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Abstract

We investigate geometric curvature energies on closed curves involving integral versions of Menger
curvature. In particular, we prove geometric variants of Morrey-Sobolev and Morrey-space imbedding
theorems, which may be viewed as counterparts to respective results on one-dimensional sets in the
context of harmonic analysis.
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1 Introduction

Let γ : S1 → R3 be a continuous, closed and rectifiable curve, with an arclength parametrization Γ : SL
∼=

R/LZ → R3, defined on the circle of length L. For three different arclength parameters s, t, σ ∈ SL we
look at the radius R(Γ(s),Γ(t),Γ(σ)) of the smallest circle containing the curve points Γ(s), Γ(t), and
Γ(σ), which in general is simply the circumcircle of these points. Now we ask the question:

How much information about the shape of γ and about its arclength parametrization Γ can be extracted
from suitable evaluations of R on all triples of distinct curve points?

The answer is: quite a lot, that is, sufficient control on R along γ both allows us to control local
curvature and gives us information about how the curve is embedded in the ambient space R3. In fact, the
function R gives rise to a whole range of what we call geometric curvature energies with regularizing and
self-avoidance effects.

It was the idea of Gonzalez and Maddocks [GM99] to successively search for the smallest such radii
while varying one or several of the three curve points. In this way, one obtains for fixed arclength parame-
ters s, t ∈ SL the intermediate radius

%[γ](s, t) := inf
σ∈SL\{s,t}

R(Γ(s),Γ(t),Γ(σ)), (1.1)

or for fixed s ∈ SL the so-called global radius of curvature

ρG[γ](s) := inf
t∈SL\{s}

%[γ](s, t), (1.2)

and finally,
4[γ] := inf

s∈SL

ρG[γ](s). (1.3)

Motivated by analytical and computational issues arising in the natural sciences such as microbiology
Gonzalez and Maddocks were on the search for an analytically tractable notion of thickness for curves that
does not rely on additional smoothness assumptions as, e.g., the normal injectivity radius in differential
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geometry requires. Indeed, a positive thickness 4[γ] leads to embedded curves with bounded curvature,
which is reflected in the following theorem proved in [GMSvdM02, Lemma 2], [SvdM03a, Thm. 1]:

4[γ] is positive if and only if the arclength parametrization is injective and of class C1,1 ∼= W 2,∞.

The latter means that Γ is not only continuously differentiable but has also a Lipschitz continuous tan-
gent, which is equivalent to having bounded second weak derivatives of Γ in the sense of Sobolev. This re-
sult was the starting point for a number of variational applications involving curves or elastic rods with pos-
itive thickness and under topological constraints [GMSvdM02], [CKS02], [GL03], [GeM08], [GevdM08].
However, the thickness 4[·] depends not only highly nonlinearly but also in a nonsmooth fashion on the
curve γ, a fact which turned out to be a challenge for regularity investigations [SvdM03b], [SvdM04],
[CFK+04], and for numerical treatment [CLMS05], [CPR05], [ACPR05].

Replacing the minimization in (1.3) by an integration one obtains a relaxed variant of a geometric
curvature energy, namely

Up(γ) :=
(∫

SL

ds

ρG[γ](s)p

)1/p

, p ∈ [1,∞], (1.4)

where we notice that U∞(γ) = 1/4[γ]. In [StvdM07, Thm. 1] we could prove the following generalization
of the above mentioned characterization of embedded Sobolev curves:

Up is finite if and only if the arclength parametrization Γ is injective and of class W 2,p for p ∈ (1,∞].

Moreover, quantitative estimates allow for variational applications in the class of embeddings involv-
ing topological constraints analogous to those treated in [GMSvdM02]. For instance, we could show the
existence of Up-minimizing curves in given knot classes; see [StvdM07, Thm. 5].

Substituting the remaining minimizations in (1.2) and (1.1) by integrations (as already suggested in
[GM99] and [BGMM03]) we establish in the present paper the following results which may be viewed as
“geometric Morrey-Sobolev imbedding theorems”. In fact, one may view the integrands as p-th powers of
(a kind of) curvature, i.e. as counterparts of |Γ′′|p, and one should notice the dimension of the respective
domain of integration.

Theorem 1.1 (Geometric Morrey-Sobolev imbedding in two dimensions). If the curve γ : S1 → R3

satisfies

Ip(γ) :=
∫

SL

∫
SL

dsdt

%[γ](s, t)p
< ∞ for some p ∈ (2,∞], (1.5)

then the arclength parametrization Γ : SL → R3 is injective and of class C1,1− 2
p (SL, R3).

Theorem 1.2 (Geometric Morrey-Sobolev imbedding in three dimensions). If γ : S1 → R3 satisfies

Mp(γ) :=
∫

SL

∫
SL

∫
SL

dsdtdσ

Rp(Γ(s),Γ(t),Γ(σ))
< ∞ for some p ∈ (3,∞], (1.6)

and if Γ : SL → R3 is a local homeomorphism, then:

(i) Γ ∈ C1,1− 3
p (SL, R3),

(ii) The image Γ(SL) is C1-diffeomorphic to the circle, and the mapping Γ : SL → Γ(SL) is a k-fold
covering for k = L/d, where

d := inf{|t− s| : t, s ∈ SL, t 6= s and Γ(t) = Γ(s)} > 0. (1.7)

Moreover, if there exists, in addition, at least one simple point of Γ, then Γ is injective.
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The considerably more complicated statement of Theorem 1.2 reflects the fact that the pure integral ge-
ometric curvature energy Mp(·) controls merely the image of γ, which can be only transferred to regularity
statements about the arclength parametrization Γ under the mild additional assumption of a local home-
omorphism. The more restrictive energy Ip(·) inflicts direct control over the arclength parametrization
due to the one minimization procedure left in the definition of %[γ](·, ·) in (1.1). This distinction between
Mp and Ip can be illustrated by choosing a “bad” arclength parametrization Γ̃ : [0, 4π] → S1 of the unit
circle S1 oscillating back and forth about one image point: Γ̃ has a discontinuous tangent with countably
many discontinuities, and Ip(Γ̃) is infinite because of the double points (cf. examples in Section 3.2). The
energy Mp(Γ̃), however, is finite, since the integrand is constant and Γ̃ has finite length; see Section 3 for
the details.

Both, Theorem 1.1 and Theorem 1.2 follow via Hölder’s inequality from the following more general
result using only a local squared curvature condition, which can be interpreted as a “geometric Morrey-
space imbedding”:

Theorem 1.3 (Geometric Morrey-space imbeddings). Assume that there are constants β ∈ (0, 1], r0 > 0,
and M0 ≥ 0 such that γ : S1 → R3 satisfies one of the following two conditions (where we denote
Br(x) := (x− r, x + r) ⊂ SL):

(i) ∫
Br(τ1)

∫
Br(τ2)

dsdt

%[γ](s, t)2
≤ M0r

2β for all r ∈ (0, r0], and τ1, τ2 ∈ SL; (1.8)

(ii) ∫
Br(τ1)

∫
Br(τ2)

∫
Br(τ3)

dsdtdσ

R2(Γ(s),Γ(t),Γ(σ))
≤ M0r

1+2β (1.9)

for all r ∈ (0, r0], τ1, τ2, τ3 ∈ SL,

and, in addition, the arclength parametrization Γ : SL → R3 is a local homeomorphism.

Then Γ ∈ C1,β(SL, R3) and Statement (ii) of Theorem 1.2 holds true as well.

The assumption that Γ be a local homeomorphism is necessary to control the behaviour of the para-
metrization. Even without this assumption we can say more about the image Γ(SL).

Theorem 1.4. Assume that there are constants β ∈ (0, 1], r0 > 0, and M0 ≥ 0 such that the curve γ
satisfies (1.9). Then Γ(SL) is an embedded 1-dimensional submanifold of R3 (possibly with boundary) of
class C1,β .

Theorems 1.2, 1.3, and 1.4 have interesting counterparts in the framework of harmonic analysis. Here,
it was Melnikov’s and Verdera’s [Mel95], [MelV95] discovery that the geometric curvature energy Mp for
p = 2 – called the total Menger curvature1 – evaluated on one-dimensional Borel sets in the complex plane
served as a crucial quantity to characterize removable sets for bounded analytic functions; consult also the
surveys [Ma98], [Ma04], [V01], [P02]. It follows from the work of Jones, and David and Semmes [DS91]
(see [P02, Thm. 39]) in that context that Ahlfors regular one-dimensional Borel sets E ⊂ C with∫ ∫ ∫

(E∩Br(ξ))3

dH 1(x)dH 1(y)dH 1(z)
R2(x, y, z)

≤ M0r for all r ∈ (0, r0], ξ ∈ C, (1.10)

are uniformly rectifiable, i.e., are contained in the graph of a bi-Lipschitz map f : R → C. This resembles
our geometric Morrey-space imbedding, Theorem 1.3, and also Theorem 1.4, on the level of (generally
disconnected) one-dimensional sets. The Morrey-Sobolev imbedding, Theorem 1.2, on the other hand,

1Coined after the Austrian mathematician Karl Menger who considered the circumcircle radius formula purely in terms of dis-
tances to generalize differential geometric concepts such as curvature to general metric spaces; see [Men30], [BlM70].
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can be compared to Léger’s remarkable result [Le99] stating that one-dimensional Borel sets E ⊂ Rn with
finite total Menger curvature M2(E) < ∞ are in fact 1-rectifiable in the sense of geometric measure theory.
That is, such sets E are essentially contained in a countable union of Lipschitz graphs2. These relations
to deep results of harmonic analysis generate a set of new questions such as: What regularity does the
arclength parametrization of curves with finite Mp-energy possess if p ∈ [2, 3]? Under what circumstances
do one-dimensional Borel sets E with Mp(E) < ∞, p > 3, enjoy higher regularity? What about higher-
dimensional analogues? Let us point out that a generalization of thickness4[·] to two-dimensional surfaces
with arbitrary co-dimension was introduced and investigated in [StvdM05], [StvdM06]. A generalization
of total Menger curvature M2(·) to higher-dimensional sets was recently initiated in [LW08a, LW08b]. In
an ongoing research project we are investigating geometric curvature energies Mp(·) for hypersurfaces;
see the upcoming paper [StvdM08].

The central tool to prove Theorem 1.3 will be a “Uniform cone flatness theorem”, Theorem 2.3 stated
in Section 2 and proven in Section 5. It says that a curve with a local curvature condition (1.9) is locally
contained in arbitrarily narrow cones, which can be interpreted as a “geometric differentiability”, since it
implies the existence of a tangent line at every point of γ. This opens up the pathway to proving uniform
control of local injectivity of Γ (see Proposition 2.7 and Corollary 2.8) as well as to prove differentiability
of Γ everywhere with a uniform estimate on the Hölder norm of Γ′; see Theorem 2.10. Moreover, one can
use Theorem 2.3 to obtain compactness results for families of curves with uniformly bounded Mp-energy
for some p > 3. This opens the door to variational applications on embedded curves with topological
constraints; see Section 4.

Section 3 is devoted to the self-avoidance effects that the local curvature conditions (1.8) and (1.9)
imply. Assuming (1.9) and using the uniform cone flatness and its consequences, we prove there that
Γ(SL) is a 1-dimensional embedded topological manifold in R3 (Theorem 3.1) and the embedding has to
be tame (cf. Remark 3.2). Under the additional assumption that Γ is a local homeomorphism, two things
can happen. Either Γ has at least one simple point; then, we prove in Theorem 3.5 that Γ is in fact injective.
Otherwise, if there are no simple points of Γ, then Γ is a covering map. We establish this fact in Theorem
3.6. Finally, we show that assumption (1.8) is stronger than (1.9) and implies that Γ must be injective.

The more technical proof of the Uniform cone flatness theorem is carried out in Section 5, whereas
Section 6 contains subtle measure-theoretic and iterative arguments to improve the Hölder exponent of
the derivative Γ′ to reach the full statement of Theorem 1.3. Combining higher smoothness of Γ with
the fact that Γ(SL) is a topological manifold leads quickly to the proof of Theorem 1.4. Finally, in Sec-
tion 7 we show that it is possible to state and prove all the main results of the paper assuming only that∫

Br

∫
Br

∫
Br

1
R ≤ K0r

2+β (which, by virtue of the Hölder inequality, is weaker than (1.9)).

Acknowledgements. Special thanks go to Mariano Giaquinta who made possible that the first and the
third author could spend some time in the Spring of 2008 at the Centro di Ricerca E. de Giorgi at the
Scuola Normale di Pisa. We also thank Joan Verdera, whom we met there, for several fruitful discussions
about the relations to harmonic analysis. This research was supported by the DFG and MNiSW.

Last but not least, we are grateful to the anonymous referee of an earlier version of this paper. Due to
her or his suggestion, our first proofs of Theorems 1.1 and 1.2 have been substantially reworked, which
made possible to include Theorem 1.3 in this paper.

2 Uniform cone flatness and differentiability

2.1 Notation

We introduce here some notation and additional conventions which will be used throughout the whole
paper.

2Generalizations of this result to metric spaces were proved by Hahlomaa [Ha05a], [Ha05b]; see also recent work of Schul
[Schu06]. For Borel sets of fractal dimensions p/2, 0 < p < 2, we refer to the work of Lin and Mattila [LM00].
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The curve and its parametrization(s). As already mentioned in the introduction, γ : S1 → R3 always
is a continuous, closed and rectifiable curve; we use capitalization to denote its arclength parametrization
Γ : SL

∼= R/LZ → R3, defined on the circle SL of length L. We make no other a priori assumptions on γ.
To fix the terminology, we adopt the following

Definition 2.1. We say Γ : SL
∼= R/LZ → R3 is arclength iff Γ is Lipschitz and |Γ′| = 1 almost

everywhere on SL.

Note that we do not require Γ to be 1–1. Sometimes it will be convenient to abuse slightly the notation
and to identify γ with the image Γ(SL) ⊂ R3. It will turn out later on that γ = Γ(SL) is a manifold so that
one can always use another (injective) arclength parametrization of γ.

Cones, strips and diamonds. For x 6= y ∈ R3 and ε ∈ (0, π
2 ) we denote by

Cε(x; y) := {z ∈ R3 : ∃ t 6= 0 such that <)(t(z − x), y − x) <
ε

2
}

the double cone whose vertex is at the point x, with cone axis passing through y, and with opening angle ε.
For a 6= b ∈ R3 we introduce the open infinite “strip”

U(a, b) = {v ∈ R3 : 〈v − a, b− a〉 > 0, 〈v − b, a− b〉 > 0}

and the closed half space
H+(a, b) = {v ∈ R3 : 〈v − a, b− a〉 ≥ 0}.

For technical reasons it is convenient to use cones with specific opening angles ε depending on a, b and the
curve γ, given by

ε(a, b, γ) :=
(
c(β)M0

) 1
6−4β |a− b|

2β
6−4β . (2.1)

Here, β ∈ (0, 1] and c(β) denotes the constant from Theorem 2.3 (see (5.20) for its exact value). For this
value of ε we shall use the abbreviation

D(a, b) := Cε(a,b,γ)(a, b) ∩ Cε(a,b,γ)(b, a). (2.2)

Finally, we set
DU (a, b) := D(a, b) ∩ U(a, b). (2.3)

which is a diamond shaped region with tips a and b on the two parallel planes bounding the strip U(a, b).
We shall be using the sets (2.2) and (2.3) only for points a, b ∈ γ that are sufficiently close to guarantee
that ε(a, b, γ) < π/2.

Lenses and doughnuts. For a 6= b ∈ R3 and r > 0, we write

`(a, b; r) : =
⋂
{Br : a, b ∈ ∂Br} (2.4)

to denote the “lens-shaped” region which is formed by the intersection of all open balls Br of radius r that
contain both points a, b on their boundary ∂Br. We also write

V (a, b; r) : =
⋃
{Br : a, b ∈ ∂Br} (2.5)

to denote the “thick (degenerate) doughnut” formed by the union of all such balls.

Finally, let us note two simple facts which are used very often in the estimates.

Lemma 2.2 (Angle bounds). The following estimates hold:

(i) If x, y ∈ DU (a, b), then ∣∣∣∣ x− a

|x− a|
− y − a

|y − a|

∣∣∣∣ ≤ ε(a, b, γ). (2.6)

(ii) If x ∈ `(a, b; r), then

<)
(

x− a

|x− a|
,

b− a

|b− a|

)
≤ arc sin

|a− b|
2r

. (2.7)
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2.2 Uniform cone flatness

Numerous properties of classes of rectifiable curves γ satisfying the local curvature condition (2.8) — like
the differentiability of their arclength parametrizations Γ, Hölder continuity of Γ′, but also the fact that
under a mild additional assumption each such arclength parametrization Γ must be either injective or a
k-fold covering — are based on the following crucial result.

Theorem 2.3 (Uniform cone flatness). Assume that there are constants β ∈ (0, 1], r0 > 0, and M0 ≥ 0,
such that∫

Br(τ1)

∫
Br(τ2)

∫
Br(τ3)

ds dt dσ

R2(Γ(s),Γ(t),Γ(σ))
≤ M0r

1+2β for all 0 < r ≤ r0, and τ1, τ2, τ3 ∈ SL.

(2.8)
Then there exists a constant c = c(β) > 1 depending only on β such that if two numbers, ε ∈ (0, π/2) and
η > 0, satisfy the relation

ε6−4β ≥ c(β)M0η
2β and η ≤ min{ 1

2diam Γ(SL), r0}, (2.9)

then for every s, t ∈ SL such that |Γ(s)− Γ(t)| = η we have

Γ(SL) ∩B2η(Γ(s)) ⊂ Cε(Γ(s); Γ(t)).

Remark 2.4. When
Mp(γ) =

∫
SL

∫
SL

∫
SL

dx dy dz

Rp(Γ(x),Γ(y),Γ(z))
< ∞

for some p > 3, then assumption (2.8) is satisfied with β = 1− 3
p and M0 = 23(1− 2

p )M
2
p

p (γ). This follows
easily from the Hölder inequality for exponents p/2 and p/(p− 2), since∫
Br(τ1)

∫
Br(τ2)

∫
Br(τ3)

dx dy dz

R2(Γ(x),Γ(y),Γ(z))
≤
(
2r
)3(1− 2

p )
( ∫

Br(τ1)

∫
Br(τ2)

∫
Br(τ3)

dx dy dz

Rp(Γ(x),Γ(y),Γ(z))

)2/p

and 3(1− 2
p ) = 1 + 2(1− 3

p ). Similarly, if Ip(γ) < ∞ for some p ∈ (2,∞] then (2.8) holds true as well.

Remark 2.5. It seems that our technique of proof of the Uniform cone flatness theorem does not allow a
weakening of condition (2.8) with respect to the centers τ1, τ2, and τ3. We do need three different centers
for the balls in the domain of integration, in contrast to the corresponding result of Jones, David and
Semmes mentioned in the introduction; see (1.10). However, once we have shown initial Hölder regularity
of the tangent Γ′ with some Hölder exponent α ∈ (0, β) we can improve the Hölder exponent up to β using
a growth condition weaker than (2.8), namely growth on balls with coinciding centers; see (6.2).

Note also that for M0 = 0 the theorem is trivial since in that case γ must be a segment of a straight
line.

We postpone the proof of Theorem 2.3 for a while and discuss its consequences.
Since the statement of Theorem 2.3 is symmetric in the parameters s and t, we immediately infer

Corollary 2.6 (Diamond property I). Assuming (2.8) for β ∈ (0, 1], r0 > 0, and M0 ≥ 0, we obtain for
all x, y ∈ SL with

δ := |Γ(x)− Γ(y)| ≤ min
{

diam γ/2, r0, (c(β)M0 + 1)−1/2β
(π

2

) 6−4β
2β

}
(2.10)

the inclusion
Γ(SL) ∩B2δ(Γ(x)) ⊂ D(Γ(x),Γ(y)),

for
ε = (c(β)M0)

1
6−4β |Γ(x)− Γ(y)|

2β
6−4β .
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In order to prove that Γ′ exists everywhere, and to establish the global injectivity of Γ, we need to
impose an extra assumption on Γ (cf. the examples in Section 3). The following statement shall be useful.

Proposition 2.7 (Uniform local injectivity I). Assume that (2.8) holds for some constants β ∈ (0, 1],
r0 > 0, and M0 ≥ 0, and suppose that an arclength parametrization Γ of γ is a local homeomorphism.
There exists a δ0 = δ0(β, M0) > 0 such that if a closed interval I = [x1, x2] ⊂ SL satisfies

diam Γ(I) ≤ δ0,

then Γ |[x1,x2] is injective.

Since the arclength parametrization is Lipschitz with constant 1, this proposition implies the following

Corollary 2.8 (Uniform local injectivity II). If (2.8) holds for some constants β ∈ (0, 1], r0 > 0, and
M0 ≥ 0, and if Γ is a local homeomorphism, then Γ is injective on each interval I ⊂ SL with L 1(I) =
δ0(β, M0) > 0.

Proof of Proposition 2.7. Fix

δ0 = δ0(β, M0) :=
1
8

min
{

diam γ, r0, (c(β)M0 + 1)−1/2β
(π

4

) 6−4β
2β

}
, (2.11)

so that
ε0 : = (c(β)M0)

1
6−4β δ

2β
6−4β

0 <
π

4
. (2.12)

Choose any I = [x1, x2] ⊂ SL with diam Γ(I) ≤ δ0. Without loss of generality we suppose that x1 =
0 ∈ SL and Γ(x1) = 0 ∈ R3. To establish injectivity of Γ on I , we shall prove that f(t) := |Γ(t)− Γ(0)|
is strictly increasing on [0, x2].

Assume the contrary. Then f must have a local maximum (not necessarily strict) at some t0 ∈ (0, x2).
We can assume f(t0) > 0 since otherwise f ≡ 0 on an interval which is not possible since Γ is a local
homeomorphism. Note that f(t0) ≤ diam Γ(I) ≤ δ0.

In every neighbourhood of t0 we can find t1 6= t2 such that

Γ(t1), Γ(t2) ∈ ∂Bδ(0) ∩H+(0,Γ(t0)),

for some 0 < δ = |Γ(ti)− Γ(0)| ≤ f(t0) ≤ δ0 (i = 1, 2). By Corollary 2.6, we have

Γ(SL) ∩B2δ(0) ⊂ D(0,Γ(t1)).

Recall from (2.2) that D(0,Γ(t1)) = Cε(0,Γ(t1),γ)(0,Γ(t1))∩Cε(0,Γ(t1),γ)(Γ(t1), 0) with ε(0,Γ(t1), γ) ≤
ε0 defined in (2.12).

Hence, again by Corollary 2.6,

Γ(t2) ∈ Γ(SL) ∩ ∂Bδ(0) ∩H+(0,Γ(t0))
⊂ D(0,Γ(t1)) ∩ ∂Bδ(0) ∩H+(0,Γ(t0))
= {Γ(t1)}.

Thus in every neighbourhood of t0 there exist different points t1, t2 such that Γ(t1) = Γ(t2). This contra-
dicts the assumption that Γ is a local homeomorphism. �

Combining Corollary 2.6 and 2.8 we obtain another

Corollary 2.9 (Diamond property II). Under the assumptions of Corollary 2.8, we have

Γ
(
(x, x + t)

)
⊂ DU

(
Γ(x),Γ(x + t)

)
for each x ∈ SL and each t ∈ (0, δ0(β, M0)).
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Now we are ready to prove the existence and continuity of the derivative of every arclength parametri-
zation of any curve satisfying the local curvature condition (2.8).

Theorem 2.10. Assume that (2.8) holds for some constants β ∈ (0, 1], r0 > 0, and M0 ≥ 0, and that the
arclength parametrization Γ : SL → R3 of the curve γ : S1 → R3 is a local homeomorphism. Then Γ′ is
defined everywhere on SL, and there is a constant CΓ depending on diam γ, r0, β, and M0, such that

|Γ′(s)− Γ′(t)| ≤ CΓ|s− t|
2β

6−4β for all s, t ∈ SL. (2.13)

Moreover, for |s− t| ≤ δ0(β, M0) inequality (2.13) holds with CΓ = (c(β)M0)
1

6−4β .

Proof. First we chose x ∈ SL and 0 < t < δ0 = δ0(β, M0) (where δ0 is the number from Proposition 2.7
and Corollary 2.8) such that Γ′(x),Γ′(x + t) exist and have length 1. By Corollary 2.9 we have

Γ((x, x + t)) ⊂ DU (Γ(x),Γ(x + t)).

Hence, for any two points x1, x2 such that x < x1 < x2 < x + t the difference quotients

Γ(x1)− Γ(x)
x1 − x

and
Γ(x2)− Γ(x + t)

x2 − (x + t)

belong to the same double cone with opening angle ε(Γ(x),Γ(x + t), γ) ≤ ε0 defined by (2.12). This
observation implies that Γ′(x) and Γ′(x+t) (which are unit vectors!) differ at most by ε(Γ(x),Γ(x+t), γ);
see Lemma 2.2.

Therefore,
|Γ′(x)− Γ′(y)| ≤

(
c(β)M0

) 1
6−4β |x− y|

2β
6−4β , (2.14)

for all x, y ∈ SL such that |x− y| ≤ δ0 and Γ′(x), Γ′(y) exist.
Next, a standard calculation shows that

|Γ′(x)− Γ′(y)| ≤ C̃(β, M0)|x− y|
2β

6−4β .

also for pairs of parameters x, y ∈ SL with |x− y| > δ0, and where the derivatives exist. Hence, Γ′ has a
unique Hölder continuous extension to the whole parameter circle SL satisfying the same Hölder estimate,
i.e. (2.13) for

CΓ := max{(c(β)M0)
1

6−4β , 2δ0(β, M0)−
2β

6−4β }. (2.15)

As Γ is Lipschitz, we have Γ(t) − Γ(s) =
∫ t

s
Γ′(τ) dτ for all parameters s, t ∈ SL. Therefore, it is a

routine matter to check that this extension yields the derivative of Γ at each point of SL. �

3 The image of Γ, self-avoidance, injectivity

3.1 The image of Γ and its topological properties

In this section we prove that every curve Γ which satisfies the assumptions of the Uniform cone flatness
theorem (Thm. 2.3) is an embedded topological submanifold of R3 and, if Γ is injective in addition, it is
tame (cf. Remark 3.2 below). In particular, by Remark 2.4, simple curves with finite Mp-energy, p > 3,
are tame. This fact is comparable with the corresponding result of Freedman, He, and Wang [FHW94,
Sec. 4]) for the Möbius energy, only that their proof is more involved due to lack of regularity.

Theorem 3.1. Assume that Γ: SL → R3 satisfies the assumptions of Theorem 2.3. Then, γ = Γ(SL) is a
1-dimensional topological submanifold of R3 (possibly with boundary), i.e., γ is homeomorphic to a circle
or a closed segment.
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Proof. It suffices to show that for each point P ∈ γ there exists an open neighbourhood Ω ⊂ R3 containing
P such that Ω ∩ γ is homeomorphic to the open interval (−1, 1) where 0 ∈ (−1, 1) corresponds to P ,
or such that Ω ∩ γ is homeomorphic to the interval [0, 1) again with 0 ∈ [0, 1) corresponding to the
(boundary point) P. The proof of this fact is based on the Uniform Cone Flatness theorem and its immediate
consequences.

We fix P ∈ γ. Let δ0 ≡ δ0(β, M0) > 0 be defined by (2.11), and let B := Bδ0(P ).
Invoking connectivity of γ and applying Corollary 2.6 for ε = π/4, we see that there exists a point

Q ∈ γ ∩ ∂B such that Q is connected to P by an arc γPQ ⊂ B of γ; we have

γ ∩B ⊂ Cπ/4(P,Q) ∩ Cπ/4(Q,P )

and
γPQ ⊂ H+(P,Q).

For sake of brevity, let H+ := H+(P,Q) and H− := R3 \ intH+. Theorem 2.3 guarantees that

(i) For each r ∈ (0, δ0), the intersection γ ∩H+ ∩ ∂Br(P ) contains precisely one point of γ.

(ii) For each r ∈ (0, δ0), the intersection γ ∩H− ∩ ∂Br(P ) contains at most one point of γ.

Indeed, since r < δ0, (2.9) is satisfied for η := r and ε := π/4. Suppose (say) that

Q1, Q2 ∈ γ ∩H+ ∩ ∂Br(P );

then, by Corollary 2.6,

{Q2} ⊂ Cπ/4(P,Q1) ∩ Cπ/4(Q1, P ) ∩ Cπ/4(P,Q).

Thus, we necessarily have Q2 = Q1. Moreover, (i) holds since the arc γPQ joins P to Q ∈ ∂B and is
contained in H+. Now, two cases may happen.

Case 1. There exists a number δ ∈ (0, δ0] such that

γ ∩H− ∩ ∂Br(P ) 6= ∅ for each r ∈ (0, δ]. (3.1)

Case 2. For every number δ ∈ (0, δ0] we have

γ ∩H− ∩ ∂Br(P ) = ∅ for some r ∈ (0, δ]. (3.2)

If Case 2 holds, then — since γ is connected — we have in fact

γ ∩H− ∩ ∂Br(P ) = ∅ for each r ∈ (0, r1], (3.3)

where r1 is some positive number in (0, δ0).
It is now straightforward to check that if (3.1) holds, then γ ∩ Bδ(P ) is homeomorphic to the interval

(−δ, δ), and if (3.3) holds, then γ ∩ intBr1(P ) is homeomorphic to the interval [0, r1) and P is one of the
boundary points of γ. (To verify the details, take the obvious mapping

f(Q) =
{

r for Q ∈ ∂Br(P ) ∩H+,
−r for Q ∈ ∂Br(P ) ∩H−.

It is clear that f is well defined and continuous. If the inverse f−1 =: g were discontinuous, one could
obtain a sequence rj → r such that all points Qj = g(rj) were at least at some positive distance from
Q = g(r). A contradiction follows from Corollary 2.6 (Diamond property I): Q would not belong to the
diamonds with vertices at Qj and P for j sufficiently large, but this is impossible. �
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Remark 3.2. Recall that a simple closed curve Γ: SL ↪→ R3 is tame if the embedding Γ: SL = SL ×
{0} ↪→ R3 extends to an embedding of SL × B2

r (0) u SL × R2 ↪→ R3. Equivalently, the embedding
Γ: SL ↪→ R3 is tame if an ambient isotopy deforms the curve into some polygonal (embedded) curve in
R3. Let us note that every simple closed curve Γ: SL ↪→ R3 which satisfies (2.8) is tame since Γ ∈ C1

according to Theorem 2.10.(See the book of Crowell and Fox, [CF77, pp.147–152] who prove that every
simple arclength parametrized C1 curve is ambient isotopic to a regular embedded polygon.) It is an easy
exercise to give another simple proof of tameness of Γ by constructing directly the desired extension of the
embedding, where one can use the fact that Γ is C1 and, like [FHW94] do, refer to a result of Bing stating
that every locally tame arc is tame.

The assumption that Γ be simple (or closed) is of course not a serious restriction here. It follows from
Theorem 3.1 that each curve Γ: SL → R3 which satisfies (2.8) has an injective arclength parametrization,
and for this new parametrization an argument based on [CF77] works again: the arc Γ(SL) is tame.

3.2 Examples of ‘bad’ parametrizations

It is clear that if Γ: SL → R3 is an arclength mapping, then (2.8) depends in fact only on the shape of the
image of Γ. This is why without some extra assumption Γ might be nondifferentiable at some points.

Let
F (s) = (cos s, sin s, 0) for s ∈ [0, 2π].

Example 1. If ϕ(t) = π − |π − t| for t ∈ [0, 2π], then Γ := F ◦ ϕ : S2π → R3 is arclength. Obviously,
Mp[Γ] is finite for every p > 0, (2.8) is satisfied for β = 1, and γ = Γ(SL) is a smooth 1-dimensional
manifold with boundary (simply: a doubly covered semicircle), but Γ is not differentiable at t = π, since
Γ is not a local homeomorphism.

Example 2. Assume that A ⊂ [0, 4π] is a H 1-measurable subset such that H 1(A) = 3π and moreover

H 1(A ∩ [0, x]) ≥ x

2
for all x ∈ [0, 4π]. (3.4)

Set gA(x) := 2χ
A(x)−1 (i.e. gA ≡

1 on A and gA ≡ −1 off A), and

ΦA(t) : =
∫ t

0

gA(x) dx (3.5)

(see the figure left; here, A is simply a
union of several disjoint intervals). It is
easy to see that ΦA maps [0, 4π] onto
[0, 2π], ΦA(0) = 0, ΦA(4π) = 2π
and Φ′

A(t) = ±1 for almost every t ∈
[0, 4π]. The map Γ := F ◦ ΦA is ar-
clength, γ = Γ(S4π) is a circle, Mp[Γ]
is finite for every p > 0, and (2.8) holds

with β = 1. However, Γ is not differentiable everywhere (again, the reason is that Γ is not a local homeo-
morphism).

3.3 Locally homeomorphic parametrizations

A parameter s ∈ SL is called a simple point of Γ if Γ(t) 6= Γ(s) for every t ∈ SL, t 6= s. If s ∈ SL is not
a simple point, we call it a multiple point; we say that s ∈ SL is a point of multiplicity k if the cardinality
of the set {t ∈ SL : Γ(t) = Γ(s)} is equal to k.

It is easy to see that if Γ is a local homeomorphism, then all points s ∈ SL have finite multiplicity.
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Lemma 3.3. If Γ is a local homeomorphism then the set of all multiple points of Γ is compact.

Proof. Since SL is compact, it is enough to show that the set of all multiple points of Γ is closed.

Let {xn}∞n=1 be a convergent sequence of multiple points and let x = limn→∞ xn. We will show that
x is also a multiple point.

For every n there exists a point yn 6= xn such that Γ(xn) = Γ(yn). By continuity of Γ we have

Γ(xn) −−−−→
n→∞

Γ(x) and Γ(yn) −−−−→
n→∞

Γ(x).

Compactness of SL provides existence of a convergent subsequence ynk
. Let y = limk→∞ ynk

; by conti-
nuity of Γ, we have Γ(ynk

) → Γ(y). Of course Γ(x) = Γ(y). In order to prove the lemma it suffices to
show that x 6= y.

Suppose that x = y. Then sequences xnk
, ynk

tend to x, thus for every δ > 0 we can find k such that
xnk

, ynk
∈ [x − δ, x + δ] and Γ(xnk

) = Γ(ynk
). Therefore Γ is not injective in any neighbourhood of x.

That contradicts the assumption that Γ is a local homeomorphism. �

Lemma 3.4. Assume that (2.8) holds for some constants β ∈ (0, 1], r0 > 0, and M0 ≥ 0, and suppose
that Γ is a local homeomorphism. If 0 ≤ y < x < L are such that |x − y| < δ0, where δ0 is given by
(2.11), then

Γ(SL) ∩DU (Γ(x),Γ(y)) ⊆ Γ([y, x]).

Remark. This Lemma simply means that locally, in every set DU (Γ(x),Γ(y)), there are no points of γ
besides those that belong to the arc Γ([y, x]).

Proof. Let t ∈ SL \ [y, x] be a point whose image belongs to DU (Γ(x),Γ(y)). Set δ := |Γ(x) − Γ(t)|.
Corollary 2.9 applied to Γ((y, x)) guarantees that

A : = Γ([y, x]) ∩ ∂Bδ(Γ(x)) ∩DU (Γ(x),Γ(y)) 6= ∅.

Let s ∈ [y, x] be a parameter such that Γ(s) belongs to the set A defined above. Then |Γ(t) − Γ(x)| =
|Γ(s)− Γ(x)| = δ and Corollary 2.9 applied to Γ((s, x)) implies that

Γ(t) ∈ Γ(SL) ∩ ∂Bδ(Γ(x)) ∩ DU (Γ(y),Γ(x))
⊂ Γ(SL) ∩ DU (Γ(x),Γ(s)) ∩ ∂Bδ(Γ(x))
= {Γ(s)}.

Thus Γ(t) = Γ(s) ∈ Γ([y, x]). �

Theorem 3.5. Assume that (2.8) holds for some constants β ∈ (0, 1], r0 > 0, and M0 ≥ 0, and suppose
that the arclength parametrization Γ : SL → R3 of γ : S1 → R3 is a local homeomorphism. If there exists
at least one simple point of Γ then Γ is injective.

Proof. Suppose that Γ is not injective. Let x̃ be a given simple point; choose a multiple point y which is
nearest to x̃ (the existence of y follows from Lemma 3.3). Without any loss of generality we can assume
that y, x̃ ∈ [0, L), y < x̃, Γ(y) = 0, and the interval (y, x̃] consists only of simple points of Γ. As y is a
multiple point, we have Γ(y) = Γ(z) = 0 for some z 6= y.

We can select a simple point x ∈ (y, x̃] such that

|x− y| < δ0 = δ0(β, M0)

with δ0(β, M0) as in (2.11). Set r = |Γ(x)|, then r > 0 since x is a simple point.
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Let δ1, δ2 be the largest positive numbers such that Γ((z − δ1, z)),Γ((z, z + δ2)) ⊂ Br(0) ⊂ R3. By
Corollary 2.6,

Γ((z − δ1, z + δ2)) ⊂ D(0,Γ(x)) ∩Br(0).

Moreover Γ((z − δ1, z + δ2)) \ {0} has empty intersection with DU (0,Γ(x)). Indeed, Lemma 3.4 implies
that

Γ((z − δ1, z + δ2)) ∩DU (0,Γ(x)) ⊂ Γ([y, x]),

but (y, x] consists only of simple points and therefore its image under Γ cannot contain any images of
parameters that are close to z. Thus

Γ((z, z + δ1)) ⊆ Γ(SL) ∩Br(0) ∩H+(0,Γ(z − δ2))

and by Corollary 2.6 we obtain

Γ((z, z + δ1)) ⊆ Γ(SL) ∩DU (Γ(z − δ2), 0).

Now Lemma 3.4 gives Γ([z, z + δ1]) = Γ([z− δ2, z]). However this contradicts the assumption that Γ is a
local homeomorphism. �

Theorem 3.6. Assume that the curve γ : S1 → R3 satisfies (2.8) for some β ∈ (0, 1], r0, and M0 ≥ 0,
and suppose that Γ: SL → R3 is a local homeomorphism and (locally) an arclength parametrization of γ
which has no simple points. Then the following statements are true:

(i) Γ(SL) is C1-diffeomorphic to the circle;

(ii) Γ is d-periodic on SL, where

d : = inf{|t− s| : t, s ∈ SL, t 6= s and Γ(t) = Γ(s)} > 0; (3.6)

moreover, Γ: SL → Γ(SL) is a k-fold covering for k = L/d.

We know from Remark 2.4 that finite Mp-energy of γ for some p > 3 implies the validity of assumption
(2.8) in Theorem 3.6. Consequently the two statements above are true for any finite energy curve γ with
a locally homeomorphic arclength parametrization that has no simple points. In addition we can combine
Fubini’s theorem with the fact that Γ is a k-fold, d-periodic covering to show

Corollary 3.7. Assume that Mp(γ) < ∞ for some p > 3 and that Γ: SL → R3 is a local homeomorphism
and (locally) an arclength parametrization of γ which has no simple points. Then

Mp[Γ, SL] = k3 Mp[Γ1, SL1 ], (3.7)

where L1 := d = L/k and Γ1 : SL1 → R3 is defined by setting Γ1(x) := Γ(x) for x ∈ [0, L1).

Proof of Theorem 3.6. For clarity, the whole proof is divided into several steps.

Step 0. Preparation. Consider the number d defined by (3.6). Hereafter, d will be referred to as the
minimal spacing (of multiple points of Γ).

It is an easy exercise to use compactness of SL and the fact that Γ is a local homeomorphism to check
that d indeed is positive and moreover d is achieved, i.e., there are two distinct points x1, x2 ∈ SL such
that

x2 − x1 = dist (x1, x2) = d, Γ(x1) = Γ(x2) = P ∈ R3 .

Without loss of generality, composing Γ with a rotation of SL and translation in the image if necessary, we
assume that P = 0 and

Γ−1(P ) = {x1, x2, . . . , xk}, where 0 = x1 < x2 < . . . < xk < L. (3.8)
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Our general aim will be to show that L = kd and that Γ is d-periodic on SL. This readily implies the
desired conclusion.

Step 1. Two small arcs of Γ to the right of x1 and x2 coincide. We choose n > 1 such that

r : =
d

n
<

1
2
δ0 ≡

1
2
δ0(β, M0) (3.9)

with δ0 as in (2.11).

Let δi, θi for i ∈ {1, 2} be the largest positive numbers satisfying

Γ((xi − θi, xi + δi)) ⊂ Br(0) for i ∈ {1, 2}.

Let Ij = [xj − θj , xj + δj ], j = 1, 2. Corollary 2.6, Lemma 3.4, and the assumption that Γ is a local
homeomorphism imply

Γ(I1) = Γ(I2).

Moreover, by Proposition 2.7, Γ is injective on each of the intervals Ij , and one of the following possibilities
holds: either

Γ((x1 − θ1, x1)) = Γ((x2 − θ2, x2)) and Γ((x1, x1 + δ1)) = Γ((x2, x2 + δ2)) (3.10)

or
Γ((x1 − θ1, x1)) = Γ((x2, x2 + δ2)) and Γ((x1, x1 + δ1)) = Γ((x2 − θ2, x2)). (3.11)

But (3.11) cannot hold since it would imply that Γ(x1 + δ1) = Γ(x2 − θ2) which is impossible since d
is the minimal spacing of multiple points. (It is easy to use injectivity of Γ on Ij to see that in fact we
have x1 < x1 + δ1 ≤ x2 − θ2 < x2; the possibility x1 + δ1 < x2 − θ2 contradicts the definition of d,
whereas x1 + δ1 = x2 − θ2 combined with the second equality of images in (3.11) shows that Γ cannot be
a homeomorphism in any neighbourhood of x1 + δ1.)

Thus, (3.10) must hold. Injectivity of Γ on Ij combined with the fact that Γ is an arclength parametriza-
tion, gives now δ1 = δ2.

Fix an arbitrary t ∈ (0, δ1) and consider the point Γ(x1 + t). It belongs to the image of [x2, x2 + δ1],
thus we have Γ(x1 + t) = Γ(x2 + t2) for some t2 ∈ (0, δ1). Since Γ(x2 + ·) is injective on (0, δ1) and
|Γ′| = 1, we must have t2 = t (the measures of two coinciding arcs are equal).

Note now that we have δ1 = δ2 ≥ r. Thus, we have proved the following claim.

Claim 1. If x1 < x2 ∈ SL belong to the preimage of the same point in Γ(SL) and their distance |x2 − x1|
is equal to the minimum spacing d, then

Γ(x1 + t) = Γ(x2 + t) for all t ∈ [0, r],

where r is given by (3.9).

We are now ready to move step by step along the parameter domain to reach the desired conclusion.

Step 2. Induction, first part. We apply Claim 1 to x1 + r and x2 + r (this can be done since these are
again two points in SL that are mapped by Γ to the same point in R3 and their distance is equal to the
minimum spacing d). This yields

Γ(x1 + r + t) = Γ(x2 + r + t) for all t ∈ [0, r].

Iterating this procedure finitely many times, we obtain

Γ(x1 + t) = Γ(x2 + t) for all t ∈ [0, d]. (3.12)
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If k = 2, we are done. Otherwise, since x2 = x1 + d, we see that x2 + d is another point in SL with
Γ(x2 + d) = P = Γ(x3). Minimality of d gives now x2 + d = x3.

Step 3. Induction, second part. We repeat the whole Step 1 and Step 2 with x3 (resp. x2) replacing x2

(resp. x1) to obtain the following:

Γ(x1 + t) = Γ(x2 + t) = Γ(x3 + t) for all t ∈ [0, d].

Easy finite induction yields L = kd,

xj = x1 + (j − 1)d for all j = 1, 2, . . . , k,

and
Γ(t) = Γ(t + d) for all t ∈ SL.

Obviously (again by minimality of d) Γ is injective on each of the intervals [xj , xj + 1) and each of them
is mapped to the whole image of Γ. This completes the proof of Theorem 3.6. �

3.4 Self-avoidance for intermediate energies

In our earlier paper [StSzvdM07, Prop. 2.1] we have proved that closed curves γ which satisfy Ip(γ) < ∞
for some p ≥ 2 have to be simple (cf. (1.5) for the definition of Ip). Here, for the sake of completeness,
we prove a slightly stronger result which shall be used later, in Section 5, to prove Theorem 1.3 under
Assumption (i).

Proposition 3.8. Assume that there are constants β ∈ (0, 1], r0 > 0 and K0 ≥ 0 such that γ : S1 → R3

satisfies ∫
Br(τ1)

∫
Br(τ2)

ds dt

%[γ](s, t)
≤ K0r

1+β for all r ∈ (0, r0], and τ1, τ2 ∈ SL. (3.13)

Then γ is simple, i.e., its arclength parametrization Γ: SL → R3 is injective.

Remark. It is easy to check that, by Schwarz inequality, (1.8) implies (3.13) with K0 = 2M0
1/2. If

Ip(γ) < ∞ for some p > 2, then (3.13) with β = 1 − 2
p and K0 = 4(p−1)/p(Ip(γ))1/p follows from

Hölder inequality.

Proof. We follow the proof from [StSzvdM07] and argue by contradiction. Assume that Γ(0) = 0 = Γ(s1)
for some s1 ∈ SL \ {0}. Let Γ1 : = Γ

(
[0, s1]

)
and Γ2 : = Γ

(
[s1, L]

)
. Since Γ is the arclength parametri-

zation of γ, it has no intervals of constancy. Thus,

d : = min(diam Γ1,diam Γ2) > 0.

We consider the portion of γ contained in Bd/4(0). Choose four parameters: σ1, σ2 ∈ (0, s1) and t1, t2 ∈
(s1, L) such that

σ1 < σ2, t1 < t2 and Γ(σ1), Γ(σ2), Γ(t1), Γ(t2) ∈ ∂Bd/4(0).

Now, fix a number ε ∈ (0, d
12 ) which is smaller than the smallest gap between 0, σ1, σ2, s1, t1, t2, and L in

the natural ordering on SL.

Take s ∈ (0, ε) ⊂ SL. If Γ(s) = 0, we set A(s) : = (0, s) ⊂ SL. In this case, since Γ(s) = Γ(0) = 0,
we have %(s, σ) ≤ |Γ(σ)|/2 < s for all σ ∈ A(s), and

H 1(A(s))
%[γ](s, σ)

> 1 for all σ ∈ A(s). (3.14)
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Next, suppose that Γ(s) 6= 0. Then we set

A(s) : = {σ ∈ (s1 − ε, s1 + ε) | Γ′(σ) exists and Γ(σ) ∈ B|Γ(s)|(0)} . (3.15)

For each σ ∈ A(s) consider the open diameter ball DB(s, σ) defined as follows:

DB(s, σ) : = Br(a) for r : =
|Γ(s)− Γ(σ)|

2
, a : =

Γ(s) + Γ(σ)
2

.

Two cases are possible now.

Case 1. Γ intersects ∂DB(s, σ) transversally at Γ(σ). Then we can find a parameter t ∈ SL, t close to σ,
such that the point Γ(t) ∈ DB(s, σ). Since Γ(σ2),Γ(t1) ∈ ∂Bd/4(0) and since , by the choice of ε and σ,
we have

DB(s, σ) ⊂⊂ B3ε(0) ⊂⊂ Bd/4(0),

there exists a parameter τ ∈ [σ2, t1] which is different from σ and satisfies Γ(τ) ∈ ∂DB(s, σ). Thus,

%[γ](s, σ) ≤ R
(
Γ(s),Γ(σ),Γ(τ)

)
=

|Γ(s)− Γ(σ)|
2

≤ |Γ(s)| as Γ(σ) ∈ B|Γ(s)|(0). (3.16)

(Notice that by definition of R one has %[γ](s, σ) ≥ |Γ(s) − Γ(σ)|/2 which together with (3.16) implies
%[γ](s, σ) = |Γ(s)− Γ(σ)|/2 in this case.)

Case 2. Γ touches ∂DB(s, σ) at Γ(σ), i.e. Γ′(σ) ⊥ (Γ(σ)− Γ(s)). In this case, take a ball B = Br′ with
radius r′ slightly larger than that of DB(s, σ) and such that Γ(s),Γ(σ) ∈ ∂Br′ . Any such sphere ∂Br′ is
intersected transversally by Γ at Γ(σ). Mimicking the reasoning for Case 1, one checks that %[γ](s, σ) ≤ r′.
Taking the infimum over all r′ > |Γ(s)− Γ(σ)|/2, we obtain

%[γ](s, σ) ≤ |Γ(s)|

also in this case.

Now, for each s ∈ (0, ε) ⊂ SL with Γ(s) 6= 0 we have

H 1(A(s)) ≥ min{2|Γ(s)|, 2ε} = 2|Γ(s)| > |Γ(s)|

since Γ is differentiable a.e. and Γ(s1) = 0. Thus, condition (3.14) holds also when |Γ(s)| 6= 0, i.e. when
A(s) is defined as in (3.15). Therefore,

K0ε
1+β

(3.13)
≥

∫
Bε(0)

∫
Bε(s1)

dσ ds

%[γ](s, σ)
≥
∫ ε

0

∫
A(s)

dσ ds

%[γ](s, σ)

(3.14)
≥

∫ ε

0

1 ds = ε.

This yields K0ε
β ≥ 1, a contradiction when ε ∈ (0, d

12 ) is sufficiently small. The proof of Proposition 3.8
is complete now.

4 Families of curves with equibounded energy

In this section we show that families of simple closed curves which have equibounded Mp-energy for some
p > 3 are compact in the C1-topology. This is another consequence of Theorem 2.3. We begin with an
explicit translation of this theorem to the setting of curves with finite Mp-energy.
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Corollary 4.1 (Uniform cone flatness II). Assume that p > 3 and that Γ: SL → R3 satisfies Mp(γ) < K.
There exists a constant c = c(p, K) > 1 depending only on p and K such that if two numbers, ε ∈ (0, π/2)
and η > 0, satisfy the relation

εp+6 ≥ c(p, K)ηp−3 and η ≤ 1
2
diam Γ(SL), (4.1)

then for every s, t ∈ SL such that |Γ(s)− Γ(t)| = η we have

Γ(SL) ∩B2η(Γ(s)) ⊂ Cε(Γ(s); Γ(t)). (4.2)

Proof. It follows from the Hölder inequality, cf. also Remark 2.4, that a curve γ with Mp(γ) ≤ K satisfies
the assumptions of Theorem 2.3 with β = 1− 3

p , r0 = L/2 and

M0 = 23(1− 2
p )Mp(γ)2/p ≤ 8(K + 1) .

Therefore, one can easily check that for β = 1 − 3
p inequality (2.9) in Theorem 2.3 is equivalent to (4.1).

Corollary 4.1 follows. �

To prove that families of curves with equibounded energy are precompact in the C1 topology, we need
two auxiliary results. The first one ascertains that an upper bound for the Mp-energy of a curve γ implies
a lower bound for the diameter of γ.

Lemma 4.2. Assume that p > 3. For each 0 < K < ∞ there exists a constant Θ = Θ[p, K] > 0,
depending only on p and K, such that whenever Γ: SL → R3 satisfies Mp[Γ] ≤ K, then we have

diam Γ(SL) ≥ Θ[p, K] .

Proof. Fix Γ with Mp[Γ] ≤ K. Set ε1 := π
8 and

Θ[p, K] := 2ε
(p+6)/(p−3)
1 c(p, K)1/(3−p) . (4.3)

From now on argue we by contradiction. Assume that diam Γ(SL) =: d < Θ[p, K]. Let η1 := d/2. Then
ε1 and η1 satisfy

εp+6
1 ≥ c(p, K)ηp−3

1 and η1 ≤
1
2
diam Γ(SL),

so that we are allowed to use (4.2) for appropriate pairs of points of the curve.

Now, fix two points s, σ ∈ SL such that |Γ(s) − Γ(σ)| = d = diam Γ(SL). Obviously, Γ(SL)
must be then contained in the closure of the strip U := U(Γ(s),Γ(σ)). Pick t ∈ SL such that Γ(t) ∈
U ∩ ∂Bη1(Γ(s)) and use (4.2) for the points Γ(s) and Γ(t), replacing ε, η by ε1, η1, to see that Γ(σ) must
belong to the closure of the cone Cε1(Γ(s); Γ(t)).

Thus, the angle between Γ(t)−Γ(s) and Γ(σ)−Γ(s) must be smaller than ε1/2. However, the tangent
Γ′(s) is perpendicular to Γ(σ)−Γ(s) since otherwise Γ(SL) would contain points at some positive distance
from U , and its diameter would be too large. Hence, an arc of Γ(SL) close to Γ(s) cannot be contained in
the cone Cε1(Γ(s); Γ(t)), which is a contradiction to the Uniform cone flatness theorem, Corollary 4.1. �

Theorem 4.3. Assume that p > 3 and Γ: SL → R3 is a simple curve with Mp(γ) ≤ K. There exists a
constant C0 = C0(p, K), depending only on p and K, such that

|Γ′(s)− Γ′(t)| ≤ C0(p, K)|s− t|α for all s, t ∈ SL,

where α = (p− 3)/(p + 6) ∈ (0, 1).
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Proof. This follows from a careful inspection of the proof of Theorem 2.10. We know, cf. the proof of
Corollary 4.1, that Γ satisfies the assumptions of the Uniform cone flatness theorem with

M0 := 8(K + 1), β := 1− 3
p
, r0 := L/2.

As Γ is 1–1, Theorem 2.10 yields existence and Hölder continuity of Γ′: we have

|Γ′(s)− Γ′(t)| ≤ CΓ|s− t|α for all s, t ∈ SL,

where α = 2β
6−4β = (p− 3)/(p + 6) and the constant CΓ, cf. (2.15), is given by

CΓ := max{(c(β)M0)
1

6−4β , 2δ0(β, M0)−
2β

6−4β }

with δ0(β, M0), cf. (2.11), defined as

δ0 = δ0(β, M0) :=
1
8

min
{

diam γ, r0, (c(β)M0 + 1)−1/2β
(π

4

) 6−4β
2β

}
.

Since c(β), the constant from Theorem 2.3, depends only on β = 1 − 3
p , and diam γ ≥ Θ[p, K] > 0 by

Lemma 4.2, we have δ0 ≥ d0(p, K) for some positive constant d0(p, K) which depends only on p and K.
Thus, we have CΓ ≤ C0(p, K), where C0(p, K) depends only on p and K. �

Corollary 4.4. Assume that K, L > 0 and p > 3. Let Q be a fixed point in R3. If a family of rectifiable
simple closed curves γj : S1 → R3 satisfies

Q ∈ γj(S1) and H 1(γj) = L for all j, and sup
j=1,2,...

Mp(γj) ≤ K, (4.4)

then there exists ν0 = ν0(p, K) > 0 such that the arclength parametrizations Γj of γj satisfy

|Γj(s)− Γj(t)| ≥ min
(
ν0,

|s− t|
2

)
for all j and all s, t ∈ SL. (4.5)

Moreover, the family of functions Γ′j : SL → S2 ⊂ R3 is equicontinuous and {Γj} contains a subsequence
{Γjk

} which for jk → ∞ converges in the C1-topology to a simple arclength parametrized closed curve
Γ ∈ C1,(p−3)/(p+6)(SL, R3) with Q ∈ Γ(SL).

Proof. The proof is very similar to the proof of Corollary 3.3 in [StSzvdM07]; we provide the details for the
sake of completeness. Since the γj are simple, their arclength parametrizations are injective. The existence
of a convergent subsequence of Γj follows easily from Theorem 4.3 and the Arzela–Ascoli compactness
theorem. Once (4.5) is established, injectivity of the limit curve Γ follows from (4.5) upon passing to the
limit jk →∞.

Thus it is enough to prove (4.5). Consider gj ∈ C1(SL × SL) given by

gj(s, t) : = |Γj(s)− Γj(t)|2 .

Since the Γj are uniformly bounded in C1,α, α = (p−3)/(p+6), it is easy to show that there is a constant
ν1 = ν1(p, K) > 0 such that

gj(s, t) ≥
|s− t|2

4
for all j and all s, t such that |s− t| ≤ ν1(p, K); (4.6)

see e.g. Lemma 6.2, for details. Since Σ = SL × SL \ {(s, t) : |s− t| < ν1(p, K)} is compact, we find for
each j a pair (sj , tj) ∈ Σ such that

gj(sj , tj) ≤ gj(s, t) for all (s, t) ∈ Σ.



Integral Menger curvature 18

Now, we either have |sj − tj | = ν1(p, K) in which case (4.6) implies

gj(s, t) ≥
ν1(p, K)2

4
for all s, t ∈ Σ, (4.7)

or we have ∇gj(sj , tj) = 0, which is equivalent to

Γ′j(sj) ⊥
(
Γj(sj)− Γj(tj)

)
and Γ′j(tj) ⊥

(
Γj(sj)− Γj(tj)

)
. (4.8)

For each j, this implies that Γj(SL) ∩ [Bηj (Γj(sj)) ∩ Bηj (Γj(tj))] is not contained in the intersection
Cπ/4(Γj(sj); Γj(tj)) ∩ Cπ/4(Γj(tj); Γj(sj)), where ηj := |Γj(sj) − Γj(tj)|. (The reason is that an arc
of γj is tangent to the line which is perpendicular to to the common axis of the two cones.) By virtue of
Corollary 4.1 for ε := π/4 in combination with Lemma 4.2 this means, however, that

gj(s, t) ≥ |Γj(sj)− Γj(tj)|2 = η2
j

> min

1
4
(diam Γj(SL))2,

[
(π/4)

p+6
p−3

(c(p, K))
1

p−3

]2


≥ min

1
4
Θ(p, K)2,

[
(π/4)

p+6
p−3

(c(p, K))
1

p−3

]2


=: ν2(p, K) > 0 for all j ∈ N, (s, t) ∈ Σ. (4.9)

Summarizing (4.9), (4.7), and (4.6), we obtain (4.5) with ν0 : = min
{
ν1(p, K)/2,

√
ν2(p, K)

}
.

�

Remark 4.5. It turns out that in Corollary 4.4 we have Mp(Γ) ≤ lim infjk
Mp(Γjk

) ≤ K. This follows
from the continuity of R(·, ·, ·) at triples of pairwise distinct non-collinear points in R3 and from Fatou’s
lemma.

Remark 4.6. As a possible variational application we mention a counterpart of [StSzvdM07, Thm. 3.4]:
the minima of Mp-energy are achieved in prescribed knot (or isotopy) classes. Set

CL,k := {γ ∈ C0(S1, R3) : length (γ) = L, γ isotopic to k},

where k is a given representative of a particular tame knot or isotopy class. Mimicking the proof from
[StSzvdM07], one shows that CL,k contains an arclength parametrized curve Γ ∈ C1,α(SL, R3) ∩ CL,k,
α = (p − 3)/(p + 6), such that Mp(Γ) = infCL,k

Mp(·). (The key point is that Corollary 4.4 may be
combined with the stability of isotopy classes under C1 convergence.)

It is also clear that the inequality Mp(γ) ≤ K might be used as a side condition for other one-
dimensional variational problems for curves or rods (similar to those treated in [GMSvdM02] using the
global curvature constraint 4[γ]−1 ≤ K instead), also when one needs to fix the knot class.

5 Proof of the uniform cone flatness theorem

This Section is devoted to the proof of Theorem 2.3.

We may assume that s = 0 and Γ(0) = 0. Fix 0 < ε < π/2 and η > 0 satisfying (2.9), and set

ηN :=
η

2N−1
and rN :=

100N2

ε
ηN for N = 1, 2, . . . (5.1)
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Since η ≤ diam γ/2 we can pick points pN = Γ(tN ) ∈ ∂BηN
(0) where we set t1 := t so that p1 = Γ(t).

To investigate the location of Γ(SL) close to 0 ∈ R3, for each of the points pN we consider three sets:

`N : = `(0, pN ; rN ), VN : = V (0, pN ; rN ), (5.2)

(cf. Subsection 2.1 for the definition of lenses and doughnuts), and finally

KN : = B2ηN
(0) \ VN . (5.3)

Before proceeding further, let us explain the rough idea of the proof. We will show first that for each
N = 1, 2, . . . the portion of γ contained in the ball B2ηN

(0) lies in the union of KN and `N with two
small balls centered at 0 and pN , respectively; thus, the situation depicted in Figure 1 below (where the
curve bends too much between pN and 0) cannot happen. Otherwise, we could find three distinct subarcs
A1, A2, A3 of γ such that every triangle with its three vertices on A1, A2, and A3, has interior angles well
separated from 0 and π. A tedious but in fact elementary computation shows these arcs would contribute
too much to the energy, contradicting (2.8).

Having confined the curve γ to the narrow sets for each N ∈ N allows us to send N to ∞ and to show
that the curve indeed flattens at 0; this proves the desired result.

Fig. 1 (this cannot happen). If γ leaves the lens `N but contains some points of VN \ `N sufficiently far away from 0
and pN , then the local energy is too large, due to the behaviour of R(·, ·, ·) for triples of points that belong to the pieces
of γ contained in the interior of the three tiny dark balls.

To make all this precise let αN denote the opening angle of the smallest cone with vertex at 0 containing
the lenticular region `N . In particular, one has

sin
αN

2
=

ηN

2rN
, (5.4)

and moreover, we set

hN : = dist
(

pN + Γ(0)
2

, ∂`N

)
= rN

(
1− cos

αN

2

)
, (5.5)

ϕN : = arc tan
2hN

ηN
, h̃N : = hN sinϕN . (5.6)

Finally, let δN be the smallest angle such that the cone CδN
(0; pN ) contains the union `N ∪ KN , i.e.,

δN = αN + 2α′N , where
α′N = arc sin

ηN

rN
= arc sin

ε

100N2
.
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Thus, since arc sinx ≤ πx/2 on [0, 1], we have

δN = αN + 2α′N and
∞∑

N=1

δN ≤ 3π

2

∞∑
N=1

ε

100N2
<

ε

2
. (5.7)

(See also Figures 2–4 below.)
Fig. 2 (see left). A plane passing through
two points 0 = Γ(0) and pN = Γ(tN ), lo-
cated at the centers of two tiny shaded balls
of radius hN in the middle part of the picture.
Big arcs represent the boundaries of two of
the balls of radius rN whose union is equal
to the doughnut VN . (Note: for ε small and N
large, the ratio rN/ηN is in fact much larger
than the figure shows.) Later on, see Claim 1
below and the details of its proof, we show
that γ ∩B2ηN (0) must in fact be contained in

`N ∪ BhN
(pN ) ∪ BhN

(0) ∪ KN

that is, in that portion of the ball B2ηN (0)
which is formed by rotation of the shaded re-
gion in Fig. 2 around the axis passing through
0 and pN .

Fig. 3 and 4. Enlarged parts of Fig. 2, show-
ing the location of 0 and pN , the distances
ηN , hN , h̃N , and the angles αN , ϕN that
are defined by (5.4)–(5.6).

The main tool in the proof of Theo-
rem 2.3 is the following

Claim 1. For each N = 1, 2, . . . the
following is true:

γ∩B2ηN
⊂ CδN

(0; pN )∪BhN
, (5.8)

where the two balls B2ηN
and BhN

are
centered at 0.

(Later on, applying (5.8) iteratively, one
can easily conclude the whole proof of
Theorem 2.3.)

To prove Claim 1, we need the follow-
ing elementary relations between the

distances hN , h̃N , ηN and rN , which can be easily derived from Taylor expansions of trigonometric func-
tions; see [StSzvdM07, Lemma 3.6] for details.

Lemma 5.1 (Relations between distances on Figs. 2–4). For all N = 1, 2, . . . we have

η2
N

4πrN
≤ hN ≤ η2

N

3rN
, (5.9)

h2
N

ηN
≤ h̃N ≤ 2h2

N

ηN
, (5.10)

hN

ηN
≥ ε

400πN2
. (5.11)
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The following two lemmas provide the key-estimates that will allow us to infer a large contribution to
the energy once there is a point not contained in the shaded narrow zone depicted in Figure 2.

Lemma 5.2 (Estimate of R(·, ·, ·) when Γ bends a lot). Fix N = 1, 2, . . . and suppose that for some
τ0 ∈ SL the point Γ(τ0) ∈ B2ηN

(0) but

Γ(τ0) 6∈ `N ∪BhN
(pN ) ∪BhN

(0) ∪KN .

Then for all parameters s ∈ Ã1 and σ ∈ Ã2, where

Ã1 = {s ∈ SL : Γ(s) ∈ Bh̃N /10(pN )},

Ã2 = {σ ∈ SL : Γ(σ) ∈ Bh̃N /10(0)},

we have
R(Γ(s),Γ(σ),Γ(τ0)) ≤ 4rN . (5.12)

In fact, we simply have R(q1, q2,Γ(τ0) ≤ 4rN whenever q1 ∈ Bh̃N /10(pN ) and q2 ∈ Bh̃N /10(0).

Proof. If τ0 satisfies the assumptions of Lemma 5.2, then there exists a unique point q ∈ R3 determined
by the following three conditions

(i) |q − pN | = |q| = rN ,

(ii) Γ(τ0) ∈ BrN
(q) \ `N ,

(iii) the four points Γ(τ0), q, pN and 0 are co-planar.

By elementary geometry,

αN

2
≤ β0 : = <)

(
pN − Γ(τ0),Γ(0)− Γ(τ0)

)
≤ π − αN

2
. (5.13)

(This is easy to see: draw two circles c1, c2 of radius rN , containing pN and 0 = Γ(0) and lying in the plane
determined by pN , 0 and Γ(τ0). Then, β0 = π − αN/2 when Γ(τ0) lies on the short arc of c1 connecting
pN to 0, and β0 = αN/2 when Γ(τ0) lies on the long arc of c1 connecting pN to 0. When Γ(τ0) is between
these two arcs, β0 takes some intermediate value.)

For s ∈ Ã1 and σ ∈ Ã2, let β(s, σ) denote the angle at Γ(τ0) in the triangle with vertices Γ(s),Γ(σ)
and Γ(τ0). We then have

|β(s, σ)− β0| ≤ β1 + β2, (5.14)

where

β1 : = <)
(
pN − Γ(τ0),Γ(s)− Γ(τ0)

)
, β2 : = <)

(
Γ(0)− Γ(τ0),Γ(σ)− Γ(τ0)

)
.

Since the distances of Γ(τ0) to pN and to 0 = Γ(0) exceed hN , and because s ∈ Ã1 and σ ∈ Ã2, we have

βi ≤ βmax, i = 1, 2,

where sinβmax = h̃N/10hN . Hence, using the basic estimate 2x/π ≤ sinx ≤ x,

βmax≤
π

2
sinβmax =

πh̃N

20hN

(5.10)
≤ πhN

10ηN

(5.9)
≤ πηN

30rN

(5.4)=
π

15
sin

αN

2
<

αN

8
.

Therefore, by (5.13) and (5.14), we obtain αN

4 ≤ β(s, σ) ≤ π − αN

4 and

sinβ(s, σ) ≥ sin
αN

4
. (5.15)
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Thus,

R(Γ(s),Γ(σ),Γ(τ0)) =
|Γ(s)− Γ(σ)|
2 sinβ(s, σ)

≤ 2ηN

2 sin(αN/4)

=
2ηN

sin(αN/2)
cos

αN

4
≤ 2ηN

sin(αN/2)
(5.4)= 4rN .

Lemma 5.3. If τ0 ∈ SL satisfies the assumptions of Lemma 5.2, then

R(Γ(s),Γ(σ),Γ(τ)) ≤ 4rN (5.16)

for all parameters

s ∈ A1 : = {s ∈ SL : Γ(s) ∈ Bh̃N /20(pN )},
σ ∈ A2 : = {σ ∈ SL : Γ(σ) ∈ Bh̃N /20(0)},
τ ∈ A3 : = {τ ∈ SL : Γ(τ) ∈ Bh̃N /20(Γ(τ0))}.

Proof. Note that for s ∈ A1, σ ∈ A2 and τ ∈ A3 we can shift the triangle with vertices Γ(s),Γ(σ) and
Γ(τ) by Γ(τ0)− Γ(τ), to obtain an adjacent triangle congruent to the original one with vertices q1, q2 and
Γ(τ0), where

q1 ∈ Bh̃N /10(pN ) and q2 ∈ Bh̃N /10(0)

by the triangle inequality. Now, we just invoke Lemma 5.2 to obtain

R(Γ(s),Γ(σ),Γ(τ)) = R(q1, q2,Γ(τ0)) ≤ 4rN . �

We are now ready for the crucial local energy estimate which proves Claim 1 by contradiction. Assume
that Claim 1 were false. Fix N ∈ N. Since

CδN
(0; pN ) ∪BhN

(0) ⊃ `N ∪BhN
(pN ) ∪BhN

(0) ∪KN , (5.17)

we would then find a parameter τ0 satisfying the assumptions of Lemma 5.3. Moreover, Lemma 5.1 implies

h̃N ≤
(5.10)

2h2
N

ηN
≤ 2η4

N

3ηNr2
N

=
2
3
· ε2ηN

1002N2

<
2
3
ηN ≤

(2.9)

2
3
r0.

Since by definition each Ai, i = 1, 2, 3, contains a ball Bi ⊂ SL of radius ρN := h̃N/20, we may apply
Assumption (2.8) to estimate

h2+4β
N

10η1+2β
N

≥
(5.10)

(
h̃N

20

)1+2β

= ρ1+2β
N ≥

(2.8)

1
M0

∫
B1

∫
B2

∫
B3

dτdσds

R2(Γ(s),Γ(σ),Γ(τ))

≥
(5.16)

1
M0

· (4rN )−2H 1(B1)H 1(B2)H 1(B3) (5.18)

=
(2ρN )3

42M0r2
N

≥
(5.10)

1
2M0r2

N

· h6
N

203η3
N

≥
(5.9)

h8
N

2 · 103M0η7
N

.
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This implies

200M0 ≥
h6−4β

N

η6−2β
N

=
(

hN

ηN

)6−2β

· 1

h2β
N

≥
(5.9)

1
(4π)6−2β

(
ηN

rN

)6−2β

32β

(
rN

η2
N

)2β

=
(5.1)

32β

(4π)6−2β

( ε

100N2

)6−2β
(

100N2

εηN

)2β

=
(5.1)

3002β

(400π)6−2β
· ε6−4βN8β−12

(
2N−1

η

)2β

,

or

200M0 ·
(400π)6−2β

3002β
· N12−8β

22β(N−1)
≥ ε6−4β

η2β
. (5.19)

Thus, for

c(β) := 4007π6 ·max
N∈N

N12

22β(N−1)
≥ 1 (5.20)

we have

1
2
c(β)M0 = 200M0 · (400π)6 ·max

N∈N

N12

22β(N−1)

≥ 200M0 ·
(400π)6−2β

3002β
·max

N∈N

N12−8β

22β(N−1)
as β ∈ (0, 1]

(5.19)
≥ ε6−4β

η2β
,

so that by Assumption (2.9) we obtain the desired contradiction

1
2
c(β)M0 ≥ ε6−4β

η2β
≥ c(β)M0. (5.21)

(Since η, ε > 0, the first inequality in (5.21) implies that M0 > 0; note that (2.8) holds with M0 = 0 iff
R ≡ ∞ for all triple of distinct nearby points of γ, i.e. when γ is a piece of a straight line — and then
Theorem 2.3 is obvious, anyway.)

Proof of Theorem 2.3 continued. Noting that hN < ηN and applying Claim 1 inductively, we obtain

Γ(SL) ∩B2η(0) ⊂ Cδ1+δ2/2+···+δN /2(0; p1) ∪BhN
(0), N = 2, 3, . . . (5.22)

since the axis of each of the successive cones lies in the preceding cone in the iteration.

As the series
∑

δN converges and its sum is smaller than ε by (5.7), this yields

Γ(SL) ∩B2η(0) ⊂ Cε(0; p1) ∪BhN
(0), N = 2, 3, . . .

Since hN → 0 for N → ∞, the intersection of all the sets Cε(0; p1) ∪ BhN
(0) is equal to the cone

Cε(0, p1). This completes the whole proof of Theorem 2.3.

6 From the local curvature conditions to higher regularity of Γ′

In this Section, we prove that rectifiable curves with local Menger energy decaying at least as fast as r1+2β

are of class C1,β .
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From now on, we assume that Γ ∈ Lip([0, L], R3) is an injective arclength parametrization of a recti-
fiable curve γ in R3 satisfying

|Γ′(s)− Γ′(t)| ≤ CΓ|t− s|α for all s, t ∈ [0, L] (6.1)

for some α < β.

(Note that if Γ is an arclength parametrization and the decay assumption (2.8) is satisfied, then Γ(SL)
is in fact, up to a homeomorphism, a circle or a segment. We simply reparametrize the curve in a 1–1 way;
(2.8) is obviously still satisfied and, due to the results of Section 2, the new parametrization — possibly
defined on a shorter interval, if the former Γ was badly chosen — is of class C1,α for α = 2β/(6−4β) ≤ β.
It does not really matter in this Section whether Γ(0) = Γ(L) or not.)

Instead of the local curvature condition (2.8) where one integrates over equally sized balls with three
different centers we are going to use the following weaker condition3: there exists an r0 > 0 and a constant
M0 such that

sup
0<r≤r0
τ∈SL

r−(1+2β)

∫
Br(τ)

∫
Br(τ)

∫
Br(τ)

dx dy dz

R2(Γ(x),Γ(y),Γ(z))
≤ M0 . (6.2)

Our aim will be to show that whenever Γ satisfies both (6.1) and (6.2), then Γ′ is of class Cβ(SL, R3).

To carry out the proof of this fact, we introduce some notation. For an interval J ⊂ SL, we write

osc
J

Γ′ := max
x,y∈J

|Γ′(x)− Γ′(y)|

and set
Φ(t) := sup

J⊂SL

H 1(J)≤t

(
osc

J
Γ′
)

for t ∈ [0, L]. (6.3)

The whole reasoning rests on the following key lemma.

Lemma 6.1. Assume that (6.1) and (6.2) hold. Then there exists a number δ1 = δ1(Γ, α, β) > 0 such that
for all N = N(α) > 4 with 6N−α < 1

2 we have

|Γ′(u)− Γ′(v)| ≤ 6Φ
(
|u− v|

N

)
+ c0|u− v|β (6.4)

whenever u, v ∈ [0, L] and |u− v| ≤ δ1. One can choose here c0 = const(α) ·M1/2
0 .

Remark. It is easy to note that this lemma implies Γ′ ∈ Cβ . Indeed, taking the supremum of both sides of
(6.4) with respect to t ∈ [|u− v|, δ1], leads to

Φ(t) ≤ 6Φ(t/N) + c0t
β for t ∈ [0, δ1].

Iterating this inequality and using 6N−β < 6N−α < 1/2, we easily obtain

Φ(t) ≤ 6kΦ(t/Nk) + c0t
β

∞∑
j=0

(
6N−β

)j ≤ 6kΦ(t/Nk) + 2c0t
β

for each k = 1, 2, . . .. Since we have assumed earlier that Γ′ ∈ Cα, we have Φ(t) ≤ CΓtα, and 6N−α < 1
2

by Lemma 6.1. This yields

Φ(t) ≤ 6kCΓ
tα

Nkα
+ 2c0t

β ≤ CΓ
tα

2k
+ 2c0t

β

3Our method of proof for the Uniform cone flatness theorem, Theorem 2.3 (see Section 5 for the proof) does not seem to work
under this weaker condition, we really do need three different centers in (2.8), compare with Remark 2.5
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for each k = 1, 2, . . .. Upon passing to the limit k →∞, we conclude that

Φ(t) ≤ 2c0t
β for all t ∈ [0, δ1].

The rest of this section is divided into two parts. First, we prove Lemma 6.1. Next, we show how to
assemble the proofs of all the theorems stated in the introduction, using Lemma 6.1 and the results of
Sections 2–3.

6.1 Proof of Lemma 6.1

We begin with a simple observation.

Lemma 6.2. Assume that

|Γ′(t)− Γ′(s)| ≤ CΓ|t− s|α, t, s ∈ SL .

Then for every λ ∈ (0, 1) there exists δ2 = δ2(λ, CΓ, α) > 0 such that

|Γ(t)− Γ(s)| ≥ λ|t− s| (6.5)

for all t, s ∈ SL with |t− s| < δ2.

Proof. Fix s ∈ SL and without loss of generality assume that Γ′(s) = (1, 0, 0). We then have

Γ′1(t) ≥ Γ′1(s)− |Γ′1(s)− Γ′1(t)| ≥ 1− CΓ|t− s|α ≥ λ

for all t satisfying

|t− s| < δ2 : =
(

1− λ

CΓ

)1/α

.

Thus, for such t,

|Γ(t)− Γ(s)| ≥ |Γ1(t)− Γ1(s)| =
∣∣∣∣∫ t

s

Γ′1(τ) dτ

∣∣∣∣ ≥ λ|t− s| ,

which completes the proof of Lemma 6.2. �

We fix N = N(α) > 4 such that 6N−α < 1
2 . Next, we choose several other constants as follows:

λ ≡ λ(N) := 1− 1
N2

(6.6)

c1 :=
1

3N

(
1
2
− 2

N

)
∈ (0, 1), c2 :=

1
2

(
c5
1

12M0

)1/2

, δ1 := min(δ2, c
1/β
2 , 1) > 0, (6.7)

where δ2 is the constant from Lemma 6.2. Fix u, v ∈ SL, u < v, |u − v| ≤ δ1. Note that, by Lemma 6.2
and the definition of δ1, we have

|Γ(s)− Γ(t)| ≥ λ|s− t| for all s, t ∈ [u, v]. (6.8)

Roughly speaking, the strategy of the proof is to find other parameters x, y ∈ [u, v] which are very
close to the endpoints of that interval and, due to energy bounds, are chosen so that |Γ′(x)−Γ′(y)| is much
smaller than one would presume knowing only that Γ′ ∈ Cα.

Let x, y ∈ [u, v] and let

Ix,y :=
{

[x, y] if x < y
[y, x] otherwise.
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We define the following sets of bad parameters:

Zx,y : = {z ∈ Ix,y : R(Γ(x),Γ(y),Γ(z)) ≤ c2|Γ(x)− Γ(y)|1−β} , (6.9)
Yx : = {y ∈ [u, v] : H 1(Zx,y) ≥ c1|Γ(x)− Γ(y)|} , (6.10)
X : = {x ∈ [u, v] : H 1(Yx) ≥ c1|u− v|} . (6.11)

Now, we estimate the measure of X using Assumption (6.2) on Menger curvature of Γ and two inequalities,

|Γ(x)− Γ(y)|−1 ≥ |x− y|−1 ≥ |u− v|−1 for all x, y ∈ [u, v], (6.12)

|Γ(x)− Γ(y)|2β ≥ λ2β |x− y|2β ≥ 1
4
|x− y|2β for all x, y ∈ [u, v]. (6.13)

(The second one follows from (6.8), as we have λ ∈ (1/2, 1) and 2β ≤ 2.) Using condition (6.2), we write

M0|u− v|1+2β ≥
∫ v

u

∫ v

u

∫ v

u

dx dy dz

R2(Γ(x),Γ(y),Γ(z))

≥
∫

X

∫
Yx

∫
Zx,y

dz dy dx

R2(Γ(x),Γ(y),Γ(z))

≥ c1

c2
2

∫
X

∫
Yx

|Γ(x)− Γ(y)|2β−1 dy dx (6.14)

(6.12), (6.13)
≥ c1

4c2
2

|u− v|−1

∫
X

∫
Yx

|x− y|2β dy dx .

To deal with the integral over Yx, we split it as∫
Yx

|x− y|2β dy =
∫

Yx∩{y>x}
(y − x)2β dy +

∫
Yx∩{y≤x}

|y − x|2β dy

and invoke the following simple fact for each of the two integrals.

If g : R+ → R+ is monotone increasing and Y ⊂ R+ is a bounded measurable set, then∫
Y

g(y) dy ≥
∫ H 1(Y )

0

g(t) dt .

Therefore, for every x ∈ X we have∫
Yx

|x− y|2β dy ≥ 1
2β + 1

H 1(Yx)2β+1 ≥ 1
3

(c1|u− v|)2β+1
.

Inserting this into the earlier estimates (6.14), we check that

M0|u− v|1+2β ≥ c1

4c2
2

|u− v|−1

∫
X

∫
Yx

|x− y|2β dy dx ≥ c4
1

12c2
2

|u− v|2βH 1(X) .

Hence,

H 1(X) ≤ 12c2
2M0

c4
1

· |u− v|

(6.7)=
1
4
c1|u− v| . (6.15)

For the sake of geometric considerations later on, we also note that

|Γ(x)− Γ(y)| ≤ c2|Γ(x)− Γ(y)|1−β for all x, y ∈ [u, v], (6.16)
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since for x, y ∈ [u, v] we have

|Γ(x)− Γ(y)| ≤ |x− y| ≤ |u− v| ≤ δ1 ≤ c
1/β
2 .

By (6.15), there exists a point x ∈ [u, v] \X such that |x − u| ≤ c1|u − v| ≤ 1
6N |u − v|. We fix such a

point x. By (6.11), H 1(Yx) < c1|u − v|, since x 6∈ X . Thus we can select another point y ∈ [u, v] \ Yx

such that |y − v| ≤ c1|u− v| ≤ 1
6N |u− v|.

Now, set r := c2|Γ(x)− Γ(y)|1−β and let

U := U(Γ(x),Γ(y)), V := V (Γ(x),Γ(y); r), `x,y := `(Γ(x),Γ(y); r)

We consider the following set of good parameters:

S := {s ∈ (x, y) : s 6∈ Zx,y, s 6∈ Yx, Γ(s) ∈ U}. (6.17)

To estimate the difference |Γ′(x) − Γ′(y)|, we need to show first that the image Γ(S) is contained in `x,y

and that S occupies a large portion of [x, y].

Claim 1. We have Γ(S) ⊂ V ∩ U .

Indeed, suppose there is a point s ∈ S with Γ(s) ∈ U \V . Then, the arc Γ
(
(x, y)

)
passes through Γ(s)

and therefore

|x− y| = H 1
(
Γ((x, y))

)
≥ |Γ(x)− Γ(s)|+ |Γ(s)− Γ(y)|
≥ 2r

(6.16)
≥ 2|Γ(x)− Γ(y)|

(6.8)
≥ 2λ|x− y| > |x− y|,

a contradiction. Thus, Claim 1 is established.

Claim 2. Γ(s) ⊂ `x,y .

This follows directly from Claim 1 and the definition of Zx,y .

Claim 3. We have
H 1(S) ≥ |x− y|(λ− 3c1). (6.18)

Indeed, by definition of S,

H 1(S) ≥ |Γ(x)− Γ(y)| −H 1(Zx,y)−H 1(Yx)
> λ|x− y| − c1|Γ(x)− Γ(y)| − c1|u− v| (6.19)
≥ (λ− c1)|x− y| − c1|u− v|.

(Note that the second inequality above is strict since x 6∈ X .) The choice of constants guarantees that
c1 ∈ (0, 1

N ). Therefore, |x − y| ≥ (1 − 2
N )|u − v|, and c1|u − v| ≤ 2c1|x − y|, as N > 4. Inequality

(6.18) follows.

Set ω := |Γ(x)− Γ(y)|/2N . We now select two auxiliary good parameters z1, z2 ∈ S.

Claim 4. There exist two points z1, z2 ∈ S such that

Γ(z1) ∈ Bω(Γ(x)) ∩ `x,y, Γ(z2) ∈ Bω(Γ(y)) ∩ `x,y, (6.20)

max
(
|x− z1|, |y − z2|

)
≤ |x− y|

N
(6.21)
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Again, we argue by contradiction. Let B := Bω(Γ(x)). Suppose that Γ(S) ∩ B is empty. Then, by
Claim 2, we have Γ(S) ⊂ `x,y \B. Choose u0 ∈ (x, y) such that such that Γ(u0) ∈ ∂B and Γ((x, u0)) ⊂
B. We then necessarily have S ⊂ [u0, y] and

|x− u0| ≥ |Γ(x)− Γ(u0)| = ω =
1

2N
|Γ(x)− Γ(y)| ≥ λ

2N
|x− y|.

Thus,

H 1(S) ≤ |u0 − y| ≤
(

1− λ

2N

)
|x− y|. (6.22)

However, this inequality contradicts the previous estimate (6.18) (one can check that the choice of c1 and
λ guarantees λ−3c1 > 1−λ/2N ). Hence, there exists a point z1 ∈ S such that Γ(z1) ∈ B∩ `x,y . (Recall
that Γ(S) ⊂ `x,y by Claim 2.)

Moreover, we have

λ|x− z1| ≤ |Γ(x)− Γ(z1)| ≤ ω =
1

2N
|Γ(x)− Γ(y)| ≤ |x− y|

2N
.

Thus, |x− z1| ≤ |x− y|/N . To prove the existence of z2 ∈ S, we proceed analogously; Claim 4 follows.

We are now ready to estimate |Γ′(u)− Γ′(v)|. Let

S(τ, σ) :=
Γ(τ)− Γ(σ)
|Γ(τ)− Γ(σ)|

, τ 6= σ ∈ SL ,

Q(τ, σ) :=
Γ(τ)− Γ(σ)

τ − σ
τ 6= σ ∈ SL .

Applying the triangle inequality, we write

|Γ′(u)− Γ′(v)| ≤ |Γ′(u)− Γ′(x)|+ |Γ′(y)− Γ′(v)|+ |Γ′(x)− Γ′(y)|

≤ 2Φ
( |u− v|

N

)
+ |Γ′(x)− Γ′(y)|. (6.23)

Next,

|Γ′(x)− Γ′(y)| ≤ |Γ′(x)− S(z1, x)|+ |S(z1, x)− S(y, z2)|+ |S(y, z2)− Γ′(y)| . (6.24)

We estimate each term separately.

Approximation of Γ′(x) by secant S(z1, x). Here we just use the information that Γ′ ∈ Cα and z1 is very
close to x. We write

|Γ′(x)− S(z1, x)| ≤ |Γ′(x)−Q(z1, x)|+ |Q(z1, x)− S(z1, x)| ≤ 2|Γ′(x)−Q(z1, x)|.

This holds since S(z1, x) is the projection of Q(z1, x) onto the unit sphere S2 and therefore the closest point
to Q(z1, x) on S2, and Γ′(x) is just another point in S2. Thus, by the fundamental theorem of calculus,

|Γ′(x)− S(z1, x)| ≤ 2
∫

[x,z1]

|Γ′(x)− Γ′(s)| ds ≤ 2Φ(|x− z1|)

≤ 2Φ(|x− y|/N) ≤ 2Φ(|u− v|/N) (6.25)

as |x− z1| ≤ |x− y|/N < |u− v|/N .

In a similar way, we obtain

|Γ′(y)− S(y, z2)| ≤ 2Φ(|u− v|/N). (6.26)
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The difference between two secants. Here we use the fact that Γ(zi) ∈ `x,y for i = 1, 2. We apply the
triangle inequality again to write

|S(z1, x)− S(y, z2)| ≤ |S(z1, x)− S(y, x)|+ |S(y, x)− S(y, z2)|,

and invoke Lemma 2.2 to estimate each term. This gives

|S(z1, x)− S(y, z2)| ≤ 2
c2
|Γ(x)− Γ(y)|β

≤ c0|x− y|β , (6.27)

where c0 = 2/c2 = const(α) ·M0
1/2. Combining the estimates (6.25), (6.26) and (6.27) with (6.24), we

finally obtain
|Γ′(x)− Γ′(y)| ≤ 4Φ(|u− v|/N) + c0|x− y|β . (6.28)

The conclusion of Lemma 6.1 follows immediately from (6.23) and (6.28). �

6.2 Conclusion: proofs of the main results

In this subsection, we simply collect all facts that have been proved earlier and show how to assemble them
to obtain full proofs of Theorems 1.1–1.4.

Proof of Theorem 1.3 (ii). Since Γ is a local homeomorphism, we can use Theorem 3.6 to conclude that
Γ is a k-fold covering and to reparametrize γ. The new (injective) parametrization Γ1 : SL/k → R3 is of
class C1,α for α = 2β/(6− 4β) ≤ β (cf. Section 2). Thus, Lemma 6.1 can be applied, and we obtain
Γ1 ∈ C1,β . This regularity statement carries over to the original k-fold covering Γ, as Γ is periodic and the
choice of 0 on the original circle SL is arbitrary.

Proof of Theorem 1.3 (i). Note that by definition of the intermediate radius %[γ] we have

%[γ](s, t) ≤ R(Γ(s),Γ(t),Γ(σ)) for all σ ∈ SL.

Thus, for any triple of balls Bi = Br(τi) ⊂ SL, i = 1, 2, 3, we obtain∫
B1

∫
B2

ds dt

%[γ](s, t)2
≥
∫

B1

∫
B2

ds dt

R(Γ(s),Γ(t),Γ(σ))2
for all σ ∈ B3,

and integration over B3 yields

2r

∫
B1

∫
B2

ds dt

%[γ](s, t)2
≥
∫

B1

∫
B2

∫
B3

ds dt dσ

R(Γ(s),Γ(t),Γ(σ))2
.

It is now clear that (1.8) implies the decay assumption (1.9); one just has to replace M0 by 2M0 in (1.9).
Moreover, see Section 3.4, we know that (1.8) guarantees that Γ is injective. Thus, Theorem 1.3 (ii)
ascertains that Γ ∈ C1,β .

Proof of Theorem 1.4. By Theorem 3.1, we know that Γ(SL) is a one-dimensional topological subman-
ifold in R3. Besides that, γ is a continuous rectifiable curve. Thus, we can reparametrize Γ(SL); the new
arclength parametrization

Γ1 : [0, L1]
onto−→ Γ(SL) ⊂ R3

will be injective. Moreover, we have Γ′1 ∈ Cα by the results of Section 2, as (1.9) holds for Γ1. Therefore,
we may apply Lemma 6.1 to obtain Γ1 ∈ C1,β .
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Proofs of Theorem 1.1 and 1.2. Assume first that p > 2 and set β = 1 − 2
p . For any couple of balls

Bi = Br(τi) ⊂ SL, i = 1, 2, the Hölder inequality gives∫
B1

∫
B2

ds dt

%[γ](s, t)2
≤ (2r)2β

(∫
B1

∫
B2

ds dt

%[γ](s, t)p

)2/p

≤ (2r)2βIp(γ)2/p .

Thus, (1.5) implies (1.8) with M0 := 22βIp(γ)2/p, and Theorem 1.1 follows from Proposition 3.8 and
Theorem 1.3 (i).

Similarly, we have already noted earlier that (1.6) implies (1.9) for β = 1 − 3
p and M0 . Mp(γ)2/p.

Thus, Theorem 1.2 follows from Theorem 1.3 (ii).

7 Variants of main results

It turns out that all the main results of the paper do hold under slightly weaker assumptions. Namely, it
suffices to assume that the integrals of 1/R — and not of 1/R2 — decay to zero with an appropriate speed.
This observation follows from careful analysis of the proofs in Sections 5 and 6. Below, we briefly indicate
the most important changes, leaving all other details to the interested reader.

Remark 7.1. It is an exercise to see that in the proof of Lemma 6.1 one might replace assumption (6.2) by
a weaker one,

sup
0<r≤r0
τ∈SL

r−(2+β)

∫
Br(τ)

∫
Br(τ)

∫
Br(τ)

dx dy dz

R(Γ(x),Γ(y),Γ(z))
≤ K0 . (7.1)

In fact, it is possible to work with the same sets (6.9)–(6.11) of ‘bad’ parameters, leaving λ, c1, δ2 and δ1

in (6.6), (6.7) unchanged, and replacing the old c2 defined in (6.7) by a new constant c2 := 2−5K−1
0 c4

1.
After minor technical adjustments in the estimate (6.14), we can replace the old estimate of the set X of
‘bad’ parameters, i.e. (6.15), by

H 1(X) ≤ 8c2K0

c3
1

|u− v| = 1
4
c1|u− v| .

From that point on, the proof of Lemma 6.1 goes without changes.

Remark 7.2. One can also check that it is possible to replace (2.8) in the Uniform cone flatness theorem
(and therefore also (1.9) in Assumption (ii) of Theorem 1.3) by an analogous assumption,∫

Br(τ1)

∫
Br(τ2)

∫
Br(τ3)

ds dt dσ

R(Γ(s),Γ(t),Γ(σ))
≤ K0 r2+β (7.2)

for all 0 < r ≤ r0 and all τ1, τ2, τ3 ∈ SL.

Again, the proof is very similar to the proof of Theorem 2.3. The whole idea and a substantial (geomet-
ric) part of the proof stays unchanged; adjusting minor technical details (i.e., the constants and exponents)
in the computations (5.18)–(5.21) we obtain the following:

Theorem 7.3 (Uniform cone flatness III). Assume that there are constants β ∈ (0, 1], r0 > 0, and M0 ≥ 0,
such that Γ satisfies (7.2) for all 0 < r ≤ r0 and all τ1, τ2, τ3 ∈ SL. Then there exists a constant
c̃ = c̃(β) > 1 depending only on β such that if two numbers, ε ∈ (0, π/2) and η > 0, satisfy the relation

ε3−2β ≥ c̃(β)K0η
β and η ≤ min{ 1

2diam Γ(SL), r0}, (7.3)

then for every s, t ∈ SL such that |Γ(s)− Γ(t)| = η we have

Γ(SL) ∩B2η(Γ(s)) ⊂ Cε(Γ(s); Γ(t)).
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It is clear that this result might serve as a replacement of Theorem 2.3 in numerous proofs that were
presented in Sections 2 and 3. This would require a few more changes of notation; in particular, the defini-
tions (2.2) and (2.3) of the diamond-like sets D(a, b) and DU (a, b) are based on (2.1) and were designed to
work well in various applications of Theorem 2.3, but this is a minor point. However, Proposition 2.7 and
Corollary 2.8 (uniform local injectivity) do hold when one replaces the decay assumption (2.8) by (7.2);
one just has to adjust the constant δ0. Similarly, a counterpart of Theorem 2.10 holds:

If the arclength parametrization Γ : SL → R3 of a curve γ : S1 → R3 satisfies (7.2) for all 0 < r ≤ r0

and all τ1, τ2, τ3 ∈ SL, and Γ is a local homeomorphism, then Γ′ exists everywhere on SL, and there is a
constant CΓ depending on diam γ, r0, β, and K0, such that

|Γ′(s)− Γ′(t)| ≤ CΓ|s− t|
β

3−2β for all s, t ∈ SL. (7.4)
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