞([0, L],R3) by (3). '(
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Proof of Corollary 4. By Corollary 2 we know that m ∈ W 1,∞([0, L],R3). This
implies in a first step that Wui (u(.), .) = m · d i[w] ∈ W 1,p([0, L]) for i =
1, 2, 3. By the Implicit Function Theorem we find that u ∈ W 1,p([0, L],R3); hence
D ∈ W 2,p([0, L],R3×3) by (4). This in turn gives Wui (u(.), .) = m · d i[w] ∈
W 1,∞([0, L]) for i = 1, 2, 3 leading to u ∈ W 1,∞([0, L],R3). Again by (4),
D[w] ∈ W 2,∞([0, L],R3×3); hence r[w] ∈ W 3,∞([0, L],R3). '(
Proof of Corollary 5. By Corollary 2, m ∈ W 1,∞([0, L],R3),which implies that

m̃(s) := Wu(u(s), s) = C(s)(u(s)− uo(s)) (162)

is of class W 1,p([0, L],R3). Since C is uniformly positive-definite on [0, L], and
hence invertible with inverseC−1 ∈ Lr([0, L],R3×3), we can invert (162) to obtain

u(s) = C−1(s)m̃(s)+ uo(s), (163)

from which we deduce that u ∈ Lr([0, L],R3). Then (4) implies that D ∈
W 1,r ([0, L],R3), r[w] ∈ W 2,r ([0, L],R3). Property (ii) follows from (163) in
the same way. In a first step we obtain u ∈ W 1,p([0, L],R3), which leads to D ∈
W 2,p([0, L],R3×3) by (4). NowWui (u(.), .) = m·d i[w] ∈ W 1,∞([0, L],R3), i =
1, 2, 3, and (162) again gives u ∈ W 1,∞([0, L],R3). The regularity for D[w] and
r[w] follows from (4). '(

Appendix A. Fréchet derivatives of the directors

According to Lemma 9, the mappings (
$
w, s) �→ d̆k[ $w](s), k = 1, 2, 3, are

continuously differentiable on Bδ(0)× [0, L] and thus

∂wd̆k[.](.) ∈ C0(Bδ(0)× [0, L],L(Y,R3)), k = 1, 2, 3, (A.164)

where L(Y,R3) denotes the space of continuous linear mappings from Y to R
3. In

the following we give an explicit characterization of this derivative.

Lemma 16. Let z ∈ W 1,∞([0, L],R3) be the function

z(s) = z(0)+
∫ s

0

3∑
i=1

$
u i(τ )d i[w](τ ) dτ, (A.165)

where z(0) is uniquely determined by

z(0) ∧ dk[w](0) = (D0U
′(0) $

α)k. (A.166)

Then

∂wd̆k[0](s) $
w= z(s) ∧ dk[w](s), k = 1, 2, 3, (A.167)

for all
$
w= (

$
u,

$
r0,

$
α) ∈ Y, s ∈ [0, L]. In particular, z(0) = 0 for

$
w= (

$
u ,

$
r0 , 0 ) ∈

Y.
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Proof. The tangent space of SO(3) at the identity is given by the set of skew
symmetric matrices so(3) := {C ∈ R

3×3 |CT = −C}; see [11, vol. II, Chapter
17]. Since we know by Lemma 9 that D̆[.](s) := (d̆1[.](s)|d̆2[.](s)|d̆3[.](s)) is
continuously differentiable on Bδ(0) ⊂ Y, we may look at the Fréchet derivative
∂wR[.](s) of the function

R[.](s) := D̆[.](s)(D[w](s))−1 : Bδ(0) ⊂ Y −→ SO(3)

for arbitrary fixed s ∈ [0, L]. Notice that R[0](s) = Id ∈ SO(3) and that ∂wR[0](s)
is a linear mapping of Y into so(3). Hence

∂wR[0](s) = ∂wD̆[0](s)(D[w](s))−1

is a linear mapping of Y into so(3). By postmultiplying this equation with D[w](s),
we obtain, for each

$
w∈ Y ,

∂wD̆[0](s) $
w= C(s)D[w](s), for C(s) := ∂wR[0](s) $

w ∈ so(3). (A.168)

The skew symmetric matrix C(s) is determined by three coefficients z(s) =
(z1(s), z2(s), z3(s)) ∈ R

3, depending on
$
w, via

C(s) =

 0 −z3(s) z2(s)

z3(s) 0 −z1(s)

−z2(s) z1(s) 0


 for s ∈ [0, L], (A.169)

which allows (A.168) to be expressed in terms of the columns of D[w](s):

∂wd̆k[0](s) $
w = z(s) ∧ dk[w](s). (A.170)

It remains to examine how z depends on
$
w. For this reason we differentiate (A.170)

with respect to s, which we may do by [22, Corollary 2.2] to get

d

ds
∂wd̆k[0](s) $

w = z′(s) ∧ dk[w](s)+ z(s) ∧ d ′k[w](s)

= z′(s)∧dk[w](s)+ z(s)∧
([ 3∑

i=1

ui(s)d i[w](s)
]
∧ dk[w](s)

)

= z′(s)∧dk[w](s)+
(

z(s) ∧
[ 3∑
i=1

ui(s)d i[w](s)
])

∧ dk[w](s)

+
[

3∑
i=1

ui(s)d i[w](s)
]
∧ (z(s) ∧ dk[w](s)) . (A.171)

On the other hand, [22, Corollary 2.2] tells us that

d

ds
∂wd̆k[0](s) $

w= ∂wd̆k
′[0](s) $

w . (A.172)
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With the notation

h[ $w](s) :=
3∑

i=1

(ui(s)+ $
u i(s))d̆ i[ $w](s),

(81) and (A.170) imply that

∂wd̆k
′[0](s) $

w =
(4)

∂wh[0](s) $
w ∧dk[w](s)+ h[0](s) ∧ ∂wd̆k[0](s) $

w

=
(A.170)

∂wh[0](s) $
w ∧dk[w](s) (A.173)

+
[

3∑
i=1

ui(s)d i[w](s)
]
∧
(
z(s) ∧ dk[w](s)

)
.

By (A.171)–(A.173) we conclude that for k = 1, 2, 3,

z′(s) ∧ dk[w](s) =
[
∂wh[0](s) $

w − z(s) ∧
3∑

i=1

ui(s)d i[w](s)
]
∧ dk[w](s).

(A.174)

Now using the product rule and (A.170) we deduce that

∂wh[0](s) $
w =

3∑
i=1

$
u i(s)d i[w](s)+

3∑
i=1

ui(s)∂wd̆ i[0](s) $
w

=
(A.170)

3∑
i=1

$
u i(s)d i[w](s)+ z(s) ∧

3∑
i=1

ui(s)d i[w](s).

Inserting this into (A.174) we arrive at the identity

z′(s) =
3∑

i=1

$
u id i[w](s),

since {dk[w](s)}3k=1 furnishes an orthonormal basis of R
3, which immediately im-

plies (A.165).

To compute the dependence of the initial value z(0) on
$
w we first evaluate

(A.167) at s = 0 :

∂wd̆k[0](0) $
w= z(0) ∧ dk[w](0), k = 1, 2, 3. (A.175)

Now we differentiate the identity d̆k[w](0) = (D0U(
$
α))k (cf. (81)), and obtain

∂wd̆k[0](0) $
w= (D0U

′(0) $
α)k, k = 1, 2, 3. (A.176)

Equations (A.175), (A.176) imply the initial condition (A.166) which uniquely de-

termines z(0) by
$
w, since dk[w](0), k = 1, 2, 3, is an orthonormal basis for R

3.

For
$
w= (

$
u,

$
r0, 0) ∈ Y, i.e., for

$
α= 0, we readily get z(0) = 0. '(
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Remark. If z is expressed by means of the matrix C defined in (A.169), then
(A.166) can be written as

C(0) = D0U
′(0) $

α D−1
0 .

Since the derivative U ′(0) is invertible, we obtain

U ′(0)−1
[
D−1

0 C(0)D0

]
= $

α, (A.177)

which implies that for any given vector x ∈ R
3, there is an

$
α∈ R

3 such that
x = z(0), where z(0) determines C(0) via (A.169).

Remark. For α ∈ R
3 we have the explicit representation

U(α) = Id + sin |α|
|α| C(α)+ 1− cos |α|

|α| C(α)2,

where

C(α) :=

 0 −α3 α2

α3 0 −α1
−α2 α1 0


 for α =


α1
α2
α3


 .

Hence U ′(0) : R
3 → so(3), (where so(3) is the tangent space of SO(3) at the

identity consisting of the skew matrices in R
3×3) is given by

U ′(0) $
α= C(

$
α) for all

$
α∈ R

3,

which has an obvious inverse U ′(0)−1 : so(3)→ R
3.

Appendix B. Clarke’s generalized gradients

Here we summarize some basic properties of Clarke’s generalized gradients for
locally Lipschitz continuous functions, and we derive a special chain rule necessary
for our analysis. For a more comprehensive presentation of this nonsmooth calculus
we refer the reader to Clarke’s monograph [4].

Consider a locally Lipschitz continuous function f : X → R, where X is a

real Banach space. The generalized directional derivative f 0(w; $
w) of f at w ∈ X

in the direction
$
w∈ X is defined as

f 0(w; $
w) := lim sup

v→w
t↘0

f (v + t
$
w)− f (v)

t
.

The mapping
$
w �→ f 0(w; $

w) is positively homogeneous and subadditive, and sat-

isfies |f 0(w; $
w)| � lf ‖ $

w ‖X, where lf denotes the local Lipschitz constant of f
near w ∈ X.
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The generalized gradient ∂f (w) of f at w is the subset of X∗ given by

∂f (w) := {f ∗ ∈ X∗ : 〈f ∗, $
w〉X∗×X � f 0(w; $

w) for all
$
w∈ X};

∂f (w) is a nonempty, bounded, convex and weak∗-compact subset of X∗. For con-
tinuously differentiable functions f the generalized gradient ∂f (w) is the singleton
{f ′(w)}, whereas for convex functions f the set ∂f (w) is the usual subdifferential
of convex analysis. For our purposes we need the following additional properties
of the generalized gradients:

Proposition 1. Let f, g, gi, i = 0, . . . , n be Lipschitz continuous near w ∈ X.

Then the following hold:

(i) ∂(αf )(w) = α∂f (w) for all α ∈ R;
(ii) ∂

∑n
i=0 gi(w) ⊂

∑n
i=0 ∂gi(w).

(iii) (Lagrange Multiplier Rule) Let w be a local minimizer of f subject to the
restrictions g(v) � 0 and gi(v) = 0, i = 0, . . . , n. Then there exist constants
λf , λ � 0, and λi ∈ R, not all zero, such that

0 ∈ λf ∂f (w)+ λ∂g(w)+
n∑

i=0

λi∂gi(w), (B.178)

and λg(w) = 0.

In our analysis we have to deal with functions of the form

g(w) := max
t∈T G(p(w, t)), w ∈ X. (B.179)

We assume that

(a) T is a metrizable sequentially compact topological space.
(b) The map p : U × T → R

n, where U ⊂ X is open and bounded, satisfies
• p(., t) is continuously differentiable on U for each t ∈ T ;
• pw(., .) is continuous on U × T ;
• p(w, .) is continuous on T for all w ∈ U.

(c) G : N → R, where N ⊂ R
n is an open neighbourhood of the set p(U, T ) ⊂

R
n, is continuously differentiable, and there is a constant C � 0, such that

|G′(x)| � C for all x ∈ N. (B.180)

Since T is compact, the function g is well defined, and

A(w) := {t ∈ T : g(w) = G(p(w, t))} (B.181)

is a nonempty closed subset of T .

Proposition 2. Suppose that (a)–(c) are satisfied. Then g is locally Lipschitz con-
tinuous on U , and for each g∗ ∈ ∂g(w),w ∈ U, there is a probability Radon
measure µ on T supported on A(w), such that

〈g∗, $
w〉X∗×X =

∫
T

G′(p(w, t)) · pw(w, t) $
w dµ(t) for all

$
w∈ X. (B.182)
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Proof. Fix w0 ∈ U. Since pw(., .) is continuous and T is compact, we can find a
neighbourhoodU0 ⊂ U ofw0 such thatp(., t) is Lipschitz continuous onU0 for all
t ∈ T with a Lipschitz constant independent of t ∈ T (compare [18, Lemma 6.9]).
G(.) is Lipschitz continuous with Lipschitz constant C on N by (B.180). Thus
G(p(., t)) is Lipschitz continuous on U0 with a uniform constant with respect to
t ∈ T . Furthermore, for each t ∈ T , the function G(p(., t)) is continuously differ-
entiable on U0, and the derivative G′(p(w, t)) ·pw(w, t) is continuous on U0 × T .

The continuous function G(p(w, .)) is bounded on the compact set T . Thus we can
apply [4, Theorem 2.8.2, Corollary 2] to get the assertion. Note that the continu-
ous derivative of a function agrees with its strict derivative introduced and used in
[4, p. 30, 31]. '(
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