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Abstract The attractive and spacing interaction between pairs of filaments via
cross-linkers, e.g. myosin oligomers connecting actin filaments, is modeled by global
integral kernels for negative binding energies between two intersecting stiff and long
rods in a (projected) two-dimensional situation, for simplicity. Whereas maxima of the
global energy functional represent intersection angles of ‘minimal contact’ between
the filaments, minima are approached for energy values tending to —oo, represent-
ing the two degenerate states of parallel and anti-parallel filament alignment. Stan-
dard differential equations of negative gradient flow for such energy functionals show
convergence of solutions to one of these degenerate equilibria in finite time, thus
called ‘super-stable’ states. By considering energy variations under virtual rotation or
translation of one filament with respect to the other, integral kernels for the result-
ing local forces parallel and orthogonal to the filament are obtained. For the special
modeling situation that these variations only activate ‘spring forces’ in direction of
the cross-links, explicit formulas for total torque and translational forces are given
and calculated for typical examples. Again, the two degenerate alignment states are
locally ‘super-stable’ equilibria of the assumed over-damped dynamics, but also other
stable states of orthogonal arrangement and different asymptotic behavior can occur.
These phenomena become apparent if stochastic perturbations of the local force ker-
nels are implemented as additive Gaussian noise induced by the cross-link binding
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process with appropriate scaling. Then global filament dynamics is described by a cer-
tain type of degenerate stochastic differential equations yielding asymptotic station-
ary processes around the alignment states, which have generalized, namely bimodal
Gaussian distributions. Moreover, stochastic simulations reveal characteristic sliding
behavior as it is observed for myosin-mediated interaction between actin filaments.
Finally, the forgoing explicit and asymptotic analysis as well as numerical simulations
are extended to the more realistic modeling situation with filaments of finite length.
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1 Introduction

Contact avoidance of a closed curve I' in three-dimensional space (like a cyclic
polymer, for example, certain modified DNA strands) can be modeled by defining
a global knot energy. According to [20, Def. 1.1], a real-valued functional on the
space of knots is called a knot energy, if it is bounded from below and self-repulsive,
i.e. blows up on sequences of embedded curves converging to a curve with a self-
intersection. A large family of knot energies may be represented by global integrals of
the form

£r = [ [ ey () = 7.7 .7 ) 1G.5). 0
rr

Here y : I — I' C R? denotes a suitable curve parametrization with arc length
coordinate s € I := L -S!, such that ly’(s)| = 1 and L is the curve length. Moreover,
1 describes a certain measure on / x I as, for example, the simple product measure
ds - ds. The positive integral kernel, H,.,, describes the repulsive energy between
points ¥ (s) and y (5) distant along the curve (with s # §), growing to infinity when
these two points approach each other. Thus, the global knot energy Er models mutual
repulsion between different parts of the curve. Minimization of such energy functionals
may lead to simple circles or, depending on the knot class, to so-called ‘ideal knots’,
which represent states of maximal ‘distance’ or minimal ‘contact’ between curve
parts [19,26,28]. Though existence and regularity of minimizers have been proven for
certain classes of knot energies [4,6,8,23,24,29], analytical treatment and a thorough
numerical simulation of corresponding dynamical gradient flow systems are rare, see
[5,9,15].

When considering the contrary case of mutual attraction between two, not neces-
sarily closed curves I" and T, the obvious idea is to just reverse the sign in the energy
integral (1) and define H = —H,,), as the integral kernel of a corresponding global
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interaction energy

EZEI‘,FZ/
r

However, under the analogous conditions mentioned above for the repulsive kernels,
minimization of this global interaction energy will occur for E — —o00, namely if the
two curves tend to contact each other, so that locally the integrand H (z, 6, 5) grows
towards infinitely large negative values for a vanishing distance vector z = y — y. For
most of the used model kernels, the type of singularity that occurs in the contact limit,
depends on the relation between the two local tangent vectors 6 = y’ and 6 = 7'.
In general, the dynamic properties of the resulting negative gradient flow for E in (2)
would correspond to a reversed positive gradient flow for the repulsive knot energy
Ey¢p in (1), and one might expect energy blow-up in finite time.

In the following prototypical case study we want to explain and quantitatively
characterize such a blow-up behavior of global attraction energies and analyse the
resulting stability properties under stochastic perturbations. For simplicity, we restrict
our analysis to an idealized two-dimensional model of long and stiff polymer filaments
that stay in close contact to each other (as approximately true for actin filaments in
cytoskeletal protein networks [2]). In our model, such filaments are represented by
two straight (infinite) lines I and I' € R? which (generically) always intersect: in a
real 3D situation this constellation is approximately realized for two generically non-
intersecting filaments by identifying the two parallel planes, each of which contains
one of the two straight filaments, under the assumption that the distance dp,;, between
these planes does not change much and stays very small, so that we can consider the
2D limit situation as dpin — O .

In particular, we investigate the dynamic interaction effects induced by mutual
binding of certain short and relatively stiff cross-linking polymers (e.g. «-actinin
dimers or myosin oligomers), which reveal thermal fluctuations at their two binding
sites but have a minimal cross-link length d, thereby serving, in a twofold manner,
as ‘attractors’ and as ‘spacers’ between the filaments, cf. the illustrating sketch of
different cross-linking geometries in Fig. 2 of [11]. Since then the integrand H (z, 6, 67)
in model Eq. (2) has its support in the outer domain {z € R? : |z| = p > d}, the
contact singularity at zero distance between corresponding binding sites (i.e. p — 0)
is avoided, but it is replaced by a new singularity appearing for filament alignment,
namely when the two filament directions approach each other in a parallel or anti-
parallel manner, i.e. for 6 F 6 — 0.

In the first modeling Sect. 2, we derive, under quite general assumptions, simple
model functions for interaction energies between such filament pairs and present
degenerate ordinary differential equations for the corresponding negative gradient flow
that describes the relative rotation dynamics. By computing the variation of energy
with respect to suitable variables, in Sect. 3, we derive expressions for the forces,
which are locally exerted onto one filament via different actions of cross-linkers, and
supply degenerate ordinary differential equations for relative translations between two
filaments.

H(y(s) =7, 7' (), 7'®) nG,s). @)

T—
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Fig. 1 Sketch of two straight, infinitely long filaments I" and T with intersection angle ¢. At each binding
site of I' with distance s from the intersection point there can be at most two cross-link connections of
length p to the other filament, with binding angles « or & at I, and corresponding angles @ at I’

Then, by considering a further modeling and analysis step in Sect. 4, we discuss
consistent models for stochastic force perturbations. These lead to a typical class of
degenerate stochastic differential equations with additive Gaussian noise terms that
have certain scaling properties near the singularity.

Finally, in Sect. 5, we briefly discuss the more realistic model situation with stiff fil-
aments of finite length, whereby the singularities in the dynamic differential equations
are smoothed in a specific manner.

2 Measures and energies for cross-link interactions

Let us consider two (infinitely long) oriented stiff filaments I' and T in R2 pointing
into directions 6 and 6 € S', with uniquely defined intersection angle ¢ = (6, 6)
satisfying cosg = 6 - 6 and sing = 6 - 6+. Here we define the orientation of 6=+
by the convention <((8, ) = 7. As canonical arc length parameters let us choose
the signed distances s and § from the intersection point, so that any pair of positions
(potential cross-linker binding sites) on the filaments is given by the points s6 and 56,
with the contact vector 7 = s — §6 pointing from filament I towards filament I", see
Fig. 1.

Since for actin filaments with typical lengths L > 1 pum the binding sites for myosin
are regularly spaced by 2.7nm (cf. [16]), for example, we propose that in a justified
continuum limit the binding sites for cross-linkers are continuously and uniformly
distributed along both filaments and that different cross-linkers do not conflict with
each other, so that we can take the simple product measure u(s,s) = ds - ds in
the energy integral (2). Furthermore, assuming a quasi-stationary situation for given
intersection angle 0 < ¢ < m, we propose that binding probability and averaged
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dynamical status, i.e. the energetics of any doubly bound cross-linker only depend on
the geometric configuration of its contact vector z with respect to the two filaments.
More specifically, for stiff cross-linkers that cannot bend but could be elongated by
thermal fluctuations to a binding length p = |z| > d > 0, the thermodynamic energy
is assumed to depend only on the distance p and the two binding angles « = <(0, 2)
and @ = <(z, —0), see Fig. 1. Notice that each binding angle « at filament I" has
a uniquely determined dual angle @ = mw — ¢ — « at the other filament with the
transformation properties

- sin o0

S§=p——, (3)
sin ¢
sin & sin(a

s=pina _  sn@tg) )
sin ¢ sin ¢

Therefore, we can reparametrize the binding position coordinates (s, 5) € ' x r by the
coordinates (p, ) € [d, 00) x (0, 2m) of binding length and angle with respect to one
filament, here I". Because the Jacobian of the transformation (p, @) — (s, §) simply
equals J(p, ¢) = p/sing > 0, this constitutes a diffeomorphism of [d, 00) x [0, 27)
onto the closed domain Q4 = U,>4C, C R2, where the ellipse C, = {(s,5) :
56 — 5617 = $(1 — cos ) (s +5)? + 3 (1 + cos ) (s — 5)? = p?} is 27 -periodically
parametrized by the second argument «, see Fig. 2.

Notice that due to (3) and (4) the maximum norm of the ellipse satisfies |Cp |lmax =
p/sing = J(p, ¢), so that for sin ¢ — 0 diameter and length of the closed curve C,
increase in an inversely proportional manner, while the shape becomes proportionally
flatter. Moreover, by inserting the Jacobian J into (2), for intersection angles 0 < ¢ <
7, the interaction energy E can be written as

21w 00

1
E(p) = — //h(p,a,n—ga—a)pdpda, )
sin ¢
0 d

where the integrand is h(p, o, &) = H(z, 0, é) with the variables satisfying the rela-
tions

cosp=6-6; z=s0—350 (6)

p=lzl; ¢=z/p (N
cosa =¢-0; sinot:g“'@L (8)
cosd =—¢-0; sina=¢-6+. )

Here we restrict, without loss of generality, the analysis to intersection angles
0 < ¢ < m, since otherwise all the images and assertions can simply be reflected
at the f-axis. We state the first Lemma, whose proof is straight-forward:

Lemma 1 Assume that the energy kernel h(p, o, &) < 0in (5) is continuously differ-
entiable and 2 -periodic in the angular variables with h, d,h, 9zh € LL([d, 00) X

@ Springer



P. Reiter et al.

P+

d<p

Fig. 2 Representation of possible cross-linker states in the (s, §) coordinate space with C, denoting all
pairs of binding sites that are connected by a cross-link of length p. For minimal length p = d the binding
energy k(p) in (17) has a negative jump representing the repulsive function of such cross-linkers on Cg,
thereby serving as ‘spacers’ between the filaments. As argued in the text, the ellipses become longer and
flatter (around one of the two diagonals) for sin ¢ — 0. The marked interval [s—, s+ ] on the s-axis denotes
the binding sites on a shorter filament I with finite length L = s —s_, intersecting a much longer filament
F, see Sect. 5

[0, 271?), where g € L}) means p - g € L'. Further, let both integrals

21w oo

%:?—//h@ﬂﬂ—aﬂmmm (10)
0 d
2w oo

hy = — //h(p,a, —a) pdpda (11
0 d

be positive. Then the energy functional E in (5) is continuously differentiable on the
open interval (0, ) with the following asymptotic behavior near the two singular
boundary points ¢, = 0 and & (with h = hg or hy, respectively):

h
E(@)=——+0(), (12)
sin ¢
E h 1
d(@=h3?¢+0(_ ). (13)
do sin” ¢ sin @
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Proposition 1 (Degenerate negative gradient flow) According to Lemma 1 the two
intersection angles ¢, = 0 and 7, representing parallel and anti-parallel orientation
of the two filaments, respectively, are locally stable steady states of the negative gra-
dient flow described by the standard differential equation with ‘relaxation rate’ A > 0

(and with notation ¢(t) = %):

dE
G =—h- d((p‘p) . (14)

This differential equation degenerates at . = 0 and w so that the asymptotic difference
y =sing = ¢ — @il + Ol — gul) fulfills

y=—-Ay24+007 Y. (15)

Thus, these so-called ‘super-stable’ steady states are reached in finite positive time t,
such that

y(t) ~ [3Ah(ts —r)]% for t /'ty (16)

We continue by specifying physically consistent models of the interaction energy
kernel £ in (5). While neglecting any small bending of a cross-linking polymer, which
is approximately justified for myosin [16] and to a lesser degree also for «-actinin
[30], we only consider thermal fluctuations of flexible binding chains at both ends
and approximately describe the cross-link by a stochastically elongated linear spring
with Hookian spring rate constant y > 0 [%], but only for elongations p beyond a
fixed resting length d > 0. This so-called ‘half-spring’ model reflects the assumed
condition that simultaneous binding of a cross-linker to both filaments cannot occur if
the spring is under compression. Since energy is consumed by binding, the resulting
‘half-spring’ energy induced by such a doubly bound cross-linker can be written as a
negative function of cross-link distance p with n = 2y /8%, where /32[*;1—?] measures
the spring speed variance due to thermal excitations and where the appearing expo-
nential function represents the stationary probability distribution of the corresponding
stochastic process:

0> —k(p) = —ko-e 3P=4% for p>d,
k(p) =0 forp <d.

a7

This energy distribution does not depend on the binding angles, it vanishes for lengths
p < d,jumps to the minimal value —kg at p = d and increases to zero with increasing
spring elongation p — o0, see Fig. 3. Then the action applied by a cross-linker onto
the filaments can be expressed by the ‘variational’ increment dk(p) = —k(p) -t £ (p)
in distributional sense, with a scalar force distribution u r given by

wr(p) =nlp —dls dp — o=y (18)

@ Springer



P. Reiter et al.

half-spring energy distribution

-15

0 0.5 1 1.5 2 25
cross-link length: p
Fig.3 The negative spring energy —k due to cross-link binding according to an elastic ‘half-spring” model
for d = 1. (black curve): plot of —k(p) according to (17); (grey curves): plots of —k(p, o, &) in (27) for
fixed 7 = F(a, @) = 0.2 yielding the lower energy curve and representing a spring in pre-tension, whereas
the upper curve for 7 = —0.2 represents pre-relaxation of the cross-link

Whereas the first term models the attractive force by an elongated Hooke spring,
the negative §-distribution represents the repulsive action by a cross-linker at mini-
mal length, then serving as ‘spacer’ between the filaments. Typical rest length esti-
mates reveal d ~ 100nm for ¢-actinin dimers and d > 60nm for myosin tetramers,
see [11].

On the other hand, let us assume that the successive cross-link binding to one and
the other filament are independent of each other and do not depend on the actual spring
elongation p, but only on the two binding angles « and @ (compare, for example, the
preferred binding of w-actinin dimers to actin filaments [30]). Then the quasi-stationary
energy configuration of such a filament pair can be quantified as follows:

Example A (Cross-link forces independent of & and &). Suppose that the energy kernel
h in (5) has a symmetric factorization

hip,a,a) = —k(p,a,a) q(@)-q(@) 19)

with a ‘half-spring’ cross-linker energy k(p, o, &) = k(p) only depending on
cross-link length p as in (17) and an angle dependent binding strength g(«) > 0. By
defining
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o]

/E::/k(p)pdp =@[1+d/ﬂ], (20)
n 2

d

a4 .

the energy in (5) takes the explicit form, with ko := 7k%

e (i) for w-independent binding, i.e. ¢(«) = %0:

E(p)=-2-ko

2n

sin ¢

e (ii) forg(a) = qo - sin? a, or q(a) =qo - cos?a, modeling preferred binding at

angles o ~ £m/2 or at « ~ 0 and 7, respectively (cf. Fig. 5a):

_ 3 .
E(p) = —ko (m — 2s1n<p) , (22)
dE — 3
@) = ko cosrp( —3 +2), (23)
do sin” ¢

e (iii) for gq(a) = qo - cosz(%) = q_20(1 + cosa), modeling preferred binding at
angles o ~ 0 and reduced binding at « ~ m(cf. Fig. 5b):

_1-4 cos @
E(p) = =2-ko an—¢ (24)
dE(p) =2k % . (25)
do sin? ¢

In the first two cases the energy E(¢) on the interval ]O, 7| is symmetric with
maximum at ¢* = 7r/2 and with equally strong singularities of order rll(p atp, =0
and m, see Fig. 4a, while in the last case the asymmetric energy function attains its
maximum at a lower intersection angle ¢* = %, with a relatively stronger singularity

at ¢, = 7, see the dark curves in Fig. 4b.

Example B (Cross-link forces depending on « and &). In generalization of (17) let
us assume that the ‘rest length’ pp of the ‘half-spring’ representing a cross-link of
minimal length d, is not constantly equal to d but depends on the binding angles via
a function pg = d — \/Lﬁf with

o, @) = \/gro(cosa + cos@), (26)

for example, see Fig. Sc. Here the two additive terms model the fact that, at each of the
two cross-linker binding sites, acute local binding angles induce a pre-tension of the
spring proportional to cos« > 0 or cosa > 0, respectively (see Fig. 3: lower curve),
whereas in case of obtuse angles with negative cosine values, the same expressions
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- lambda * dE/dphi — lambda * dE/dphi
10 T 10 T
(a) (b)
8 . 8 8
6 . 6 8
4 . 4r 8
2 . 2 8
0 & 0
2 - ot i
-4 - 4+ i
-6 - -6 F -
-8 - -8 4
E1 (A) —E3(A)
——E2(A) ——E3(B)
-10 . -10 .
0 pi/2 pi 0 pi/2 pi

Fig. 4 Plots of interaction energies E (¢) between two filaments (the negative concave curves) and of their
negative gradient flow rates —A - E’(¢) (the monotone curves) according to a Eq. (21) in Example A(i) and
Eq. (22) in Example A(ii); to b Eq. (24) in Example A(iii) and Eq. (34) in Example B(iii)

model a pre-relaxation of the spring (see Fig. 3: upper curve). Indeed, for myosin
II oligomers it is a well-known fact that their ‘heavy chain’ binding sites induce a
pre-stretching of the myosin ‘heads’ after binding to an actin filament, but only in
direction of the so-called ‘barbed end’, which here is chosen to be the direction of the
vectors 0 and 6 (for myosin see [10], for general models of molecular motor cross-links
see [18]).

Due to the scaling factor 1/, /7 in front of the ‘relative rest length deviation’ 7 (26),
this is a dimensionless function, so that pre-tension/relaxation effects are maintained
for increasingly stiff cross-linkers (i.e. large spring constant y as, for example, y &
20 s~! [17]). By substituting the rest length pg into the spring energy function (17) and
multiplying it with a suitable stretching factor of order ,/7, we obtain the following
(absolute value of the) modified energy function

(0 0, @) = i N FOD A @ D) for > g,
27
ky(p,a,a) =0 forp <d.
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In fact, its integral k, measuring the averaged potential energy of a single cross-link,
is independent of the spring constant 7:

o0

é = /ki’](pv.’ .)dlo
d

= Kez\/Z;/ e_%(r"'f)2 dr
0
S (1 - erte) (8)

with erfc(r) := \/gfor exp(—%)ds and erfc(co) = 1. Whereas k only depends on
the two binding angles via 7 = 7 («, &) in (26), the total spring energy in analogy to
(20), namely

o0
b= [ (o000 pdp
d
3 ~ _la 22
N (d_ %)m%e ki (29)

also depends on 7, but converges towards d - k for n — oo. Thus, with the analogous
definition of the kernel 7 = h,, (19), the total energy functional (5) for a filament pair
can in general be computed as

27

Ey(p) = — /E(OMT—w—a)-q(a)-q(ﬂ—w—a)da- (30)

sin ¢

However, in the limit » — oo of infinitely stiff cross-linkers, the original energy
distribution k,(p, e, @) p dp converges to the Dirac measure d - Izé{pzd}, so that the
energy functional E(¢) = E(¢) can be represented as a global integral (2) with the
singular kernel

H(z,0,0)uq(s,§) = —d - lg(a, a)-q(a) - q(a)doadjp—gy . 3D

Here 1q4(s, §) describes the one-dimensional Hausdorff measure on the ellipse Cy =
{p = |z(s, §)| = d} in the original (s, §)-coordinates according to (3) and (4), see also
Fig. 2.

In general, calculation of E(¢) as an explicit function of the intersection angle ¢ in
closed form is not possible, however, by approximating the error-function erfc in (28)

2 A
for small values of the pre-tension strength r( in (26), we obtain ez‘/;r (1 —erfc(r)) =
(14227 + OGFH) A — /g; +0GF) =1+ @f + O(#?) and thus the simple
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approximative kernel representation

l?(oz, a) = \/gfc (1 + ro(cosa 4 cos@) + (’)(rg)) . (32)

Finally, under this assumption we derive the following explicit energy formulas, which
we restrict to the two cases (i) and (iii) defined in Example A:

e (i) for w-independent binding, i.e. g(«) = 470:

E(p) = ~2 o

(33)

sing’

3 2
with kg 1= (%) 2k %0, the same standard formula as in (21), and
e (iii) for g(a) = ‘170(1 + cos &), modeling preferred binding at angles @ ~ 0 and
reduced binding at ¢ ~ 7:

d 1
E(p) = =2 - ko— 1—=cos¢+rop(l —cosp);, (34)
sin ¢ 2
dE 1+rp)cosp — (L +r
©) _ .y q LEWS0 = GH) )
do sin” ¢

In the last case the energy E(¢) is again an asymmetric function on ]0, 7r[ as in
Example A(iii), attaining its maximum at an even smaller value ¢, such that cos ¢, =

% llfrzo , which for small rg is gy = § — % + O(rg). See also the corresponding plots
in Fig. 4b.

3 Forces and dynamics induced by cross-linkers

In order to get insight into the physical mechanisms that lead to the singular behav-
ior described in Proposition 1 and asserted in Examples A and B, we can extract
the effective forces exerted by cross-linker interactions with the aid of computing
the different variations of the energy functional E in (2) and (5) under changes in the
relative position between the two filaments I and T. Assuming, for instance, that the
latter filament is fixed, then we can consider virtual translations of the other filament
I at a given binding position s in two orthogonal directions ¢ and ¢, i.e. in direction
of the cross-linker contact vector z = p - ¢, see (6) and (7), and orthogonal to it. The
first variation (8¢) means that the cross-linker length p is increased, say by dp, while
both binding angles « and & stay fixed. The other variation (8¢ 1) induces a rotation
of the cross-linker around the fixed binding site § on I such that the local turn, say
by do, of the lever (with constant length p) induces changes of both binding angles «
anda by da = —da = 1/pdo, since the sum o + & = 7w — @ stays fixed due to pure
translation of the whole filament I under constant ¢. Thus, the force resulting from
virtual spring length variations (§¢) is the contracting or spacing spring force, which
in terms of the kernel /4 (19) can be written as

Ky(s,8) =—0ph(p, o, @) - & = dpk(p, @) - q(e) - q(@) - ¢, (36)
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(a) .

0.5
0

2pi
32pi

i 3/2 pi 2pi

2pi

pif2 pi

Fig.5 Symmetric model functions depending on the binding angles. Plotted over « and & are the product of
binding strengths g («) - ¢ (&) for a g () = qo cos?a and b q(a) = 470 (1+cosa) with gy = 1, and in ¢ the

rescaled deviation of cross-linker rest length from the basal value d, namely 7 (a, &) = ,/ % ro(cos a+cos @)

with rg = %

where the ‘unit cross-link vector’ is { = Z5 () = (cos &)+ (sin )0+, cf. (7)—~(9). On
the other hand, from rotational variations (8+) we obtain the sum of two cross-link
torque forces
. 1 - n
K(D(svs) - _;aah(p’a7 a); ) (37)
1
Ko(s,5) = —dah(p, a,@) - ¢+, (38)
P

so that the total force exerted by a cross-linker connection from the fixed binding site §
at T to the binding site s on I" is given by the following force kernel K : T' x T — R?:

K=K;+K,+Kg. (39)
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Remark (Integral representation of total forces). First, let us mention that integration
over the local spring force in (36) yields, using integration by parts over p, an explicit
expression for the total force due to contractile/spacing action of cross-linkers in terms
of the integral kernel &:

1 21 00
Ky :=//Kf(s,§)dsd§=—,—//aph(p,a,&)-g“pd,oda

sin ¢
r 7 0 0

] 2w 00

_ //h(p,a,&>~zdpda, (40)
sin ¢
0 0

where this identity also holds for Example B, even in the limiting case of infinite
stiffness (n — oo) for the kernel in (31). Then, introducing the notation A, (p, o) =
h(p,a, m — ¢ — a) and noticing dyhy = duh — dzh as well as {(a) = —aag“l(a),
we conclude that the total force onto I vanishes:

//K(s,§)dsd§
rr

2w 00
/{h-; —aahw-&} dp da
d

/
sin ¢
0
2

1 o
T s //8“(hw'§L)dadp =0.
sin ¢
d 0

This assertion has to be true since the defining energy E(¢) does only depend on ¢
and is therefore invariant under pure translations of one filament with respect to the
other. Thus, the only global dynamic action on the filament pair is the total torque
Q=- ‘2—5 = —FE’(¢) to be computed by variation of E with respect to the intersection
angle g itself, while holding s and § fixed. This can be computed and identified with
the integral formula obtained by using the local forces in (36)—(38) and the mechanical
lever laws for torque moments, with virtual rotation around the fixed intersection point

(s = § = 0), yielding the following equality

K

Q://{sel.(aKf+Ka))+§éL.((1—0)Kf+Kw)} dsds. (41)
rr

Here o is an arbitrary fraction of unity, e.g. ¢ = 1/2, because one observes the
symmetric identity

sei-ngé#;z

- sino -sina . 42)
sin ¢
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Thus, the resulting differential equation for temporal changes in ¢ (see Proposition 3
below) is the negative gradient flow (14). However, the local forces appearing in the
two kernels K, and K, arise from variations (§¢ 1) that change the binding angles, so
that in the presented energy model they can be associated to resisting ‘torque’ forces
of cross-linkers that stay bound to actin filaments during the variation of binding
angles. Such a model (satisfying the gradient flow kinetics) could be relevant for
physical situations of steadily cross-linked molecules, whereas for the biophysical
situation of ongoing dissociation and re-association of cross-linking polymers (as
myosin or «-actinin) on a microscale (of milliseconds or fractions of seconds [11])
during slow filament motion on a macroscale (of several seconds), we have to modify
the model. Since for computing the virtual forces, only variations on an even faster
scale (e.g. fractions of milliseconds) are considered, we can assume that during this
short time the cross-links stay bounded. Then due to the model interpretation of the
binding strengths, ¢ («) and g (&), these would not change, and the only remaining
variations are that of the spring energy k(p, «, &). Moreover, if we suppose that the
angle-dependence of k (for the model in Example B) via the pre-tension/relaxation
function 7 has been realized already during binding of the cross-link, then the only
effective variation that remains is the one in cross-linker length (§¢). Thus, as local
force vector kernel we can take K = K ¢ and assume K, = K3 = 0. Splitting K into
its components parallel and orthogonal to the filament I', namely K = K6 + K 160+
and using the relations (8) and (9) as well as (42), we obtain the following explicit
formulas for the fotal torque and parallel and orthogonal force components expressed
in (p, o, &)-coordinates:

Proposition 2 (Total torque and forces onto one filament) Assume that bound cross-
links only apply forces to the filaments due to elongation of their ‘half-spring’ but not
due to bending or tilting of their binding angles, thus K, = K5 = 0. Then under the
assumption that filament T is fixed, local variation of cross-linkers leads to the force
kernel K = Ky in (36) yielding the following global torque Q2 and the parallel and
orthogonal forces F!l = Jr JF Ky (5.5) d5 ds and F+ = Jr 5 Ki(s,5) d5 ds onto
filament " (again using integration by parts):

2w 00
Q= //8 hip,a, @) ,o2d,o sina sin & do
sin® ¢
) 21 00
=— /h p,a, &) pdp sinasina do (43)
sin® ¢
0 d
21 00
Pl — //h(p o, & dp cosa da (44)
sin ¢
0 d
2w oo
Ft= //h 0.0, &) dp sina do (45)
sin ¢
0 d
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with the total translational force given by
K=K;=Flg+Flot. (46)

Before computing explicit expressions for Q, F\ and F* as functions of ¢ in specific
examples, let us write down the dynamical equations describing the resulting motion
of one filament with respect to the other.

Proposition 3 (Over-damped dynamics of filament motion) Let us assume that one
filament, say T, is held fixed and represented by the oriented x-axis, for instance.
Then under the assumption of strong hydrodynamic friction relative to inertia, which
is clearly fulfilled for filament motion in highly viscous cytoplasm, the ‘over-damped’
dynamics of the other filament, T, is determined by the following force balance equa-
tions for the three independent types of motion (rotation, parallel and orthogonal
translation), where each of them can eventually have a different friction coefficient
A

d

Y _ e, 47)
dt

ds

— = FIl, 48

dr 48)
ds* n
— = F, 49
o 1 49)

with the torque 2 and the other forces defined in (43)—(45). Let us remark that for
finite filaments the inverse friction coefficients ) could be assumed to depend on its
length L in a manner that .y =2 -k ~ L™, but A5 ~ L™2, compare Sect. 5.

In general, the motion of I is completely determined by the intersection coordinate
x = R(¢) with filament r (the x-axis), the intersection angle ¢ = ®(¢) and the signed
segment length s = S(¢) between the intersection point (R(¢), 0) and a freely chosen
but fixed point (X (¢), Y (¢)) on filament I', e.g. the filament mass center, see Fig. 7d
below. Thus we obtain the representation

X=R+Scos®, Y=S8sind, (50)

where the defining time-dependent variables ®, S, R satisfy the system of differential
equations (again for angles 0 < ® < &, without restriction of generality):

de = Ay (D) (1))
ar O ’

ds Al

— = Fl(®) + — FX (@), 52
dt I ( )+tand> (@) (52)
dR AL n

—_— == F~(D). 53
dt sin @ (@) (53)
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The last Eq. (53) and the second term in Eq. (52) arise from orthogonal shifts of
filament I'. Thus, for infinitely long filaments the ‘leading’ degenerate ODE (51)
autonomously determines the dynamics of filament intersection angle ®(¢), whereas
subsequent integration of the other two, ®(¢)-dependent Egs. (52) and (53) yields
the relative position of one filament with respect to the other. For filaments of finite
length, the analogous ODE system turns out to be nonlinearly coupled in the first two
variables, see Sect. 5.

In order to characterize and visualize different types of filament dynamics for the
various interaction models, we now compute the torque 2(¢) as well as the force
terms Fll(¢) and F*(p) for the examples introduced in Sect. 2:

Example A (Cross-link forces only depending on p). With the conditions and defini-
tions after Eq. (20) we can state:

e (i) and (ii) Since in these cases the force kernel h(p, o, 71 — ¢ — «) in (40)
turns out to be an odd function of the periodic variable «, both integrated forces
Fl and F' vanish. Thus, for these models with symmetric interaction energy
E(p) = E(m — ¢) the filament dynamics shows no translations, only rotation
around the fixed intersection point. In the standard case (i) we obtain the torque
Q = —E/'(p) for the energy in (21) and, thus, a resulting negative gradient flow.
On the contrary, this does not hold for (ii), where in case of g(«) = qo sin? o we

have

— 5
Q(p) =—k0008¢[ — —2] , (54)
sin” ¢
and for g (o) = gg cos? «
— 1
Q(p) :—kocosgo[ — —2} . (55)
sin” ¢

Whereas in the first case the symmetric function €2 (¢) is monotone increasing with
the unstable zero ¢* = /2, in the second case this orthogonal configuration is
a stable equilibrium state with two additional unstable zeros at ¢* = 7/2 £ 7 /4,
see the plots in Fig. 6a.

e (iii)) With the asymmetric binding strength g (o) = %0(1 + cos ) also the torque
function becomes asymmetric according to (43):

o — Zcosw—%
(p) = —ko W—Fl , (56)

while the global forces according to (44) and (45) are

~ 1 —cosg
Fl(p) = -2k ——=, (57)
sin @

Fh(p) = =2k, , (58)
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(a) Torque: Omega (b) Torque: Omega
10 T 10 T
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Fig. 6 Plots of the ¢-dependent torque between two filaments (if one is fixed) according to a Eqgs. (54)
and (55) in Example A(ii) for the two indicated cross-link binding functions g («): The case (sin2 ) of
preferred orthogonal binding gives a torque similar to the negative gradient flow rate —A - E’(¢) with the
same convergence behavior as the standard function for Example A(i), see Fig. 4a, whereas the case (cos2 )
of preferred parallel binding of cross-linkers (see Fig. 5a) induces a non-monotone torque, with dynamic
properties totally different from the negative gradient flow: the orthogonal filament pair configuration is an
asymptotically stable state; b torque plots according to (56) for Example A(iii) and (65) for Example B(iii).
In addition, for both examples the parallel (/ined) and orthogonal (dashed) force components are plotted

—~ 2
with k; = (%)% 5—‘% (14—0. Notice that the total orthogonal force onto the filament in
(58) is just a negative constant (for 0 < ¢ < m)!

Only for the last Example A(iii) the intersection point (R, 0) between the moving
filament and the fixed one changes due to parallel and orthogonal net forces, see
Fig. 6b. Since there is a constant orthogonal ‘right-shift’ of the filament (to the right
side with respect to its orientation vector 6) but a simultaneous parallel ‘back-draw’,
at least for angles @ > 0, one cannot easily conclude, in which direction the filament
is translocated. Therefore, we have to study the ODE-System (51)—(53), which for

parameter values ky = 2k~,7 = 1 (equivalent to d + ‘/nln = 1) and inverse frictions

A = 1,24 = Aand A, = 2 - A (all parameters and variables in dimensionless
units) yields
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dd 2cos<I>—%
—_— =< 4+ 11, 59
dt [ sin? @ ] )
ds 1 )
a _ —+—.cos ’ (60)
dt sin @
dR 1
— =2 A= . 61)
dt sin &

According to Fig. 6b the intersection angle ® () generically converges to one of the
two alignment states, where with (15) and (16) we obtain the following asymptotic
behavior:

At parallel alignment, see Fig. 7b, we have the rapid convergence ®(¢) ~ [t*—z‘]lL/3

in finite time, so that by R(t) ~ % ~ -8 (t) we obtain the corresponding conver-

gence R, — R(t) ~ [t, — t]i_/3 ~ ®()%. Thus, the intersection point R(?) increases
a bit, but gets stationary at a certain value R, even more rapidly than the intersection
angle. Since on this asymptotic order the sum (R + S)(f) ~ Ry + S, is already sta-
tionary, the fixed point (marked in Fig. 7d) on the moving filament does perform an
almost circular arc while approaching the fixed filament.

At antiparallel alignment, see Fig. 7a, we get the same asymptotic behavior for
E)\(_t/) =1 — ®(¢r) and R(t), even with a bit stronger coefficient, but now the segment
length S(#) ~ S, on the moving filament is already stationary on the considered
asymptotic order, so that the increasing intersection point ‘draws’ the fixed point to
the right and its track is straightened to a line almost orthogonal to the fixed filament.
For larger ‘translation mobility’ coefficient A the fixed point is even translated to the
right, meaning that the moving filament shows an asymptotic tendency to slide with
respect to the fixed one (see Fig. 7c). This only happens for near antiparallel alignment,
since then most of the cross-links are bound with acute angles at both ends.

This is a clear asymmetric behavior, whose importance becomes even more apparent
when stochastic perturbations are considered, see Sect. 4. Before doing this, we look
at the deterministic dynamic behavior in the other

Example B (Cross-link forces depending on « and &) With the conditions after
Eq. (26), using the force representation in (40) for the singular measure (31) with
the simplified force kernel (32), we can state:

e (i) For constant binding strength %0 the force distribution kernel (for n — o0) is

2
\/E,(q_o (I —ro(cosa +cosa)) - ¢ da,

K =—
f i sinpV 2 4

so that the torque becomes

COSs
Qp) = —2u0d 2 = —E'(p) (62)
sin” @
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Fig.7 Plots of the filament dynamics according to the differential equations (51)—(53) for Examples A(iii)
and B(iii) with the intersection angle ®(¢) converging either to the antiparallel steady state 7, see a and c,
respectively, or to the parallel steady state 0, see b and d. As inverse friction coefficient we chose: a and b
A = 1;cand d A = 3. Drawings of the moving filament (for simplicity of finite length) are performed for
time intervals with constant decrease in the intersection angle: the angular speed itself becomes infinitely
rapid according to IdD(l)I ~ [ty — t]_z/ 3, see text for further discussion. On each filament a fixed point
with coordinates (X, Y) is marked

and the two force components

I _ 1 —cosg
Fli(g) = —koro———— (63)
sin ¢

FY(p) = —«xoro - (64)

Notice that these forces have exactly the same structure as in Example A(iii) above,
but with a symmetric torque function as in the standard case A(i).

e (iii) For asymmetric binding as in Example A(iii) but with angle dependent force
we analogously obtain

K 4+ ro(1 — cosp)?) -cosg — 1
Q((p):——od[( o - ;p) ) 4 +2(1+ro)+rocosgo}
2 sin” ¢
(65)
and
I Ko 3 o . o
Fl'(p) = — — 14+7r9— —-rocosg ) (I —cosg) + —sin“ ¢ (66)
sin ¢ 4 4
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n 5 ro

F~(p) =—koy1l+-ro— —cos¢t . 67)
4 2

One can show that both force functions F!l and F* are negative and monotone

decreasing in the variable ¢, see Fig. 6b.

According to the plots in Fig. 6b this last Example B(iii) modeling myosin action
between the two filaments, shows qualitatively the same behavior as the Example A(iii)
with the same cross-linker binding strength function, namely preferred polar bind-
ing in direction of the oriented filaments. Indeed, the asymptotic coefficients are a
bit larger and produce an even more rapid convergence during antiparallel align-
ment and a stronger sliding effect near antiparallel alignment (see Fig. 7). Thus,
the additional assumption of angle-dependent cross-linker force in (27) for Exam-
ples B strengthens the asymmetric convergence behavior, which obviously is induced
already by the assumed asymmetric cross-linker binding. Again, with additional sto-
chastic noise introduced in the following section, these effects will become more
prominent.

4 Stochastic dynamics

So far the dynamic action of the cross-links was modeled in a mean field approximation,
where with an assumed constant reservoir of cross-linking oligomers in solution the
energy integral kernel i, (0, @) = Sir’f 7 h(p, a, &) according to (5) measured the mean
expected density distribution of bound cross-linkers with respect to their length (p)
and binding angle («). Moreover, according to (36) the density of mean force locally
exerted by cross-linkers onto one filament could be expressed by the kernel K, (o, ) =
—ﬁaph(p, a, @) - ¢(a). Regarding that molecular association and dissociation of
cross-linkers are Poisson processes, then also the expected variance will be locally
distributed as proportional to h,. Thus, for any given intersection angle ¢ there is
a constant by measuring the noise amplitude (depending on temperature), so that
per infinitesimally small time step d¢ the local impulse increment density induced by
cross-linkers, usually given by d; P = K, dt, can now be written as a sum d; P =
K ge’ dt + K ;’ och W, with a deterministic increment d¢ and a stochastic Wiener

increment d W;:

d, P(s,5) ds ds = (—Bph,Ldt + by [h— dW,) dpda -t . (68)
sin ¢ ' sin ¢

Then, computing the total impulse increment d,P = K%' dr + K*'°°" dW, according
to the first integral representation in (40) we obtain stochastic integrals for each of the
two force components of K = F§ + F161 with the following properties:

Proposition 4 (Stochastic differential equations for filament motion) In the situation
of Proposition 3, with stochastic noise introduced as described above, instead of
(47)—(49) we obtain a system of degenerate stochastic differential equations (for any

@ Springer



P. Reiter et al.

27 -periodic ¢)

. . . _3
dg = 1 (sign(sin @) Rt (9) di + bo(@) singl 2 dW:) . (69)
. _1
ds =iy (Fll, (@) dt + by singl 2 dW, ) , (70)
1 . . 1 . _1
dst =2, (31gn(sm ©) F:,(9) dt + b ()| sin |2 dW,) . 71)

Here the deterministic parts of torque and translation forces are given by the integrals
defined in (43)—(45), or by the computed formulas in Examples A and B of Sect. 3
(as they are given for positive ¢ only). Moreover, the relative noise coefficients by (@)
depend continuously on cos ¢ and sin @, satisfying analogous integral representations
for the variances of the stochastic torque and force components

21 00

b% = | sin g’ Var(Qgioch) =b§c//|h(p,a, &)|p’dp (sina sin@)’da (72)
0 d
2w 00

b} = | sin g| Var(Fjo.) =b§//|h(p,a, &)| pdp cos® o da (73)
0 d
2w 00

b = Ising|Var(Fba) = 5% [ [ 1hp. @)l pdp sintadar. ()
0 d

Since the deterministic non-linearities degenerate like 4.; ~ | sin ¢|~2 and Ffe[ ~
| sin (pl’l, the stochastic increments in Egs. (69)—(71) degenerate at a lower order. In
particular, using the same notation as for the asymptotic deterministic equation (15),
near the singularities ¢, = 0 and 7 the leading stochastic equation (69) can asymp-
totically be written as

dy=—a-|y|™"dt+b-|y["""dW, (75)
withm =2 and y = % This class of degenerate SDEs does not always lead to well

defined stationary processes:

Lemma 2 (Resolving power law singularities in SDEs) The degenerate SDE in (75)
with m > 0 describes a nontrivial generalized Gauss process that is asymptotically
stationary only if the exponents satisfy the condition 0 < y < ’”TH The stationary

process has the symmetric bimodal probability distribution

_ m *%Iyl”
p(Y)dy = pm - |yl"e dy (76)

with u = m + 1 — 2y > 0 and a positive scaling factor p,,, see Fig. 8b. Realizations
of the stationary process randomly switch between positive and negative values, with
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Fig. 8 Properties of the asymptotic process y; for the stochastic variable sin ®; satisfying (75) with
y = % and m = 2. a Stochastic path (black) together with the path of the transformed variable z; = yf
(grey), usually of lower absolute value; b empirical distribution of the y; values (histogram) and theoretical
probability distribution according to (76): p(y) = 2v/v/m y2 exp(—v y2) withv = a/bz, herea = 1 and
b=03

super-exponentially long switching intervals (‘resting times’) and intermittent phases
of very fast oscillations, see Fig. 8a.

Proof Consider the transformed stochastic variable z = sign(y)| y|m‘H satisfying the
following non-continuous SDE, with a right-hand side that performs a negative jump
at zero, a so-called ‘negative sign-type’ SDE:

dz = —(m + )a - sign(z) dt + (m + )b - |z|f dW, (77)

with 8 = mLH > 0. Computation of the Kolmogorov forward equation reveals that
(77) possesses stationary solutions only if § < 1/2, with symmetric unimodal sta-
tionary distribution p(z) ~ exp(—v|z|'7%#), where v = a/ ((m + 1)(% — B)b?).
While the deterministic solution without noise consists of straight lines reaching the
absorbing state zero in finite time, the stochastic realizations show weighted random
increments with sufficiently strong perturbations of amplitude |z|# > ,/z, which are
able to drive the solution away from zero, fast enough to overcome the deterministic
absorption. O

Applying the results of Lemma 2 to the original asymptotic differential equation (75)

for the stochastic variable y, = sin &;, satisfying the condition 0 < y = % < % =
3.
’"3‘ L for m = 2, we conclude that the stochastic perturbations of order |sin |2 in

(69) are not too strong, but strong enough to overcome the infinitely fast ‘attraction’
to zero by the deterministic term dg/dt ~ |sin |~ and to induce a bimodal sta-
tionary distribution, see the stochastic realization in Fig. 8. Interpreted in terms of the
biophysical model, this asymptotic result says that the more cross-linkers are active
to attract the two filaments towards alignment, with infinitely increasing speed for
sin @, — 0, the more fluctuations of the stochastic binding process occur and disturb
the attraction, strongly enough to prevent complete alignment. Instead, the intersec-
tion angle between the two filaments steadily fluctuates around zero, not in a Gaussian
manner as for regularly stable steady states, but with a generalized biomodal Gauss
distribution so that too small angles are avoided.
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regularizing angular transformation
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Fig. 9 The regularizing periodic transformation ¢ = ¥ (¢) defined in (78) and the positive factor A (y)
appearing in the SDE (79), plotted as a function of ¢ with Ay =1

As a matter of luck and surprise, we even can find an explicit resolution of the
singularities for the 27 -periodic stochastic angle variable ®; satisfying the degenerate
SDE (69), namely by transforming it into the 2m-periodic variable ¥, = ¥ (P;)
according to

sin® ¢
¥ (@) = arctan ) (78)
cos ¢
satisfying the ‘negative sign-type’ SDE
. . . 1
dy = W) (= sign(sin Y) () di + bo (@) sin gl dW, ) (79)

All the appearing parameter functions are bounded, particularly the ‘regularized’
deterministic torque w(¥) = Qger(@) sinzgo and the positive function A(y) =
)Lo(cos2 ¥)(3 +tan? @), where also the inverse transformation of (78) can be explicitly
calculated as

¢(Y) = arctan {uy (tan ) + u_(tan ) + (80)

tan
il
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Fig. 10 Properties of the stochastic intersection angle dynamics @ satisfying (69) for Example A(iii) with
the same parameters as in Fig. 7b and with equal noise coefficients by = 0.5 (time step had been chosen as
dt = 0.0005 comparable to 0.3 s provided the time unit is 10 min, which would roughly correspond to the
used parameter values A ~ 1). a The stochastic path (black) is the last part of the longer time series plotted
in ¢ representing the stationary phase of small fluctuations around 7, b empirical distribution of the ®,
values for the stationary phase, ¢ longer time series of the intersection angle ®; (black with tiny fluctuations)
together with the other two stochastic variables determining the position of the moving filament, namely the
section length Sy (upper curve) and the x-value of the intersection point with the fixed filament R; (lower
curve). The corresponding visualization of filament motion is depicted below in Fig. 12a and supplementary
Movie A12

T2\°
us(T) = Ju(T) £, [v(T)? — (?) ; (81)
1 7?

Indeed, (78) is equivalent to a cubic equation for ® = tan ¢, namely e =31+
©?) tan v, whose appropriate solution branch is constructed above. Moreover, whereas
at ¢ =0 mod () the transformation ¥ () ~ z ~ y> ~ sin? ¢ locally resolves the
singularity just as z = z(y) does, see (15) and (77), at ¢ = % mod (7r) the derivative
fulfills ¥'(¢) = 1, so that in a wide region between the singularities 1 resembles the
identical mapping, see Fig. 9.

Numerical solutions of the transformed ‘negative sign-type’ SDEs (77) and (79)

with ‘negatively jumping’ right hand side at z = 0 or ¥ = 0 mod (i), respectively,
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can now easily be performed by using the Euler—Marayuma discretization scheme, see
[13]. We choose a sufficiently small constant step size, but apply an additional ‘freez-
ing’ condition for the deterministic increment step, namely zg.;(f +dt) = €-z(t) = 0
if —dzge:/z(t) > dt, simulating the deterministic absorption at the singularity, while
the stochastic increment is added without restriction. Plots of resulting stochastic sim-
ulations in terms of the back-transformed solution path for the original degenerate
SDEs (69) and (75) are shown in Figs. 8a and 10a, respectively.

Starting the simulated process near one of the stable singularities ¢ =0 mod (),
then, for a suitable small noise amplitude by in the defining equation for the stochastic
torque term (72), the transformed angle W, thus also the intersection angle ®, itself,
very rarely leaves the attraction domain of this singular point, so that the distribution
of resulting angles resembles that of the localized variable y;, compare Figs. 8b and
10b. On the other hand, for larger noise amplitudes by the stochastic angular path can
switch from one singularity to the other, depending on its stability measured by the
value of w(cos ¢, sin ¢) for cos ¢ = +£1.

Finally, let us apply the so far performed asymptotic and numerical analysis to
the full degenerate SDE system in (69)—(71) in order to visualize and interpret the
resulting dynamics of interactive filament motion. For this we have to stochastically
and numerically solve the ‘just integrating’ degenerate SDEs for s, and sf-, (70) and
(71), which have additive Gaussian increments with noise amplitude proportional

to | sin <I>t|_%. Therefore the variance of these stochastic increments is bounded by
the expectation value £(|sin ®;|™") = O + £(|y;|~")) < oo, because with the
aid of (76) the probability distribution for the well-defined inverse process u; =
(y)~ ! can easily be calculated as p(u) ~ u? exp(—v u=?) having finite mean value
and variance. Thus, also the stochastic process X; = (sin ®,)! is a well defined
generalized Gaussian process so that, for example, the SDE for s; in (70) is of the type

ds; = a(Py) - |15 dt +b(Dy) - VIZ | dW;, (83)

being integrable and resulting in non-stationary stochastic solutions s;. The same is
valid for solutions s;- of (71). Numerically, these two stochastic differential equations
are simultaneously solved together with the solution of the degenerate SDE (79) for
W, again using the Euler—Marayuma method, where also the deterministic increments

dsge: and ds jet are locked into the ‘freezing’ condition for the variable W;. Notice that
. .. _1
near the singularities we have |X;| ~ |W;|”3.

We can then visualize the stochastic motion of filament I" with respect to the fixed
filament I" by using the equations in (50) and calculating the increments of the defining
variables S; and R; in analogy to Egs. (52) and (53), namely

dS; =ds; + X, - cos &, ds,L , (84)
dR; = =%, ds};. (85)

The pictures in Figs. 11 and 12 certify the asymptotic results obtained in the deter-
ministic case and show that the effects already seen in Fig. 7 are clearly amplified by
introducing the weighted degenerate noise terms.
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Fig. 11 Plots of the stochastic filament dynamics for Examples a A(iii) and b B(iii), where the intersection
angle ®(¢) fluctuates around the parallel steady state 0. Parameters in the SDEs (69),(84),(85) are A¢y =1,
A1/2 = &) = L5 and equal noise amplitudes by = 0.1. In contrast to the deterministic situation in
Fig. 7, the sequence of the moving filament (for simplicity drawn with finite length) is plotted for fixed time
intervals of length dtplot = 200 - dt with dt = 0.00001. The whole simulation period is 0.1 time units,
comparable to about 1 min, so that snapshots of the continuously moving filament are performed every
second, thus explaining the apparent ‘jumps’. See also the supplementary Movies A11 and B11

In particular, the stochastic fluctuations around parallel alignment reveal slight
rotations of the filament without any translations parallel to the fixed filament: for
Example A(iii) see Fig. 11ain comparison with Fig. 7b, and for Example B(iii) Fig. 11b
in comparison with Fig. 7d, where the slight orthogonal drift in the deterministic case
obviously corresponds to stronger random drifts in the stochastic case.

Analogously, during antiparallel alignment the stochastic motion of the filament
again reveals slight rotations, but now superimposed by a steady parallel sliding drift to
the right, which is less expressed in Example A(iii), see Fig. 12a and its deterministic
counterpart Fig. 7a, as compared to the stronger sliding in Example B(iii), see Fig. 12b
and its counterpart Fig. 7c.

Though these stochastic model simulations are performed for the idealized situation
of two infinitely long stiff filaments, the asymptotic behavior around the singular states
of parallel and antiparallel alignment already reproduce the characteristic phenomenon
of actin filament sliding, as it is experimentally observed and functionally effective in
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Fig. 12 Plots of the stochastic filament dynamics for Examples a A(iii) and b B(iii) as in Fig. 11, but now
with fluctuations around the anti-parallel steady state 7, see also the Movies A12 and B12

muscle contraction and cellular stress fibers: When an extensive pool of phosphory-
lated myosin II oligomers can cross-link two long actin filaments, they induce active
sliding if and only if the two filaments are overlapping and oppositely oriented; then
their filament tips (with the so-called ‘barbed ends’ anchored in the Z-lines or the
plasma membrane) move towards each other so that, for instance, in a muscle cell the
sarcomeres can eventually be contracted. The reason is that, as the model assump-
tions suppose, myosin II dimers preferentially bind to an actin filament with its head
oriented towards the ‘barbed end’, see the model in Example A(iii) and Fig. 5b, and
that under this condition they can also perform a stochastic power-stroke inducing a
pre-tension of their elastic ‘springs’ (between head and tail), see the additional model
assumptions in Example B(iii) and Fig. 5c.

We emphasize the difference between this ‘active’ dynamics and the simple negative
gradient flow dynamics as shown by the symmetric model A(i). There, also during
stochastic motion of a filament pair, the mutual interaction energy always tends to
the (infinitely negative) energy minimum of alignment. In contrast, for the asymmet-
ric ‘myosin-like’ models A(iii) and B(iii) the additional energy, which is fed into
the filament pair system due to preferential binding and hydrolysis-mediated active
force application by the cross-linkers, induces the additional phenomenon of angle-
dependent filament sliding, an ‘active’ effect that is superimposed onto the simple
physical law of energy minimization.

As already mentioned in Sect. 2, Fig. 2, the trace Cy of all possible cross-linker
states of minimal length is an ellipse along one of the diagonals {s = §} or {s =
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—5}, increasing in size proportionally to 1/|sin¢| as the intersection angle |¢| or
|r — ¢| between the filaments becomes smaller. This means nothing else than that,
in the same manner, the filament part carrying bound cross-links increases in size.
However, due to the model assumptions above, with the amount of active cross-
linkers also the variance of induced ‘molecular noise’ likewise increases, so that the
resulting stationary stochastic process shows a vanishing probability of ‘true’ align-
ment. More precisely, as can be seen in the asymptotic histogram in Fig. 10b, small
intersection angles very rarely occur, but there is a clear hump around a positive mean
absolute angular deviation, which can be explicitly computed, with a finite expected
value for the inverse sine, namely £(]| sin @, |~1) < oo. This has the important con-
sequence that also the mean number of active cross-linkers and the mean interval
length of occupied binding sites on each filament stay finite during the fluctuating
alignment process.

Therefore, although the hypothesis of infinite filament length, which has been sup-
posed for the current model, induces a degenerate convergence of the deterministic
dynamics to complete alignment along the whole infinite filaments in finite time,
the implementation of an appropriately modeled and scaled stochastic noise reverses
this extreme behavior near the singularity and makes very small intersection angles
very rare, so that most of the time only finite parts of the filaments are connected by
cross-linkers.

Thus, within our idealized two-dimensional model, filament sliding occurs only
due to stochastic forces that prohibit the degenerate unrealistic case ¢ = 7 of
complete alignment, in which the filaments have zero (negligibly small) distance such
that sliding is not possible. However, in a true three-dimensional situation the aligned
filaments would keep a positive distance in the order of cross-linker length d, allow-
ing for steady sliding even in the deterministic case. Nevertheless, in a corresponding
stochastic three-dimensional simulation model of semi-flexible filament interaction
[1] with strong enough additive noise terms, we also observe local de-alignment of
filaments due to their stochastic bending dynamics, revealing some similarities to the
stochastic angular fluctuations in the simplified two-dimensional model.

Anyhow, for applying our model results to realistic biopolymer dynamics, the addi-
tional effects due to finite filament length have to be investigated, which is briefly
undertaken in the following last section.

5 Dynamics of a filament with finite length

In order to explore the effects due to a more realistic modeling of semi-flexible fila-
ments as stiff rods having finite length, we consider the simplified situation of pairing
a short filament with a relatively long filament. Therefore, we could assume that the
longer filament stays fixed and that the smaller filament performs its ‘interaction dance’
on the middle part of this fixed filament, thereby not reaching its ends. Consequently,
the fixed filament can be supposed as infinitely long.

Under these conditions the forgoing model equations in Sect. 3 have just to be
adapted in order to calculate torque and translation forces onto the moving filament
I". Again supposing that only the spring forces of cross-linkers come into action, then
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under the simplifying assumption made in Example B, namely that the cross-link
length is approximately constant, p = d, the measure valued version of the local force
kernel Ky = K (s, §) can be used as it appears in (31) and (40). However, the integra-
tion domain in the (s, §)-space is now restricted to those parts of the ellipse C; whose
s-values lie on the filament, see Fig. 2. Let us remind that s denotes the arc length
on filament I with s = 0 representing the intersection point with the other filament.
Choosing the mass center as fixed point (X (¢), Y (¢)) on the moving filament, then
according to the terminology in (50) the variable S = S(¢) denotes the s-value of this
center point, so that with finite filament length L the condition for s to represent an
arbitrary point on the filament is

s—Sl<= (36)
s — —.

-2
Since the integration in all torque and force integrals is performed only on the curve
Cg, the relevant s-values representing occupied cross-link binding sites, see (4), satisfy

d
<—, (87)
sin ¢

d -sin(¢ + )
sin ¢

|S|=‘

where we again restrict the derivation of this formula to the case 0 < ¢ < m. For
all these s-positions except the extreme ones, there are two angles @ and & = 7 —
2¢ — «a, under which cross-linkers can bind, see Figs. 1 and 2. Then the twofold
integration domain is given by the intersection of both conditions (86) and (87) yielding
s_ (g, S) <5 < si(p, S) with

. d L
s+ (o, S)::I:mm( - ,—:I:S) . (88)
sing 2

Transformation into the «-parametrization, using the property
d
ds =cos(p + o) — da (89)
sin ¢

gives a well-determined integration domain {« € A, s} and a ‘symmetry-map’ & — &
with the property sin(¢ + &) = sin(¢ + «), so that both angles belong to the same
binding site s and that any of the integral representations with a kernel g = g, («) as
in Egs. (43)—(45) can be written as a twofold integral over s, expressed by the sum of
two integrands, namely g, () and g, (&):

5+(9.5)

- /ggo(a)da: / 80(@) + 8y(@) ds
sin ¢ cos(¢ + o)
Ag.s s—(9,5)
d T @) + 8@
8y() + gy
= — ——dr. 90
sin ¢ NI ' ©0)
r—(9.S)
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In the last integral transformation we have used the substitution of s in (4) by the
‘normalized’ variable

sin

s 1)

r=sin(p +o) =

with integration domain limited by

sin

$)=minl1, ¢ (g4 L 92

ri (o, )—mm[ " ( +2)] (92)
_ _ sin ¢ _£

r—(e, S) —maxl 1, p (S 2)] . (93)

In dependence of the occurring angles &, & =7 — ¢ —a and & = 7 — 2¢ — o with
the properties & = @ + ¢ and @ = o — ¢ we can state the following formulas for the
trigonometric functions, by using the subsidiary function Q, := +/1 —r2,

sin@ = sing = r

COSA = — COS& = -0,

sine =rcosg — Q,sing; cosa =rsing + Q,cosg

sin@ =rcosg + Q,sing; cosa =rsing — Q,cosg.
With the aid of these formulas the integral in (90) over r for any of the torque and
force representations in Sect. 3 can be explicitly calculated in terms of the integration
limits. For computing the torque, for instance, in the case of infinitely long filaments
the virtual rotation was performed around the intersection point, which now has to be

replaced by the mass center. Thus, using a generalized version of (41) provides the
following integral representation for the total torque onto filament I'":

r

Q(¢,3)=//(s—5)9i-1<fd§ds
r

_ hem /kw(oz)( 4 sin&—s)sinaq(&)q(a)da. (94)
sin ¢

Similar representations can be obtained for the forces F!l and F*.
Let us define the second auxiliary function G, = %(arcsin(r) —r Q), being an
odd function on the maximal integration interval [—1, 1] with infinite slope at r = %1

and flat asymptotics G, ~ %;3 near r = (. Then we obtain for
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Example A(i) with infinitely stiff cross-linkers:

cosp( d 1 S
sing 210 = Grwsl = 110 4.9 = Crw.9] ).

Q(p, S) = =20

sin ¢

I 2o
Fl(p,$) = _7[Qr_(g0,S) — Ori0.9]>

2K0 1
Fi(p,8) =-—
(.5 T tang

[Or (0,5 — Oriw.5]-

In general, the ODEs for the three dynamic variables ®(¢), S(#) and R(¢) can be taken
asin (51)—(53), now with the nonlinearities also depending on S(¢) and, clearly, on the
length L of the filament (including the inverse friction coefficients). The consequence
is that now the first two differential equations constitute a nonlinearly coupled ODE
system:

do

s (@, ), 95
ar o 2(P, S) 95)
ds s

22 A Fg(@,8) = Fl(®, 8) + == FL(®,5). (96)
dt tan ¢

The corresponding plots of the torque (¢, S) and ‘shift force’ Fg(p, S) are
depicted in Fig. 13. A nonzero shift force does only appear for larger values of |S]|
and small intersection angles (Fig. 13b), when cross-linkers only ‘pull’ at one side
of the finite filament. For discussing the more complex plot of the torque (Fig. 13a),
we show its contour map in Fig. 14a and the section profile at S = 0 in Fig. 14b.
The latter shows that pure rotational motion of the finite filament behaves similar as
shown in Sect. 3, see Fig. 4a, but only as long as the intersection angle is so large
that the binding sites of active cross-linkers lie on the interior of the filament, namely
L - |sin ®| > 2d. As soon as the angle gets smaller, less cross-link combinations are
possible and the torque drastically falls to zero, but still linearly for sin¢ — 0:

Q(p, 0) ~ —sign(sinp)

cosg .
) min{1, G sing|/24}
%

I3
~—({—) cosg-sing.
(d) @ @

This means that, due to the finite filament length, the two alignment states ¢, = 0
and 7 are no longer singular points for the filament dynamics, they rather are regu-
lar asymptotically stable equilibria. Translated into the local analysis of the preceding
sections, the corresponding ‘sign-type’ degenerate ODE:s for z; or W, are now smoothed
in a specific manner, which is just induced by the model formulation for cross-link
action.

The changed filament dynamics due to finite length becomes even more prominent,
when the fixed filament is intersected by the moving one only for a small part at
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Fig. 13 a (upper picture) The torque Q2(¢p, S) and b (lower picture) the ‘shift force’ Fg(p, S) for a
finite moving filament of length L = 12 with cross-link length d = 1 using the model of the standard
Example A(i). Parameters are as in Fig. 7b

its rear end, since then S(¢) > 0. As can be seen in Fig. 15 (and also in Fig. 14a,
where the (®(#), S(¢)) trajectory is plotted into the contour diagram) the filament is
slowly pulled towards the fixed filament, with S(#) slowly decreasing, but first the
intersection angle gets wider, before finally the rapid rotational movement towards
antiparallel alignment takes place. In spite of the regularized singularity as discussed
above, the trajectory very rapidly reaches the asymptotic alignment state because of a
very fast exponential decay.

Finally, most interesting is a combination of the results in Sects. 4 and 5, namely
when implementing stochastic perturbations into the ODE-system (95) and (96) by
explicitly computing the corresponding noise amplitudes by (¢, S) in analogy to (72)—
(74). The properties of this full SDE system is currently explored and promises to
reproduce some more interesting phenomena for short filament interaction.
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(a) 10} l

51 —

Q. ,0)

Fig. 14 a Contour lines of the torque €2(¢p, S) together with a specific trajectory of Egs. (95)-(96), and
b profile of Q2 (¢, 0) for the situation when the intersection point is the mass center of the moving filament,
see the text for comparison with the corresponding plot in Fig. 4a

6 Summary and further applications

The most important feature of the presented continuum model, for the interaction
between stiff filaments, is the possibility to derive explicit local force kernels for a
variety of applicable cross-linking mechanisms, which then can be used to calculate
torques and translational forces between the ‘rods’ as explicit global integrals depend-
ing only on the geometric constellation. Clearly, this is valid only under the assumed
hypothesis that there is a continuum of potential cross-link binding sites and a pseudo-
stationary equilibrium in the Poisson process of binding and unbinding. However, not
only the mean binding strength in dependence of the geometric variables is condensed
into a deterministic model; also the stochastic fluctuations are modeled and simulated
according to an appropriate Gaussian noise kernel in the global integrals. Then, sto-
chastic integration provides explicit variance expressions for the additive stochastic
torques and forces, leading to a system of degenerate stochastic differential equations
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(a) 12 T T T T 3

10|
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-6t . . . . . 3
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Fig. 15 Deterministic dynamics of a finite moving filament on a fixed infinite filament (the x-axis) for
model A(i) with parameters and conditions as in Fig. 13. In a (upper picture) the filament finally aligns
antiparallelly, but the intersection angle 7 — ®; first increases towards /2 while the filament is pulled
down, before the angle rapidly adjusts to alignment, see the dark curve in b (lower picture) and Movie A15.
The convergence of &; — m as well as of the two other variables S; and R; towards a steady state is not
performed in finite time: due to the smoothed €2 function (see Fig. 14b) there remain tiny deviations that
are exponentially decreasing, though with a fast rate of order (L /d )3 = 123 in our case

(SDEs) for the filament variables (position and direction), which are coupled in the
realistic case of filaments with finite length.

The idealized assumption of infinitely stiff filaments can approximately be applied
to actin filaments, whose length is small compared to the directional persistence length
L pers ~ 15 um as estimated experimentally [7,21]. Thus for shorter filaments with
L ~ 1—5 pm the two-dimensional dynamics analysed and simulated in Sect. 5 should
reflect typical properties of the observed stochastic pair interaction.

Clearly, our simplified model is restricted to situations, where the load forces onto
each single cross-linker are so small (X 30pN) that its conformational state and the
dissociation rate of its actin binding site are not altered. Indeed, for higher forces
a-actinin and filamin dimers undergo subsequent steps of polymer unfolding, thus
elastic relaxation, see [25,27].
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Moreover, in the presented derivation of local force kernels we assume that the
stiff cross-linkers (as e.g. myosin oligomers) apply forces only in direction of their
‘connection vector’. However, many cross-linking polymers could be bent or twisted
(as filamin, fascin or a-actinin) and thus could exert torque moments onto the attached
filaments (see e.g. [22,30]). Under suitable model assumptions on the type and angular
dependence of cross-linker micromechanics, analogous explicit kernels for the cor-
responding forces (K, and K in our notation) can then be derived. Obviously, the
resulting degenerate differential equations could have different asymptotics and reveal
a variety of other convergence and fluctuation properties.

Finally, as described in Sect. 3, the temporal scaling of our model postulates a
rapid association and dissociation of cross-linkers at the actin binding sites, so that
cross-link connections between two filaments only stay for fractions of seconds or a
few microseconds, while the parameter functions ¢ (o) measure the angle-dependent
association constants of the pseudo-stationary binding process. Thus, any filament
motion with relative translational or angular speeds, v/L and €2, in the range below
1/second will not experience any significant frictional resistance by cross-links, rather
by the dominating viscous drag forces appearing in the deterministic and stochastic
differential equations. However, near the alignment singularity, singp = 0, at least
analytically there appear infinitely large speeds, so that in a reasonable model exten-
sion the frictional coefficients could be chosen as 1/A(p) ~ 1 + €qo/| sin ¢|, where
the additional term would be proportional to the relative amount of bound cross-links.
Then the slightly changed stochastic differential equation for ¢ would still be degen-
erate (now with m = 1 in Lemma 2), but it would reveal a more smoothed fluctuation
dynamics, thus better applicable to the observed filament behavior. Indeed, experi-
mental observations with short actin filaments moving on a longer one that is fixed
to a coated substrate, should be analysed under different myosin concentrations, in
order to test theoretical predictions similar to Sect. 5, now for the modified model.
Moreover, a true model regularization resulting in bounded filament velocities may
be achieved by introducing friction terms that depend non-linearly on the angular
speed.

As one advantage of our simplified model we have demonstrated a thorough asymp-
totic analysis around the singular states of parallel and antiparallel alignment, from
which some basic properties of the stochastic processes can be quantitatively extracted.
Moreover, the presented regularization procedures are also used for consistent numer-
ical procedures to simulate the degenerate stochastic dynamics, which reveals typical
properties of actin filament sliding in the case that ‘contractile’ myosin oligomers act
as cross-linkers.

As a further advantage, the explicitly computable (deterministic and stochastic)
integrals could be easily used for more realistic worm-like-chain (WLC) models of
longer semi-flexible filaments, if just applied to all possible pair interactions between
piecewise straight segments of the discretized filaments. The resulting numerical algo-
rithms, which reflect the approximative pseudo-stationary cross-linking process, could
well compete with so far used ‘molecular dynamics’ simulations that uses multi-
particle methods to represent individual cross-linkers (see e.g. [18]), particulary when
applied to whole networks of interacting filaments as they currently are observed in
experiments, see [2], for instance.
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Moreover, for the real three-dimensional biological system of semi-flexible actin
filaments, most of the two-dimensional dynamic properties presented here can be car-
ried over and used as a basic description for more generalized interaction model: There
is an additional degree of freedom not only in filament rotation and bending, but also in
parametrizing the space angles of cross-link binding. Finally, we hope that an applica-
tion of our approach, namely to derive explicit local interaction kernels from detailed
molecular mechanisms on a microscale, could give an input to the improvement or
new development of more physiological (than purely phenomenological) continuum
models for thermodynamical and fluid dynamical theories of polymer networks (see
e.g. [3] or [12]), particularly for modeling and simulating the contractile actin-myosin
cytoskeleton in biological cells (see [14]).
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