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Abstract

We give a detailed construction of an ambient isotopy to prove that for any embed-
ded closed curvg € C'(S*,R®) there is are* > 0, such that alg € C'(S*, R®) with
[l€ —1llco < &* are ambient isotopic tg.
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A fundamental aim of knot theory is to decide whether two given knots “have the same

knot type”, i. e. can continuously be deformed into each other avoiding self-intersections

and contractions of knotted arcs to points, which can arise even in the case of uniform con-
vergence. An admissible deformation of this kind is cab@bient isotopynd is defined

as follows.

Definition (Isotopies).

e Two homeomorphismf, f; : S" — S" are said to beisotopig if there exists a
level preserving embedding : S" x [0,1] — S" x [0, 1] joining them, i. e.H is
an embedding satisfying (S",t) c S" x {t} for all t € [0,1] andH(,i) = (fi(}),i),
i=01

e Two embedded curves,y, : X — S$3 will be calledambient isotopicif there is 4
homeomorphisrh : $* — $2 isotopic to the identitydss such thaty, = ho ;.

Remark. Of course,h is orientation preserving. In [Fis60, p. 210, Theorem G5]M.
Fisuer showed, using deep results Rf H. Bing andE. E. Moisg, that, forn = 1,2, 3, two
homeomorphismsg,g : S" — S" are isotopic if and only if they are homotopic. There-
fore any orientation preserving homeomorphism S2 — S2 is isotopic to the identity.
Consequently,, v, are ambient isotopic if and only if there is an orientation preserving
homeomorphisrh : % — S satisfyingy, = hoy;. A proof in the piecewise-linear setting
can be found in [BZ03, p. 6, Proposition 1.10].

Lemma. Letn € CY(S% R®) be a regular simple closed curve (i. g(t) # 0 for any
t € St andp is injective). Then there exists a constant- 0 depending om, such that al
£ € CH(S, R3) with || — fllcosi ey < & are ambient isotopic tq.

At first sight this result does not seem particularly relevant in traditional knot theory where
one often considers piecewise linear representatives of knot classes. In geometric knot the-
ory, however, one searches for distinguished representatives in a given knot class, e. g. by
minimizing self-avoidance energies or maximizing thickness; see the various contributions
in [SKK98], [CMRSO05].



@

(ii)

If minimizing sequences converge only uniformly to a limit curve, then one has to use
additional invariance or geometric properties of the self-avoidance energy to prove that the
limit curve is in fact in the right knot class [FHW94], [GMSvdMO02], [CKS02], [GdILO3].

But if the analytic properties of the energy lead@b-convergent minimizing sequences
such as in [StvdMO5], then the above lemma guarantees the correct knot class in the limit.

Such a situation also occurs in [vdM96], [vdM98], and [vdM99], where, however, an iso-
topy definition not sfiiciently restrictive for knot theory was used. But the results in the
respective papers remain true and extend to the situation of ambient isotopy by the above
lemma.

Since we were not aware of any explicit reference in the literature, we carry out the proof
as a service for readers interested in this field.

Outline of the Proof. We approximatey by a polygonP, and construct a tubular neigh-
bourhoodQ, : S! x B%(O) — R3 of P, such thaty passes througk), transversally to
each diskQ,(t, Bf(O)). Thereforen cannot move “backwards”, and can continuously be
deformed intoP.. This deformation can be extended to an orientation preserving home-
omorphismh; : $% — $% with P, = hy o 57. Choosinge* small enough¢ can be shown

to have the same property gad¢eading to a second orientation preserving homeomorphism
h, : $* - §3 with P, = h, o £&. Consequentiyn;? o h, yields the desired isotopy. i

Proof. Sincen is regular, we hav*a';] > 1> 0. We represent?! by the interval0, 2x].

For all a,b € R3\ {0} satisfyingal > 1 > 0andc < (0, 3) there is some numbeir> 0, such
that|a— b| < dimplies¥ (a, b) < c. We compute

arCC05<i £> - arCCO{l——'m'a la|b?
" bl b

Nl bI+||b| Iall‘ 2\/_

¥(a,b)

IA

sincearccos(1- x) < 2+/x for x € [0, 1]. Now taked = uc, u := O

4
2v2°
There is ansgy > 0 such that, for any € (0, 4], there is an approximation af by a
polygonP, with “fineness”e > 0 and distance|P, - ,IHCO(SlR3) < 2V3rs/k, 25 0. 1f
& > Owe obtaink, € N, k. > 5, by uniform continuity ofi, such that

2n N . :

x-yl <= implies  [i(d) - i) <e. (1)
&

Note thatk, — o0 ase — 0 sincen is closed, so we can assume thab k. is decreasing.

Lett,; :=i-21/k; modulo2r (i. €. t.o =~ to,, te1 = tok-1, tek+1 = t.1 etc.), and

loi = [tei1,ti]. Now we define a closed polygd®. : [0, 27] — R® as

Ps(t) = n(ts,i—l) + (t - s,i—l) Pe,i forte Is,i»
where () — n(tois)
i) — -1 .
P = =0,...,k.
p&l 271_/k‘9 ) | 05 )

By compactness @ there is arggy > 0 such that

s) —n(s A 2n _

‘% > E fOI’O<'S—S/|SE, £ < &), (2)

especially

Ip.i| = 2 foralle<égandi=1,... k. A3)



Sincer is simple ands! compact there is &y > 0 such that

Ao . . _
In(® -n(s)| = EO disti(s §)  for distu(s §) > &).
Sop is bi-Lpscurrz continuous with constant := max(2, £, ||i7||C°(Sl,R3))’ especially
disti(ss) < Aln(9) - n(s)| foralls & € St (4)

Chooses < g). By the mean value theorem we fing 1, 0. 2, 0 3 € . such that the
j-th component of(q.; ;) equals thg-th component op,;. So we obtain for any e |

j=1

3
i)~ puil < JZlh(t)—h(qg,i,,-)iz ? VEe (5)
Finally, fort € 1,

n) - P.)] < f 2Var o

(@) - psi|dr < kfﬂa — 0.

t

]

(i) Foranya € (0, 5) we havex (n(s2)-n(s1) » n(ss)-n(s2)) < aforall s; < s, < sz satisfying
max(S—S1, 8~ S2) < 21/Kgy, (a)» i) (@) = min(E(ii), ﬁé a/), especiallyx (P.i, Pei+1) < @
for all € < gy (@) andi = 1,..., k.. By the mean value theorem we obtdine (s, S),
§’ € (s, ), J = 1,2, 3, such that thg-th component ofy(3;) (resp.;(5;")) equals the-th
component of’(sgz:'s’l(sl) (resp."(sgi:gz(%)). According to (1) we have

3
}n(szz - Zl(sl) . 71(52 - 7812(52) S J; 65— i)

2

(6)

)2 < 2\/5_38,

3
< J (1(3) = ()| + () — (")
j=1

J

thereforeX (17(s2) — n(s1), 7(ss) — () < @ if 2V3e < %pa, cf. (i) applied to (2). O

(iv) We can choose,) € (0, iy (7/8)] so small, thatP, is an embedding for alt < ).
We remark thaty is an embedding, becaugeis a simple curve defined on a compact
domain. Let us assume the contrary, so there are sequ@]gtgg, (Uj)ieN, and(vj)jeN,
such thatsj \, 0, (uj,Vj) € [0,2n]%, uj < vj, andP,(uj) = P (vj) for all j. Choosing a
subsequence (without change of notation) we ol{igirv;) — (uo, Vo) € [0, 27]2. Skipping
the first members ofu;, v;) and reparametrizing we assurje< Up < Vo < 37” Now
there are unique sequen((éﬁ)jeN, (i})ieN satisfyingu; € I \ {t;;} andv; € Igj,ilg \
{tgi,ije_l}. By construction we havg < |] The injectivity of 5 excludesuy # vo since

|P., - '7||c0(s1,R3) — 0, cf. (ii). Because ofi; — Uy = Vo « Vvj we can choosg so large
that o o
(i —ij+ 1) Lia-tos| < '
j i ka, jolj—1 j IJ' ks_(...) /8)

Then, by (iii), fori]? >ij+1,

¥ (Pey(teyi) = Pey(U)) Py (teyis-1) = Pe, (t)5))

= ¥ () —nti-d) + Aai) - nt)) < =
8 @
¥ (st (V) = P (tsie-1) » Ps;(tepis-1) — Py (taj,ij))
= ¥ (nltei) = nlteio1) » Alteion) - Alti)) < g



which impliesP (u;) # Pg(vj), contradicting our assumption. In ca'qe: ij+1we
directly obtain

%: (Pé‘j (taj,ij) - PSJ' (Uj) > ng (Vj) - ng (tsi’i?_l))

T
= g: ('l(taj,i;) - "(tsj,ij—l) > ’l(tz‘:j,ij+1) - U(taj,i;» < é?
T ®
andi® = ij implies|P, (uj) - P, (vj)| = |psi; | Juj - vj| > 0. o
(v) There isew) € (0,41, such that, for alle < &), we can construct an embeddig :

S x B2(0) — R® with Q.(t, 0z2) = P.(t), By, (Ps) c Qs(S™, B2(0)), andn € By, (P,) for
somed, > 2||P,

- ”llcO(sl,RB)'

(a) Letd, = 4V3ne/k, > 2||P, _']HCO(S1R3)' We state that there is afy) € (0, &)
such that, for alk < &), Bzg, (Peli,;) is disjoint to anyBa, (P:|1, ;) exceptj € {i,i + 1},
i =1,...,k. Otherwise there would be sequenéeﬁjeN, (ij)jeN, and(ijf)jeN, such
thate; \, 0,i},i3 €{2.... ks = 1},ij <8 =2 Bay, (Pl ) N Bay,, (Pl ;) # 0. We

modify our argument from the preceding section. Choosing a subsequence (without
change of notation) we obtamands® with (teyij teyi-1) — (s s*). Without loss of

generality we may assunfe< 5< §* < ¥. We first consider the case< &, soo =

5= 81> 0and|t, ~ toy-1] > § for > 1. 112y € Bay, (Pl )" Ban, (Pl ) et

Pe;(u;) (resp.Pg (v))) realize the distance af to Py |, ; (resp.PEjl.griT). This implies
0 = [z-z| 2 [Py(w)—Ps(v)[-2-29

|’I(t8j,ij) - n(té‘j,i?—l)' - |ng (t{.;j’ij) - ng (U])|

st (taj,i}—l) - st (Vi)| - 4198]

v

@ o 2r
> — —2A— —49,,

> ox K, ,

which is wrong forj > 1. Now we have to treat the case= s*. For arbitrary
zj € Bzﬁgj(PthEjjj), z; € Bzﬁgi (ng|.gj_i.) let P, (u;) (resp.Py,(v;)) realize the distance of

Zj (resp.z}) to Pgi||ﬂ_ij (resp.ngthyij,j. Choosingj so large that; < &), we achieve

P ()~ Po (vp)| &

v

Pe,(tei,) = Pe, (tir-1)|

@ 1
|Tl(tg,,iJ) - ﬂ(tgl,ij?—l)’ > K(tg,,i;—l —tei)s

and therefore we obtain

1
=71 2 [Pe) =Py ()| =40 = Tt —t) - 40
1 2n,, . 4+3r 2r i}_ij_l
= Xk_sj(ll_ll_l)_4k—glgj = k—‘gj(T—8\/§8]
2r (1
> —|—-8V3¢gj],
_&KA fﬂ

which is positive forj > 1. S0Bpy, (P, ;) N Bas,, (P81|l81.i;) =0.4



(b) LetT,; be the plane througR,(t.;) that bisects the angle betweBg,  andP.|,,.
The disks®,; := T.i N By (Pa(t.i)), i = O,...,k,, separateByy (P.(S)) into k.
segments, and we can place in any segment a (smaller) homeomorphic imtigge of
B§(0) with (t,Og2) — P.(t); then we obtainQ, by “glueing” these embeddings as
follows. Without loss of generality we may assume t@ap = O.x = B;,E(O) x {0}
and thate; = (0,0, 1) is normal t0@, in direction of P.. We setQ., := 1. For
i=1....k letQ.; € SQB3) be the unique rotation that mapsto the normal vector
of ®; in direction of P, such thath,iQ;i_l leaves the plang.; spanned by the
normals of®.;_1 and®,; invariant. SoQ&iQ;i{l is a rotation with axis normal tg ;.

If the normals 0®,;_; and®,; coincide, letQ,; := Q.;_1. Now we define

tei—t t—t._
Qu(t,x) = Pt)+ 209, (é;rl—”(EQs,i—l + s

27T/k5 Qa,i X (8)

foralltel,,i=1,... k., x € B2(0) x {0}. Note thatQ,(l..;, B#(0)) is the convex hull
of ®,;_1 UB,;. The embeddedness @f onl.; is due to the fact tha(tzg,iQ;il_l is just
a rotation with small angle and axis normalgg. We can achiev€. (0, -) = Q.(2r, -)
by an additional rotation othllsvkEX% aboutPy,,. .

(c) Finally we prove thaBy, (P;) is contained irQ,([0, 2x], Bf(O)). It suffices to show that

the distance fronP,(t) to 0Q([0, 2x], Bf(O)) amounts at least td.. Let«.; denote
the distance frond@,; to P.|,; (@andPg|i,,,). UsingB; := ¥(Psi, Psi+1) < /8 and
Aej = %(n — Bei) we computec,; = 29, Sina,; = 29, cos/% > 29, cos{g > U, See
figure.

Pa(te,i)

B219E (PE) 196

[~
m
oo

(d) In addition we compute a lower bourd for the distance from one digR.; (cf. (b))
tothenextforali=1,...,k,

®  Ar T
G > () - ()| -2-29, > E—4ﬁ£ = E(4-16«/53). 9)

]



(vi) nis ambient isotopic t®, for all & < g = min(s_(\,),s_(iii) (r/32), ﬁ)

(a) For anyt [0, 21] let Ryy 1= Qu(t, B2(0)), va(tsy) 1= '(_I 4 P ) and

t?l_t &,
) = S velted) + 27r/ksl

_ tai_t(psl 1 ps,i]+t_ta,il(psl pawl]
47T/k lpsl 1| |p5,i| 4ﬂ/k5 |ps|| |ps|+1'
forallt € 1, sov,(t) is normal toR; in direction ofP,. (Note thatR,; ; = ©,;.) This
implies fort € I

Vs(ta i)

1 Ps,i-1 Pei Pe.i Peji+1 8\/§
s(t) < —[ . — : — - 2 ] < —s,
5 |p£|| 2 |p8,i—l| |p£,i| |pa,i| |p£,i+1| 4 ¢
because of
Pei  Peint [Pei = Pria] ©.0 8V3_
|p£,i| |pe,i+l| N |psll = 1
Analogously to (i) we obtain for € |, & < i) (7/32),
Pe.i 8V3 8V3 u nm  om
%[Vg(t) | 8||) < 2\/578 < 2\/574—\/?,3—2 TS (20)

Sincen passes throug®,. by (v), we find for anyt € [0, 27) at(t) € [0, 2r), such that
n(t) € R.-¢. Because of

8V3re W@ l.e

In®) - P(e®)| < 29, = k. = 8\/5/1—16\/58

for ¢ <« 1, we obtain the implication

telg; = M) el jeli-Lii+1}, (11)
if e < W Now (iii) implies ¥ (p..i, P=i+1) < 35, and, by (i) applied to (5), we have
¥ (@), p=i) < V3e/u < V3&iy(n/32)/u < n/128for t € I..;, and finally according
to (10)
13

F@@®,ve(r®) < X0, Pei) + ¥ (Peis Pej) + ¥ (Pejs ve(r®)) < oom (12)

(b) Now we statep(S) N Ry = {n(t)}. “>” is immediate. To prove&” we assume the
contrary. Suppose there would be another [0,2n), t" > t, with 5(t), n(t") € Re(p)-
We cannot havey([t,t']) ¢ R..q since this would implyx (7(t), ve(7(t))) = n/2. %
But because it cannot move “backwards” by constructipwould otherwise have to
pass at least twice throud®,, contradicting (11). So, for eadhe S, the points(t)
can continuously be mapped Ry((t)) using an appropriate deformation within any
“sheet” R, -y which leavesiR, -« invariant. A formula for this deformation d®. )
can be derived from the map given in [Mil50, p. 254, Lemma 4.1] and continuously be
extended tdQ,. In this manner we obtain an orientation preserving homeomorphism
h: 3 - $3 higs\q, = idss\q,, Which mapsy to P, o 7. Of course, this construction
also works for any smaller value ef O



(vii) € is ambient isotopic td, for all £ € (0, wiy] ande* := 9./(8n) = V3e/(2k,). Without
loss of generality we may assuri@®) = 7(0) since a translation is an orientation preserv-
ing homeomorphism. Now we obtajjg — '7“c0(s1 2y < 27l = lllcos: 59),

dist&(t), P.)

A

< [€® - n(®)] + dist(n(t), P.)
P N &

_ 198’
272 °

and&(St) c By, (P.). So anyt € [0,2r) corresponds to a(t) € [0, 2r) such that(t) €
R:.o(. Our aim is to show that

YEWve(o®) < ¥ED. M) + X @), ve(T 1) + X ((x®), vo(o (1))

is strictly smaller than< /2, so the assertion is proved as in (vi) (b). We obtain

o 0 & V3e 1
< — < — < —n
¥ (é@.70) < e = (13)
Now we have to deal with the last term. 1ft) ando(t) belong to the same or at least to
neighbouring intervals,, I ;, we have

¥ (ve(r (1), ve(or (1))

A

< ¥ (e(r®). ei) + ¥ (Peis Pej) + ¥ (Peo vl (1))

1 1 1 5
(1—6+3—2+1—6)ﬂ' = 3—27'[ (14)

according to (jii) and (10). In summary, (13), (12), and (14) implé(t), vs(o (1)) < S x

— 256
if we can show that(t) ando(t) satisfy our condition. But this is true, J(t) — n(t)| is
bounded by, as defined in (v) (d). Se < &) < 4

B o
7476 < T3 implies
v/

ke

<

lE) -n@)] < 27" < \/1_38% (1-16V3e) ? L.

]

Q.E.D.
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