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Abstract

We discuss the analytic properties of curyewhose global curvature
function pg[y] ! is p-integrable. It turns out that theP-norm %, (y) ==
lloc[y]Y|ILp is an appropriate model for a self-avoidance energy interpolat-
ing between “soft” knot energies in form of singular repulsive potentials and
“hard” self-obstacles, such as a lower bound on the global radius of curva-
ture introduced by Gonzalez and Maddocks. We show in particular that for all
p > 1finite %,-energy is necessary and sufficient\Wéf-P-regularity and em-
beddedness of the curve. Moreover, compactness and lower-semicontinuity
theorems lead to the existence @f-minimizing curves in given isotopy
classes. There are obvious extensions to other variational problems for curves
and nonlinearly elastic rods, where one can introduce a bour#,dn pre-
clude self-intersections.

Mathematics Subject Classification (2000): 49345, 53A04, 57M25, 74K05,
92C05, 92C40

1 Introduction

A central issue in the mathematical modeling of physical strands, such as rope,
string or wire, or — on a much smaller length scale — polymers and proteins, is the
enforcement of self-avoidance in order to guarantee that the geometric objects are
embedded. Standard continuum models incorporating self-avoidance are usually
based on pairwise repulsive, and therefore singular, potentials, which require some
sort of regularization [17], [11], [13], [44], [28], [5], [37]. Typical examples are
knot energiesntroduced by O’Hara [36] in the search of optimal knot representa-
tives as energy minimizers within a given knot class. The basic idea is to integrate
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twice an inverse power of the Euclidean distance over a closed gurge— R3
to account for the mutual repulsion of every pair of distinct points on the curve.
Without any regularization one would obtain the singular double integral

1
(l-l) ./51/51|’)/(5)—'}’<t)‘pd5dt p22,

which is infinite foranycontinuous curve due to the effect thés) — y(t) ass—t.

There are several ways to remove this divergence, for instance, by subtracting some
equally divergent terms, or by a multiplicative factor with a suitable decay-as.

This variety of possible regularizations, on the other hand, reflects the physically
undesirable lack of an intrinsic length scale on which repulsive interaction between
neighbouring points on the curve is cut off. Moreover, the mathematical analysis
of such singular integrals is quite complicated, only for O’'Hara’s energy (1.1) for
p = 2 a satisfactory existence and regularity theory for minimizing knots is devel-
oped [16], [27], see also [39]. Linear combinations of self-avoidance energies of
type (1.1) with curvature dependent elastic energies were investigated in [36], [49].
Higher-dimensional analogues of (1.1) for surfaces or general submanifakds in
were suggested by Kusner and Sullivan [29], but no existence or regularity result
seems to be known.

In contrast to the approach of “soft” repulsive potentials without any inher-
ent length scale for the thickness of the curves, one can prescribe a “hard” steric
constraint. One may think of a tubular neighborhood of a fixed radius with the
curve as its centerline as a so-calledtluded volume constrajnr various other
self-obstacle conditions, to impose a positive thickness of the curve [6], [12], [30],
[34], [50], [14], [15]. In that context thglobal radius of curvaturéntroduced by
Gonzalez and Maddocks [20] turned out to be both a mathematically precise and
analytically tractable notion to tackle energy minimization problems in nonlinear
elasticity and knot theory for curves and rods with a given thickness [22], [8], [19].
Instead of the Euclidean distance as interaction function for two points as in (1.1),
one considers here the circumcircle radR(s,-,-) as a function otthree points
on the curve. Then the thickness constraint is given by a prescribed positive lower
bound on this specifimultipoint function Rf one varies among all possible triplets
of distinct points along the curve.

To be more precise, l& = R/LZ, L > 0, denote the circle with perimeter
L, and denote by : § — R3 the arclength parametrization of a closed rectifiable
curvey : St — R3. Then theglobal radius of curvature functiops[y] : S — R is
defined as

(12) palri(9)i= _inf RF(S,M(0).1 (7)., ses,
o4t

and theglobal radius of curvature\[y] of v is given by
(1.3) Al = Inf pe[(9).
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To impose a positive thicknegs> 0 for the curvey one requires the inequality
(1.4) Alyl = 6.

The analytic properties dR, ps, A[-], and several related multi-point functions

are well investigated [20], [21], [45], [41], [18]; (see [47], [48] for surfaces).
Due to the nonsmooth characterf-], however, the regularity theory for (a pri-

ori nonsmooth) maximizers of (1.3), or minimizers of other variational problems
constrained by (1.4), turned out to be quite challenging, see [42], [43], [7], [14].
Moreover, the numerical treatment of such nonsmooth constraints with gradient
methods seems rather complicated, at present we are only aware of recent work by
Cantarella, Piatek, and Rawdon [9] on a numerical gradient flow.

Banavar et al. [3] suggested a numerically more attractive integration over
multi-point functions mainly to avoid the natural singularities of the repulsive po-
tentials, so that no regularization is required. In fact, for a smooth closed curve
.S — R3the circumcircle radiuR(I" (s), (o), (7)) tends to the classical local
radius of curvature and not to zero@asr — s. Therefore, the multiple integral

(1.5) dsdodr

/sL /SL/SL RP(F(S),Fl(G)I(T))

is finite. Numerical investigations by Banavar and co-workers using this concept
lead to considerable progress in the protein science [4], [2], [35], but there are
apparently only very few analytical contributions regarding (1.5). frer 2 this
energy functional is called thetal Menger curvatureand Leger [32] could show

with sophisticated measure-theoretic tools that one-dimensional Borel sets with
bounded total Menger curvature are 1-rectifiable, i.e. these sets are essentially
contained in a union of Lipschitz graphs; foe£ 2 see [33], and for a more general
setting in metric spaces see [25], [26]. However, we are unaware of any existence
or regularity result for energy minimizing curves for (1.5).

As a first step towards a deeper analytic understanding of (1.5) we are going to
investigate a closely related self-avoidance energy blending the concept of global
radius of curvature and integration, as was already proposed by Gonzalez and Mad-
docks in [20, p. 4772]. Namely, we look at thé-norm of 1/pg, that is,

_ 1 1/p
(1.6) Up(y) = </SL pG[y](s)PdS> , p>1,

whose limit p — o is the global radius of curvatur&[y]. One may view%,

as an intermediate “semi-soft” energy interpolating between the “soft” repulsive
potentials of type (1.1) and the “hard” self-obstacle condition given by (1.4). In
fact we can imagine that an upper boundpreflects some kind of inseparable
but flexible jelly surrounding the curve, that allows close approach of two different
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strands only for the cost of larger thickness at other places. The expproamt
then be interpreted as a parameter measuring the resistance of the jelly.

In Lemma 2.1 we show that any closed curve with finlig-energy is em-
bedded, soz, penalizes self-intersections. Moreover, we prove in Theorem 2.4
thatl™ is contained in the Sobolev spad&P(S ,R3), i.e., has generalized second
derivatives inLP(S_,R%), which implies forp > 1 thatl" has a Hblder continuous
derivative. Here, the corresponding pointwise estimate

/i
OIS e
replaces the glob&h!-estimatgl™| < 1/A[y] for curves withA[y] > 0, see [22,
Lemma 2]. For the proof of Theorem 2.4 we combine a geometric local oscillation
estimate for the derivatiie’ (Lemma 2.2) with an analytical subdivision argument
in Lemma 2.3 inspired by the clever methods developed by Hajtasz for his metric
characterization of Sobolev spaces [23], [24]. Conversely, one may ask which
closed curvey have finite%,-energy. Itturns out that fqu > 1 every simple curve
y with a W2P-regular arclength parametrization has in fact finite eneigyy).
Hence?, characterizesimpleW?P-regular loops, just as positive thickness$]

did in theCl!-setting (see [41, Theorem 1 (iii)]). The proof of Theorem 2.5 rests on
the Hardy—Littlewood maximal theorem, since there is an intricate relation between
1/pgc[y] and the maximal function df ”|. The assumptiop > 1 in Theorem 2.5 is
essential: fop = 1 we provide an example of a simple cufve W21 with infinite

21 energy.

A general energy estimate fé¥, from below (Lemma 3.1) shows that circles
uniquely minimize%, among all closed curves of fixed length. A correspond-
ing uniqueness result for O’Hara’s energy (1.1) was proven by Abrams et al. in
[1]. Lemma 3.1 also serves as a starting point for our discussion on sequences
of closed curves with finité/,-energy. We present two compactness and lower-
semicontinuity results, Theorem 3.2 for curves with fixed length, and Theorem 3.3
for curves with a uniform bound on their lengths. As a variational application we
prove the existence @¥p,-minimizing knots in a given isotopy class (Theorem 3.4).
Clearly, our results on sequences with uniformly bounded energy, Theorems 3.2
and 3.3, are strong enough to prove various other existence theorems for curves or
nonlinearly elastic rods, where a uniform upper boundzgnas a side constraint
ensures that the competing objects are embedded. In fact, the general existence
theory for nonlinearly elastic rods with positive thickness of [22] carries over if
one replaces inequality (1.4) there by

(1.7) U(y) <c.

This condition is less restrictive than (1.4), which is demonstrated in the appendix
where we construct an explicit example o€&curvey satisfying (1.7), but with
vanishing thicknesa\[y].

fora.esec g,
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We should point out that — in contrast to (1.3) — in order to evaldaiey)
numerically only a one-dimensional minimization is necessary by means of the
following identity (proven foiC2-curves in [20, p. 4770]):

(1.8) palrl(s) = pp[¥l(s) := inf pt(s,0),

ocS \{s}
which, in fact, is valid for all points € § such thatl”(s) exists, cf. Lemma
2.7. Herept(s, o) is defined as the radius of the (unique) circle throligs) and
tangent to” atl (o). (As before[ : S — R3 denotes the arclength parametriza-
tion of y.) A numerical computation o#,-minimizing curves with, e.g., simulated
annealing techniques would be an interesting addition to the remarkable computa-
tions by Carlen, Laurie, Maddocks, and Smutny [10], [45]d#al knots which,
by definition, maximize thicknesA -] under a uniform length bound. In fact, the
relation between ideal knots, minimizers for (1.1), avgrminimizing knots re-
mains to be investigated, at present only one result relating the first two seems to
be available [38]. In addition, we have no result yet about higher regularitgfer
minimizing curves or critical points. The proof of higher regularity for minimizers
of O Hara’s energy (1.1) fop = 2 relies heavily on the invariance of this partic-
ular potential under Kbiustransformations > [16], [27], a property which is
not shared by thé,-energy. For ideal knots, i.e., tig}!-regular maximizers of
global curvatureA[-], on the other hand, the numerical results of [10], [45] seem
to suggest that local curvature may jump, but analytically the regularity properties
are far from being well understood.

2 Embeddedness and regularity ofy
Throughout the paper we assume that
y:S - R3

is a closed, rectifiable and continuous curve of positive lehgthQ. Its arclength
parametrization
Mr-s— RS

is automatically Lipschitz continuous, i.€.,c C%1(S ,R3). For three parameters
s,0,7 € S we defineR(I'(s),l (o), (7)) to be the radius of the smallest circle
containing the point§ (s), ' (o), andl" (7). This radius coincides with the unique
circumcircle radius if the points are not collinear. The global radius of curvature
pa|y](s) and the energy/,(y) are, throughout the paper, defined by (1.2) and (1.6),
respectively.

Let us begin with the observation that curves with finite engigyp > 1, are
embedded:
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LEMMA 2.1 If %p(7y) < o for some p> 1, theny is simple.

PROOF. By Holder's inequalityZ;(y) is finite wheneverz,(y) < « for some
p > 1. Thus it suffices to prove the lemma fpr= 1.

Assume thaty is not simple, i.e., there are two distinct arclength parameters
So.to € S, such that the arclength parametrizatior C%1(S ,R3) of y satisfies
I(so) = (to). We can assume w.l.o.g. thaf = 0. For s# 0 consider a circle
through the point§ (0) andr (s) with diameterl" (0) — I'(s)|. By assumption this
circle contains also the poiftty). Thus

pa[1(8) =R(M(9),1(0),T (to)) = ————— = 5
hence ¥pg[y] is not integrable, which is a contradiction. O

The following example suggests that curves with firitg-energy might pos-
sess tangents everywhere.

Example. If y has a corner at some point, théf(y) = o for eachp > 1. To see
this, consider e.g. the square

(-1-s-1,00 forse[-2,—1],

_J (0,s,0) forse (—1,0],
rs) = (s,0,0) forse (0,1],
(1,1—s,0) forse (1,2].

Taking into account circles in therplane that are tangent to both sides of the right
angle ofy at(0,0,0), one easily sees that

pG[ﬂ(S) < ’S|7 Sc [_17 1]

“in = /-Z(pe[%(s))pds

By [41, Theorem 1 (ii)], we know that if

and therefore

diverges for evenp > 1.

pal7l(s) >0 for somese S,

theny has a geometric tangents) atl"(s), and with the arclength parametrization
I : S — R3 one computes this tangent as

M(o)-T(s) _ M(s)—T(7)
TS =M F o =Fe ™ F =)
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Moreover,T(s) =I"(s) if [’ exists ats. Now, if %p(y) < o, thenpg[y] must be
positive almost everywhere. Thus, finitenesgfyieldsT(s) =I'(s) a.e. onS.

For our regularity investigations we start with a local estimate for the oscillation
of .

LEMMA 2.2 Let%p(y) < o for some p> 1 and suppose thdt'(sp) exists at § €
S and thatpg[y](so) =: p > 0. Then

forall se By, /5(s0) == (00— p/2,%+p/2)
such that™’(s) exists we can estimate

M(s0) =T ()] _ Is0—$]
pelrl(s0) ~ palY(s0)

(2.9) M (s0) —T'(s)] <

PROOF.  The proof rests on arguments similar to those in [22, pp. 49-52].
Step 1. For the arcA =T (B, 2(s0)) one has

(2.10) diamA < p,
since the arclength parametrizatibrsatisfies
(2.11) M(o)—T(1)|<|o—1|forall o,7€B,(%)-

We claim that for the lens-shaped region

| = N By (2)
zeCp (M (%0),1(9))
we have
(2.12) Acl,

where we used the notation
Co(PQ) = {zeR®:|z—P|=|z-Q =p}.

Indeed, assuming contrariwise that (2.12) does not hold we could infer

(2.13) AN { U Bp(z)\|] # 0,
2C(I (s0), (3)

since otherwise the afswith endpointd™ (sp) andr (s) would be contained i3\
Uzec(r(s0).r(s)) Bp (2)- That in turn together with (2.11) fay := sp and 7 := s and
the fact thaty is simple by Lemma 2.1 would imply that the diameteAa$ at least
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as large as that of a great circle on one of the spheBg$z), z< C(I'(s0),l (9)),
i.e., diamA > 2p contradicting (2.10).

For any point™ (t) in the nonempty intersection in (2.13) one hgéso, t # s,
and for the circumcircle radiu’(l" (), (s), I (t)) by elementary geometry

pa[Yl(s0) < R(I (), (s),I (1)) < p = pac[V](0),

which is absurd.
Step 2. Taking sequence§i}, {7} C (So—p/2,5) withtj — s§ andg — s~
asi — o we find

rt) -~ F(s0)
) ()]

)
r(s)—TI(u) e
e -t 9=

On the other hand, (2.12) implies that for iadt N the unit vectors
Ft)—(so) (s (m)
Ft)—r(so)l” M -T(m)l

and therefore also the limifs(so) andl”'(s), lie in the intersectiorK, NS?, where
K, denotes the cone

={xeR¥:x=A(P-T(x)),1>0,Pel}
with opening anglex, € (0,2r) satisfying
o _IM(s0)-T(8)]

Consequently,
M(s0) —T'(s)] < y/2—2cos0, = IMs0) = T(S)] < ‘SO_S|. )

p p

The next lemma shows thBt belongs to the Sobolev spagé-P whenever the
global curvature of is of classLP. Itis inspired by the metric characterizations of
Sobolev spaces in [23] and [24]. In order to obtain an optimal constant, we do not
use the results from these papers directly.

LEMMA 2.3 If %,(y) < « for some p> 1, then the arclength parametrizatidn
of y satisfies the inequality

t 1
r(s)—T'(t g/idr
S

for all s,t € S, s<t. Thus, in particular["’ is absolutely continuous on 3"
exists a.e. and satisfies

(2.14) Ir"(s)| <1/pcly](s) fora.e. s€§.
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PROOF. By Holder's inequality, 24 (y) is finite wheneverZ,(y) < o for some
p> 1. Thus, it is enough to prove the lemma foe= 1.

LetD: ={se S | I'(s) exists. Fixs<tsuchthasteD. Lets=tyg<t; <
to < ... <t, =t where the partition points are chosen in such a way tHa{t;)
exists for alli = 1,...,n—1, and moreover, such that the intervajs= [tj_1,t;]
satisfy

it—s| 2t .
2.15 <l < =12...,n
( ) on —’]|_ n ) J ) & )

Choosingn sufficiently large, we can guarantee that

1 1
(2.16) /IJ md7< >

by the absolute continuity of the integral. Now, we pick for eqehpointsy j € I
such that

1 <][ 1
pelYl(s0) ~/1; pa[¥l(T)

Inequalities (2.15)—(2.17) yield

0<|lj| Spe[y](so7j)/l_p(3[;](r)df< PGMZ(SOJ)

Thuspg[y](sa,j) is sufficiently large to allow us to apply Lemma 2.2 and estimate
Il (s0,j) — ' (o)] for everyo € | such thal’ (o) exists. We write

(2.17) dr, andsuchthat (s j) exists.

rE-rol < 3G -re)

2

< gl(rr' (s0)] 417 (50) = T'(t))])
n 1

(2%) Z () <|t1 1—SOJ’+|SOJ_tJ|>

= S

; ; (o))"
n 1

to1
S 2 5@ L e

Due to the absolute continuity of the integral on the right-hand side this estimate
is uniform and yields a unigue uniformly continuous extensioR’”dfomD to § .
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This extension — let us still denote it by — is then absolutely continuous. Hence
" has a generalized derivatiV¢ satisfying (2.14) and we have

['(s) = F'(So)+/sosr”(r)dr,

wheresy € D is fixed ands € § is arbitrary. It is a simple elementary exercise to
check that the extended functidnhis in fact equal to the derivative &f on all of
S, i.e.,a posterioriwe haveD = S_. This completes the proof. O

THEOREM2.4 Let p> 1. Assume thay € CO(1,R3) is a rectifiable closed curve
with %, (y) < . Then the arclength parametrizatiénof y satisfies the following
conditions.

(i) Tris1-1,i.e.;,y has no double points.
(i) T eW?P(S,R3 and || < 1/pg|y] almost everywhere.

(iii) I'"is absolutely continuous and

IM(s) —'(t)] S/stpg[;](‘c)dr forall s<t.

(iv) If p>1,thenl is Holder continuous and

M) IO < %t —9% = 1—;.

PROOF.  The first statement (i) is just a consequence of Lemma 2.1. Conditions
(ii) and (iii) were proven in Lemma 2.3, and (iv) is a simple consequence of (iii)
and the Hlder inequality. O

The last theorem of this section shows thatfos 1 any embedded curve with
aW2P-regular arclength parametrization has firdtg-energy. Combined with the
previous result this means that simj&-P-loops arecharacterizedy the fact that
the global curvature functiopg1 has finiteLP-norm if p > 1.

THEOREM 2.5 Assume that p- 1. Lety be an embedded continuous closed and
rectifiable curve of length L with arclength parametrizatioof class W-P(S_, R?),
then

Up(y) <.

The assumptiomp > 1 is really crucial; see the example at the end of this section.

To prepare the proof of this result we are first going to prove two technical
lemmas relatinggs andpyyt, the latter quantity was defined in (1.8). For the corre-
sponding results in the context 6f-curves see [20], [21].
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LEMMA 2.6 For any continuous, closed and rectifiable curyevith arclength
parametrization” € C1(S ,R?) one has
(2.18) put[Yl(s) > perl(s) forall se§.

PROOF  Foranyo € S \ {s} we obtain

_ IF(s)—T (o)
PUSE) = (- (o) AP (o))
@.19) ~ _Im_RIF(S).F(0).1(2) 2 pol(9)
since
_ IF(s)—T(o)|
RI(S).M(0).T(1) = o ro T [OF SFOFT#S
2|9 N o))

M(o)-T(r) _T(o)(c—1)+0(lo—1) [1 o(jo — 1))

IGERGIE o1 o1 ] = H )

Taking the infimum in (2.19) over aé € § \ {s} one arrives at (2.18). O

LEMMA 2.7 LetT € W?1(S_,R3®) be the arclength parametrization of a simple
closed curvey, and assume thats §_is a Lebesgue point df”. Then

pa[I(s) = ppt[VI(9)-

PROOF.  SinceW?1(S ,R%) embeds intacC(S ,R?), Lemma 2.6 applies, so it
suffices to show that

pptl71(s) < pslyl(s) forall Lebesgue pointsof .

We assume thaig[y](s) is finite, otherwise there is nothing to prove. Let us dis-
tinguish between different situations of how the infimum in the definition (1.2) of
pc is is attained.

Case |. Assume

Palrl(s) = RIT(9).F(1).F(0)) for sAt#c#s

Then the corresponding circumcirctetouchesl” tangentially inl"(t) or (o),
since otherwise we could shrink the sphere for wtdéé an equatorial circle—so
that the resulting smaller sphere still contains the pbiis)—to obtain a strictly
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smaller circle passing throudt{s) and two other point6(t1), I' (o1), which would
contradict the definition obg[y|(s).

So we havepg[y|(s) = pt(s,t), or pg[7](S) = pt(s,o). In any case we can take
the infimum on the respective right-hand side to obtain

pa[YI(s) > pptVI(9).

Case ll. If
pelyl(s) = lim R((s),(t),M (o))

t,o—1

T#S
thenpg[y](s) = pt(s, 7), which can be seen by the same computation as in the proof
of Lemma 2.6. So again,
pc[YI(8) = pp[YI(S)-

Case lll. If

pa[yl(s) = lim R(F(s),I(t),M (o)) = lim R(T(t),[(s),I'(0))

0—S o0—S
t—1#s t—1#s

then we find similarly as before

pa[YI(s) = pi(7,9),

but we claim that the circle realizing this point-tangent function is actually also
tangent to the curve in the poih{z), since otherwise we could proceed as in Case
| and once again shrink the sphere for whicls an equatorial circle to obtain a
contradiction against the definition p&[y](s). Hence

PalYI(s) = pi(s, 7) > ppi(7i(S)-

Case IV. If
pclyl(s) = lim R(T(s),l'(t),l (o))

t,o—s
then we can apply [41, Lemma 7 (57)] settgjg=s, = 7} :=t, 0} := 0, (W.l.0.Q.
Sj < 0j < 7j) to obtain
1
th’] (S) = |r”(5)‘ :

According to the expansion [41, Lemma 7 (52)] we can argue thafoo
(2.20) pt(s,o) = lim R(I'(s),l(0),l(s3))
=Tt

IF(0)+ 25 /5 Jo T (0) dodt|?
(143,620 2|1(0) A 15 [ [ y(o_g (@) ddt]
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where we used the identityA A= 0 for A € R3 to simplify the denominator in the
last line. Analyzing this expression we obtain

(2.21) Jmpt(s, o)= )

which proves

also in this last case. O

The last preparation for the proof of Theorem 2.5 consists in the following local
estimate for thept-function:

LEMMA 2.8 Let p> 1 andl" € W?P(S,R®) be the arclength parametrization of

an embedded closed continuous cupvd=ix g € (1, p). Then, for every, & € §
we have

(2.22) |o—s|+ pt(s,0) >

2A(s)’

where
A): = (Mm%

and M f denotes the non-centered Hardy-Littlewood maximal function of f, i.e.,

Mf(t)= sup 1/u+r|f(4c) dz.

By (u)ot 2r Ju-r

Remarks. 1. Sincep > p/q > 1, we may apply the Hardy—Littlewood maximal
theorem (see e.g. Stein’s monograph [46, Chapter 1]) twice, to obtain

M[M|eLP, (M|F")TeLPa, M(M[r")% e L.

Thus,A(-) defined in the Lemma is of clas$.

2. For closed, embedded curvese certainly havé/|"”|(s) > O for eachs. Thus,
A(s) > 0.

Proof of Lemma 2.8Without loss of generality we can assuse o, I'(o) =0,
(o) =(1,0,0), and that the circle realizing:= pt(s, o) has its center &0,0,r).
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We now estimate, usingdider’s inequality for the exponentsandq’ = q/(q—1),

re-r)-r@)s-o) = |[(F-ro)ds

(o

S r7T

= // "(w)dodt
oJO
S

< |[G-omrimde

c(@ls o </GS(M “'"!(r)>qdf> )
(2.23) < c(q)|s—oPA(s).

IN

We have

1 1/
c(q) = (q’+ 1> € (0,1] for eachq > 1.

Thus, (2.23) implies the estimates
IF3(s)| <A(s)|lo—9g? and |F(s)|>|oc—s|—A(s)|oc—5?

If |6 —9 —A(s)|o —9? <0, then|o —s| > 1/A(s) and the lemma holds true.
Otherwise, we obtain

r? F(9)—(0,0,)[* > (F(8)?+("¥(s) —1)?

|6 — 8% —2A(s)|c —s° — 2r|r3(s)| +r2
|6 — 8|2 {1—2A(s)|c — 5| — 2rA(s)} +r2,

>
>

which is only possible if the term in brackets is non-positive, i.e., if

1
r -8 > ——. O
HomS= o
Now we can turn to the
Proof of Theorem 2.5.Fix a Lebesgue poini € §_ of I'". We are going to
estimatept(s, o) from below by analyzing formula (2.20). Since

t
/ F”(w)dw‘ < ‘t—G’lil/pHr”HLp([G.S]‘RS) forall t € [o,9],
5 3,

we find that the numerator in (2.20) can be estimated from below by

|G_S|171/p !
— 2—71/;)”'_, ILr((o.9.73) = >

=

(2.24)
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for o € B, (S), where the numbes; = €1(y) is chosen sufficiently small and does
not depend os.
From

o
/ ) )dw‘ (tlo —9)t" 1/F’|]I"’||Lp ogr3 forall te[01]

c—t(o—s)

we deduce

s[~/p
M (w)dodt| < 1=y _
o — S/ /G t(c—s) @ ‘ 2— 1/ I HLP(S_JRS)

Similarly, we estimate

c—t(o-s) ’G S‘l 1/p
n //
/ / r( d(Udt‘ 2-1/p T lLp (s v3)

so that an upper bound for the denominator in (2.20) is given by

2 ||LPS_R3 < c(p,7)
|G_S|l/p 2-1/p |o—s‘1/P

for some constartd(p, y) depending only op andy. This together with the lower
bound (2.24) for the numerator leads to

] I
(1410 =2 PUM g )|

(2.25) pt(s,o) > w forall o € B (9).
2c(p,7)
Moreover, shrinking; if necessary, we can assume that
(2.26) pt(s, o) > lo—gP >|o—s forall o eBgl(s).
’ 2¢(p,7) '

Thus, by Lemma 2.8,

(2.27) pt(s,o) > forall o € Bg(9),

L
4A(s)
Notice that since is simple we obviously have

(2.28) pt(s,o) > |r()2(6)| >c1 >0 forall o €S \Bgl(9)

for some positive constaci depending only ory.
Estimates (2.27) and (2.28) yield
11 _ 1
pclri(s)  pu[vi(s) — pt(s,0)
< max{cl,4A(s)} forall c € §.
1

SinceA € LP, the Theorem follows. O
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A counterexample to the statement of Theorem 2.5 fop= 1.

Setxg = 1/€® and define

« -1
(2.29) O(x) = /0 <Iogtl) dt,  xe (0,%0)-

Extend® to an even, continuous function ¢axg, X]. It is clear that®'(0) =0
and® is of classCL. In fact,® € C* away from 0, and

-1
¢”(x):<|x|logz|)1(|> . XE[X0, %]\ {0}

6 AN 1\ *
27 = —
/(J(slog s) ds <|096> ,

we have alseb € W?((—xo,%o)).

Now, consider the graph @b: [—xg,Xo] — R2. Close this graph with a smooth
arc to obtain a closed, convé&X curve y C R? which is of classC® except at
(0,0) € R,

Since

We shall show that (a) the arclength parametrizatioof y is of class W! whereas
(b) the energyZ; (y) = +oo.

Step (a): T is of classw?!.  Without loss of generality assume that0) =
(0,0) € R? and that™ maps an interva(0,to) to that part of the graph @b which
liesin{(x,y): x>0,y > 0}. Itis clear thafl”” is continuous away from @ §_and
we only need to check what happens near 0.

We have

(2.30) M) = (x(t),®(x(1)),  te[0t],
wherety: = the length of the graph b [(g 4, and the map
[0,t0] ot — X(t) € [0,Xo]

is given by the implicit formula

(2.31) t= /OX(I)MlJr @’ (x)2dx.

By (2.31),x(t) is monotonically increasing and

(2.32) 1= (1+ D' (x(1))?)X(1)%,  te[0,to].
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Therefore
(2.33) g<x’(t)<1 and gt<x(t)<t t € [0,to]
' 10=""= 10 ="V =" 0l

Differentiating (2.32), we compute

' (X(1)) @ (X(t))X (t)?
Lo xD)?

X'(t) = —

Thus, since by (2.33(t) does not exceed 1 axdt) is comparable to, we obtain
X' < |@'(x(1)P"(x(t))]

(2.34) = <x(t)log3x(1t)> - <C <t|og3t1>1.

Hence,
5
/ X' (t)|dt < Clog*Z% for § € (0,to).
0

Now, on(0,tp) we have
(1) = (x"(1), ®"(x(1)X (1) + @ (x(1)X'(1)).

Since®’ is bounded or{0,%) andx is bounded or{0,tp), we may apply (2.34)
and (2.33) to infer that

()l

IN

C(IX"(t)|+ " (x(t))])
-1
c<t|og3t1) +ClD" (x(1))]

1 1
C(tlog3t1> +C(t|ogzi> .

This implies that™” is integrable on(0,tp). Using the symmetry of near(0,0),
we easily conclude that

IN

(2.35)

IN

e W?(s,R?).

Step (b): the energyZ(y) is infinite.  We shall estimate the radiyss[7](t)
for small positivet. Consider the circles; which is tangent to the graph df at
two points, (+x(t), ®(x(t))). The center oby is at (0, D(x(t)) +X(t)/P'(X(t))).
A computation shows that the radiug) of o; is given by

rt) = q)/)zg()t))\/l+d>’(x(t))2.
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Thus, by (2.33),

rit) < ZGJ’)ES()'[)) gCtIog%.

Sincepg[y](t) <r(t), the last estimate gives

b dt o dt 1 [t 1\ !
(2.36) %1(7/)2/0 pG[}/](t)Z/o r(t)zc/o <tlogt> dt = +oo.

3 Sequences of curves and existence of energy minimizing
knots

We start with an energy estimate providing a lower bound for#esnergy in
terms of the length, which is obtained only for circles.

LEmmA 3.1 Let p> 1 and lety be a closed rectifiable curve of positive length
Z(y) with %p(y) < . Then

(3.1) Up(y) = 2n2(y) /P
with equality if and only ify is a circle of the same length.

PROOF  SetlL := _Z(y) andU := %p(y). We claim that there is an arclength
parametes € S, such that

L1/p
(3.2) pclyi(s) = U
Indeed, if we had
LYp
pal7l(o) < AT forall c €S,

then we could estimate

— 1 rou Lg)¥/p =
0= (L semiap®e) > =

which is absurd.
According to [41, Theorem 1 (iv)(a)] Inequality (3.2) implies that

M(S)NM(s pcr](s) =0,

where the seM(s, pc[y](s)) is the union of all open balls of radiyss[y|(s) tan-
gent toy at the pointl"(s). (As before we used the notatiénfor the arclength
parametrization of.) This implies thatl is at least as large as the length of the
shortest closed curve of positive lengthif\ M(s, pg[7](s)) containing the point
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I(s), which is a great circle on one of the balls with radpgy|(s) generating
M(s, pG[’Y] (S))’ i.e. by (3.2),

LYp
L > 27pg[y](s) > ZET.

with equality if and only ify is such a great circle. O

Remark. As a consequence of Lemma 3.1 we note that (up to rotations and
translations) circles are the unique minimizers of the ené&gymong all closed
curves of fixed length. The same is trivially true if one maximizes the global radius
of curvatureA[y] without further topological restrictions, but also for minimizers
of the repulsive knot energies of the type (1.1) only that the corresponding unique-
ness proof of Abrams et al. is more involved, see [1].

Our existence proof for energy minimizers in nontrivial isotopy classes (Theo-
rem 3.4) relies on the following compactness and lower-semicontinuity result.

THEOREM3.2 Fix p > 1 and letao = (p—1)/p. Assume thayj, j =1,2,...
are closed rectifiable curves of fixed length L with arclength parametrizafigns
defined on &

If sup %p(7;) < K < w then there exists a simple curies C**(S_,R?) with
IT’| = 1, such that, for a subsequence e, 'y — I in C* and

(3.3) pc[l](s) > limsuppg[yy](s) foreachsc § .

) —
Moreover,Zp () < liminfj_, Zp () < K.

Remark. Notice that one cannot expect continuityggf[-](s) in theC-topolo-
gy: Consider e.g. the following arclength parametrizations of “elbow-curves” that
were also mentioned in [8]:

(coss, sins, 0) for se (—1,1)
Fi(s) := ¢ (cost,sint,0)+ (s—i~1)(—sint,cost,0)  for se[1,1]
(cost,sin(—1),0) + (s+i~1)(sint,cost,0) for se [-1,—7],
which® converge irC! to a straight vertical lin€ of length 2 centered iiL,0,0).

Hence aks= 0 we obtain

o = pg[](0) > limsuppg[[i](0) = 1,

j—00

IThese open curves could easily be closed by suitably large circular arcs, and we would still
observe this local effect of discontinuity p§][-](0).
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sincepg|li](0) =1 foralli € N.
Proof of Theorem 3.2By Theorem 2.4 (iv), we have
(3.4) ]F’j(s)—l"j(t)|§K|s—t|°‘, i=12...

By the Arzela—Ascoli theorem we obtain a subsequdnce: I (still denoted by
the same indey) in the C!-topology. Passing to the limijt— o in (3.4) for this
subsequence, we obtdine C1%(S ,R?) with || = 1.

The crucial difficulty is to prove thaft is simple. Again, as in the proof of
Lemma 2.1, we argue by contradiction.

Assume thaf (sp) =TI (t) for somet # 9. W.I.0.g. suppose thag =0, (0) =
0 € R3, andl’(0) = (1,0,0). Thus, for somel = d(K, «) € (0,|t|/8) we have

r(s) = (s+p1(s),p2(8),p3(8)),  se(-d,d),
where p;(s) = o(s) ass — 0 and|p;i(s)| < |g//12 for alls€ (—d,d). For each

parametes € (—d/3,0) the spher@B;  (0) of radiusr(s), where

3 4
sl <re =T < 3lsl,
containd () for at least four different values of the parameteNamely,
F(rl) S 8Br(s)(0) forty =se€ (—d/37 O),
(3.5)
M(12) € JBy(0) for somet; = 12(s) € (0,d),

andr (t3),1 (74) € 9B, (0) for two other parameters; 4 in a neighbourhood df
(Keep in mind that (t) = (0).)
We now fix a numbeN > 16 such that

(3.6) %logN > KL(P-D/P,

Lete =d/3N. Fix j so large that

€

7 5= lleo 4 17 = o < e
(3.7) 7y =Tl + 7 =l < 565

We shall estimatgg|y;](s) from above on the interval-d/3,—¢). Using (3.5)
and the triangle inequality, we check that
Fj(—€) € Bae(0)\Bes(0),
Fj(—=d/3) € Bag(0)\By/4(0),
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and in general j(s) € Bgs(0) \ Bs/4(0) for all s € (—d/3,—¢). Now, for each
s€ (—d/3,—¢), the spher@B, ) (0), whererj(s): = |[Ij(s)|, contains the points
[;(7) for three other values of the parameteOne of them is positive and belongs
to (0,d). Two more values of belong to a neighbourhood of as the equality
[(t) = I'(0) combined with (3.7) yields j(t) € B¢/100(0). Thus, invoking the
definition of the global radius of curvature function, we have

palvil(s) < 4ls, —g<s<—e.
Hence,
1\l (1-p)/p 1
L Gem) @ = 2 L
>

L(H)/p/*s 1S
—d/3 4ls|

1 d
— ZL@-P/P(log= —1|
2 (og3 oge)

= %L(l‘m/plogN > K  by(3.6).

Thus,%,(7;) > K, a contradiction.
To finish the proof, we have to deal with the upper semicontinuifyf
Sincey is simple, we note that if

(3.8) palyil(s) > 6 >0 for infinitely manyj,

then
pa[Yl(s) = 6 > 0.

since otherwise we would find two distinct parametersdifferent froms such
that
R(F(s),l(t),M (7)) < §.

By theC!-convergence we would then obtain
R(j(s),lj(t),Mj(r)) <ofor j>1

contradicting (3.8). Hence, if limsyp,, pc[yj](s) > &, thenpg[y|(s) > 6 — & for
everye > 0. Inequality (3.3) follows. Now, the estimate

] —00

follows from Fatou’s lemma. O

We can weaken the hypothesis of fixed to bounded length in Theorem 3.2 to
obtain
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THEOREM 3.3 Suppose there exist constants K aoilith
2 _
(3.9) % < Lép /p

such that the lengths;L= _Z(y;) of closed rectifiable curveg, j € N, with arc-
length parametrizationEj defined on § satisfy

(3.10) supLj < Lo,
j

and such that
(3.11) su/p(7;) < K.
j

Then there exists L with

p/(p-1)
(3.12) (2}?> <L <Ly,

a simple curvé” € CH%(S,R®) with |I’| = 1, such that, for a subsequence-} o,
the rescaled, arclength parametrized curves

(3.13) r(s) = LL

j,Fj/(Lj/-s/L), Sc S_,

and therefore also the unscaled but reparametrized curves
Mo(Ly/L):S — R

converge td” in C1. Moreover,
(3.14)
pa[l](s) > limsuppg[j/](s) = limsuppg[j o (Lj/L)|(s) foreachsc g,

J/HOO ) —
and

(315)  %(I) <liminf %y(I'}) = liminf %,(Tyo (Lj/L)) < K.

' i

PROOF. Lemma 3.1 implies that

L: > < 2r >p/(p_1) > <2n)p/(p_l) forall jeN
"=\ (1) —\K 7

which together with the consistency condition (3.9) implies the existence of a num-
berL satisfying (3.12) and a subsequerjte- « such that

(3.16) Ly —L asj —oo.
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Now we look at the rescaled curve$ as defined in (3.13). We observe that for the
radiusR(Ij(s), I} (t), (o)) of the smallest circle containing three poifity(s),
M(t), andTj(o) for distinct arclength parametesst, ando in S one has, by
definition,
* * * L
R(M(s), (1), (o)) = ER(Fj(Lj -s/L),Tj(Lj-t/L),Tj(Lj-o/L))
and therefore
. L
(3.17) palljl(s) = fjpe[rj o (Lj/LI(s).

This together with the change of variables formula implies

1 1/p
%M = </stG[rﬂ<s>pds>

N\ 1-(1/p) /p
- (1) (L pemlm)pdt)
- ()"

In particular, by (3.10)—(3.12) we obtain

L (p-1)/p | 1-1/p
* s _ Lo 2.
() < <(2ﬂ)p/(p—1)> K= - K =: K*,
K

and therefore by Theorem 2.4 (iv)

(P () = (T (] <K*[s=t[*  for a:=(p—1)/p.

From now on we can proceed exactly as in the proof of Theorem 3.2 replaging
by % in the line of arguments following (3.4). Sin€g, — I in C*([0,L],R®) we
infer from (3.16) that

Fyo(Ly/L)=(Ly/L)F —T in CY[O,L),R%) asj — .

Identity (3.17) together with (3.16) implies the equality in (3.14) and therefore also
in (3.15). O

We recall the definition of knot asotopy classeim R® : Two continuous closed
curvesy;, 7> C R3 are isotopic, denoted as~ 7, if there are open neighbourhoods
N; of 71, N» of 7, and a continuous mappirg: Ny x [0, 1] — R3 such thatb(Ny, 7)
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is homeomorphic tdN; for all T € [0,1], ®(x,0) = x for all x € Ng, P(Nz,1) = Ny,
andGJ(yl, 1) = "%.

We consider the variational problem of minimizing thg-energy forp > 1 on
curves of fixed length in a given isotopy class. That is, we look at

Up(y) — min
in the class
GLk={ye L length(y) =L,y =K},
wherel > 0 is a given constant, aridis a given isotopy class.

THEOREM 3.4 Let p> 1. For any isotopy class k there exists an arclength para-
metrized curvéd € W2P(S ,R®), such that

CLk

PROOF  The classs]  is not empty since we can scale a smooth parametrization
of kto have lengti.. For a minimal sequendcgy; } with

%p(%) — inf %p() <o asi— o
GLk

with arclength parametrizations € C%'(S_,R3) we can apply Theorem 3.2 to
obtain a simple arclength parametrized limit cufves C1, such that™; — I in
Cl(S,R3) for an (equally labelled) subsequence. According to the stability of
isotopy in theC'-topology (see e.g. [40]) we infer frofy ~ k that alsol” ~ k;
hencel” € ¢ k. Since, by Theorem 3.2, is lower-semicontinuous with respect
to this type of convergence, we obtain

inf 2,(.) < Uo(T) < liminf 2p(y) = inf %p(.).

BLk j—o00 GLk
TheW?P-regularity forl" follows from Theorem 2.4, Part (ii). O

Remark. It is clear that one may also consider other variational problems
with a uniform upper bound o#, as a side constraint ensuring self-avoidance of
the competing curves. Either one fixes or bounds the length in addition, to apply
Theorem 3.2 or Theorem 3.3, or it may be that the length is part of the total energy
to be minimized. It may also happen that a uniform bound on the length follows
automatically from minimizing a higher order, e.g., curvature dependent elastic
energy when keeping one point of the curves fixed, cf. e.g. [31], [50]. In the
light of this we can also deal with variational problems for nonlinearly elastic rods
prescribing a uniform upper bound @}, for the rod centerlines ensuring a positive
thickness of the rods, compare with [22] where the global radius of curvatfife
was used to prescribe a positive thickness.
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Appendix. A Cl-curve with finite %,-energy but unbounded
inverse global curvature function pg 1

We are going to construct a plar@t-curvel” made of segments and circular arcs
accumulating at a limit point such that the tangent has a limit direction and such
that for a givenp > 1 the energy%,(I") is finite, but the global curvature radius
pc[l](-) approaches zero at that limit point. Extendingt the limit point by a
sufficiently long straight line in the limiting tangential direction and then closing
the curve by a suitable large circle produces a cladedurve with the desired
properties.

We work in the planek? with the standard unit vecta pointing in the first
coordinate direction. Set, for sorhe= N(p) > 3 to be fixed later on,

_ 1 1 b1 1
(Al) bi = <sz> 5 I = W7 aj .= ?ﬁ - §m7

and consider circular ar@§ with arclengthb; and radiirj, and straight segments
S of length Z; for i € N. We define the first piece df to be the arcA; with
left endpointPy in the origin, tangent to the first coordinate axis there, and bending
downwards, together with the straight segmarglued tangentially to the endpoint
Q1 of A; and pointing to the right, so that the resulting piece is of ds§hen we
glue the second ark, tangentially to the right endpoif of S; so that the centers
of the corresponding circles (containig and A, respectively) lie on different
sides of the straight line through. Thus the circular arcéys and A; bend in
different directions. Then we attadh tangentially toA, at the endpoin@, of A,
so that the resulting curve is still of cla€3. We continue in this manner with the
arcsA; (with left endpointR) and straight segmeng (with right endpoints3, 1),

i = 3,4, ... to obtain aC'-curve with left endpoinP;. To obtain the right endpoint
of I we notice tha{ R} is a Cauchy-sequencelk?, since

IPi1—R|<2ri+b <3r; forall i eN,

whence

IRik—R| < z |Pj+1fpj‘§32m*>o asi — o, forall keN.
=1 =1

Therefore we sel, := lim;_,., P to be the right endpoint df. We also compute
the lengthZ (") of ' as

8

Z() _$<O(Ai US)> = (bi+2ri) =: L < co.

i=1
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We identify " with its arclength parametrization ¢@, L] with I'(0) := 0= P, and
(L) := P». By construction and definition of the arclength parametrization we
already havé € C%1([0,L)), and it is easy to check that in facte C°([0,L]); we
leave the details for the reader.

We defines € [O,L) by
MNs):=R forieN,

and set
Ti:=r'(s), forieN.

Notice thafTj is a unit vector for eache N sincel is the arclength parametrization.
If Bi € [—m,n] denotes the (oriented) angle betw&gand the unit vectoe; then
we have by constructiofi; = 0, 8, = 204, and

K .
(A.2) Bri= Y (~1)1*12a; for k>1,
=1

whereq; is defined by (A.1) and denotes the smaller angle between the tangent
line at the arcA; in B and the secant through andQ;. Since thex; decrease
monotonically to zero, alfx belong to[0, 2c;]. Thus, in particular,

(A.3) OS[SKS% forall k=1,2,...

From (A.2) we compute the limiting tangent direction as

° 1 1
- i __ _1\i+1 _
(A.4) Pt =lim fi='3 (-1 oy = T

|—00 j:l

As B converges, the unit tangent vectdi%} form a Cauchy-sequence since
T — T«|> =2—2c099(T;, Ty)] = 2(1—cogfx— Bi]) = 0 asi,k— co.

From (A.4) we can deduce

limT = ( cosfer > = Veo.

. —sinfs,

We claim that™ € CY([0,L],R3) if we setl(L) = v.,. As before we know from the
construction thaf € C1([0,L),R3) and it suffices to consider a sequerer} C
[0,L) converging td_~ ask — c. Given anye > 0 we choosép € N so large that

ITi—Vo| <€/4 and 1-cos2y <e/8 foralli>ip,
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and therkg sufficiently large to guarantee

(oK) € CJ (AjUS;) forall k> ko,

j=io
so that for eaclk > kg there exists somgk) > ig with
(A.5) I(ok) € Aj(k) U Sj(k)-
Then one has

M (0k) —Vea* < 2|7 (0k) = T 1* + 2/ Ty — Veol?
< 2(2—2c049(I"(0k), o)) + 2/ Tj) — Veo
<

22— 2C052Xj(k)) +e/2<¢,
where we used that by construction and by (A.5) the tang&mt) at the point

[(ok) lies in between the tangent§, and Tj%k)ﬂ, which differ by the angle
20 (- Thus we have proved thate C*([0,L], R?).

We remark that the local curvature on the respectiveArissequal ta;* = N/
and is therefore unbounded, which me&ing C-1([0,L],R%). As a matter of fact,
if I were of clas€! then [41, Theorem 1 (iii)] would imply

AIF) = inf polr(s) > 0,

sincel is embedded by construction, which follows from the considerations below.
In other words” mustfail to possess a globally Lipschitz continuous tangent in
order to have an unbounded inverse global curvature fungddi](.)~1. On the
other hand, we will show tha¥,(I") < e, which by means of Theorem 2.4 implies
thatl € CY*(S,R®) fora =1—1/pfor p> 1, orl € CY(S,R%)if p=1.

Let H; be thexp-axis, and fon € N, i > 2, let H; be the open halfplane con-
taining the segmerg_1, and bounded by the line throughperpendicular t& 1.
Then sincdy; < 7 for all i € N we have

AUS CcHj;1 forallieN.
We claim that
(A.6) Bor, (Ri1) CR2\H; forall i>2.

To this end we can rotate and translate the curve sodHatcoincides with the
Xo-axis and such that

(0 _ o i [ COSO; A _ oy [ COSA
P"(o)’ Ql—Pl—Zr.sma.<Sinai> and Ry Q.—2r.<sir]20£i >
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Consequently,

dist(Pi1,H) > (Ra—R)-e
= (R1—-Q)-e+(Q—-R)e
= 2riC0os 2y + 2rj Sina; COSo;;
= 2ri(cosy + (1/2)sin20;)
> 2r; foralli>2,
since the term in brackets can be writtenfée; ), where

cog2x— )

f(x):= X+ (1/2)sinXx =
(X) :=cosX+ (1/2)sin costo

1
for 1p: :arctarE

obviously satisfie$ (x) > 1 forall 0< x < % ~ 0.2318. We havey <1/2N <1/6
for all i, and this finishes the proof of (A.6).

Next we claim that
(A.7) M([s,L]) CR?\H; forall ieN.
To this end we notice that the smaller (unoriented) angle
0 :=<(IHi,e1) C [0,7/2

between the straight linéH; and the first standard coordinate vectprmay be
calculated according to

5 = fori=1
. %+Zij:z(—1)j*12aj_1 forall i > 2,

ISIE

which can be easily shown inductively. Again, sirgedecrease monotonically to
zero, we haveé; € [5 — 20y, 5]. As 201 < 1/N,

T 1= .
(A.8) o € {2 — N’Z] forall i e N.
On the other hand we remark that the tangenf an A U & lies in the cone
bounded byl andTy, 1 for all k € N, in other words

[Bk, Bk+1] for kodd

forall se [sq, 1)
[Bk+1,Bx]  for keven i

(A.9) J(M(s).e1) € {

Since the anglefx = 9 (Tk, 1) satisfy (A.3), we have

1

(A.10) 0< (M(s),e1) < N
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The intervals in (A.8) and (A.10) have no point in common. Thus, we conclude
from (A.9) that the tangerit’(s) is transversal t@H; for all s€ [s, L], which also
proves our claim (A.7), since th@!-curverl intersect®)H; perpendicularly at the
pointl (s), and the tangerit’(s) is not parallel todH; for eachs € [s,L], i.e., the
curve never “returns” tdf;.

Let W be the quadrant bounded bBYH; and the straight line through the seg-

mentS_4, such that
r((s,s+1]) CW.

Then, by construction df,
(A.11) M((s,L])) cW forall i e N.
Now (A.6) together with (A.11) implies
(A.12) dist(l' ([s+1,L]),A) >2r; forall i €N,
since distW,1,A)) > 2r; forall i € N.

After all these preparations, we now begin the crucial part of work, i.e. the
estimates of the global radius of curvature on various piec€s dfe shall write
ti: =s+bi,i>1, sothath is the image ofs,tj] andS is the image oft;,s11].
We also sety: = 0=s1, andty: = 0. Using (A.12) we are first going to prove
the following.

LEMMA A.1 The global curvature radius
(A.13) pclyl(s)=r; forall se|s,t], ieN.

PRooE We consider several cases:
Case l.If t,o € [s,t] then

(A.14) R(T(s),l(t),l (o)) =ri,

sincerl (s), ['(t), andl (o) lie on the same circle containing the aic
Case II. If, sayt € [O,L] \ [ti—1,S+1], then|[(t) — ' (s)| > 2r; according to
(A.12); hence

(A.15) R(C (), (t),I (o)) >Ti.
Case lll. If, sayo € [s,t] andt € [ti_1,s), then by symmetry oR(-, -, )
R(F(s),F(t),M (o)) = R(I(s),M(0),F (1))

_ r'(s)—r(o)|
2[sin[9(F(s) =T (), (o) =T ()]l

\"( s) — (o)l

2|sin[9 ) (

(
(A.16) = R(I(s),T
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according to Case I.
Case IV.If t,o € [ti_1,S), sayt < o, then

_ r()—r)
ALTRTE.TO-T0) = ST (s (o), F )~ T ()]
IF(s)—T(t)] .-
2|sinQ(M(s)—r(s),MNo)—T(s))] — i

where the last inequality follows as in Case lll.
Case V.Ift € [ti_1,5) ando € (tj,S+1] then

M(s)—T(t)]
2[sin[9(I'(s) =T (0),T'(t) =T (0))]|
r(s)-r(s)l -
2|sin9(r(s) =T (o),F(s)-T(a)] = "
where the last inequality follows again as in Case lIl.

The remaining case wher@ndo are contained ifftj, S 1) can analogously be
reduced to Case lll, and we can conclude that (A.14)—(A.18) prove (A.13)3

(A.18R(I (s),I (t),T(0)) =

Next, we estimat@g|y|(-) on the segmentq;_;, 5). Recall from (1.8) in the
introduction that

A.19 M(s) = MN(s)= inf t(s, forall se [O,L],

(A19)  poll](8)=pulll(s)= _inf _pi(s0) o]

which according to Lemma 2.7 is valid for allsuch that™(s) exists; hence in
particular fors€ (ti_1, 5). The point-tangent function

_F(§) =T (o)

pt(s,0) = Jsino(o)] (I simple ands # o)

equals the radius of the circle through the poififs) andl'(c) and tangent to
(o); here,m(t) € [0, 5] denotes the unoriented angle betwégn) —I'(t) and
I(t). If [ (s)—T' (o) andl (o) happen to be collinear thesi(s, o) = .

To estimatept(s,o) for o sufficiently far away froms we notice first that
(A.12) implies

MF(s+1)—T(s)|>|M(s+1)—T(t)|=2r; forall ieN.

We also note that since all anglgs= <)(Ti, e1) satisfy (A.3),l" is a graph over the
ej-axis. Therefore, by the Mean Value Theorem, the polygon through the points
I(s),i € Nis a graph over this axis, too. Using the estimate for all anglegain,

we easily infer

1

1=|r'(t)| >ry(t) >cos Nz

>1- = >

Zl =
NI -~
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and therefore

(A.20) %|S—G| <IF(s)—T (o) < |s—o].

LEMMA A.2 Leti> 2. Ifse (ti_1,5) ando & (ti_2,S+1), then
pt(s, o) > co >0,

where the constanadepends only on N and p, and not on i.

PROOE Fixse (ti-1,s).

Case |.Assumeo < [0,ti_2]. The casé = 2 is trivial. Thus, we assume> 3.
Pick j <i—2such that € [tj_1,t;]. Using (A.20), we estimate

1 1 )
(A21)  F(9-T(0)|= 5ls—o0l > Sfta—t>r; =N,

On the other hand, we note the crude estimate for the am@¥®, ignoring in fact
the change of directions of every other &ic

w(o) = FE-FO).M(e)< 3 20
I=]—1

N2P-1 1 A
N2p-1_1 N@-D(G-1)  N@p-Dj’

where the constamt depends only o andp. This together with (A.21) leads to
NS =) I =Te)] 1 @2is 1

pt(s, 6) =

2sino(c) — 20(o) 2A 2A°
asp—-2>0.
Case Il.Assume now thatr > s, ;. Reasoning precisely as above, we obtain
2si 2 S B
sino(o) < 2mw(c Z N@-Di

for someB depending only otN andp. We also have

IF(s)—r(o)| > *\S 6|>fls Sya| >ri=N"

(A.20) 2
Combining these two estimates, we check this, o) > B~IN(?P-2i > g1
this case. The proof of Lemma A.2 is complete. |

The following local estimates give positive lower bounds [fs, o) for the
remaining values of parameters, i.e., € [ti_», S1] andse€ (ti_1, §). Although
quite far from being sharp, these new bounds are still sufficient to proveial
is finite.
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LEMMA A.3 Letq=2p—1+ 2—1p There exists a constant e ¢1(N, p) > 0 such
that for all se (ti_1,5) and all o € [tj_2, 1] the following estimates hold:

(A.22) pt(s,0) > caf;
whenever & (t_1,t_1+r) and s€ (s —r.s), and

(A.23) pt(s,0) > cyri/?P

for the remaining values ofs [t +r,s — /1.

PROOFE In fact, it even suffices to considet(s,.) only for o in the set
[S—1,t]\ [ti-1,S]
sincept(s,0) =« for ¢ € [ti_1,5] and

9 -r(o)l  IFe-r)

pt(s, o)

2|sino(o)| — 2|sino(o)|
W =pt(st;) foro e [ti, sl
Similarly,
pt(s,c) > W —=pt(s,s5_1) for o€ lti_as_1]

Let us first consider the cases (tj_1,5) ando = s +h € (s,t], h > 0. After
a suitable rotation and translation we can assume the arclength parametrization

( Z) ) for t € [ti_1,S]
S [ siny(t) =
( o ) +1; ( cosy ) ) for t € [s,ti],

wherey(t) := (t —s)/ri. Sincel satisfies (A.20), we have

F(8)~T(0)| > Sls—o] = 5 (Is—s|+h).

On the other hand, by elementary geometry,

2sino(o) <2w(o) <2y(o) = Zr—h
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Thus,

ri |s—si|
(A.24) pt(s,o) > 2 <1+ h ) :

When|s—s| < rl or |[s—ti_1| < r, we immediately obtain the desired claims
(A.22) upon dropping the second term on the right hand side of (A.24).
Assume nows € (tj_1,S — riq]. Sinceh < b = rizp, we have

Is=sl s a2 _ s

h - " - N 9 pt<s76) > l/zp

4 I

The case ob € [tj_1,5-1] is practically identical (remember that ; andr; differ
only by a fixed factolN). This completes the proof of the lemma. O

Now, combining Lemma A.2 and Lemma A.3, and keeping in mindthsitl,
we obtain the following estimates fpgy (s) := ppt[I'](s) and alli:

ppt(s) > Corig forall sl = (t_q, tig+r 4],
ppt(s) > czril/2|0 forall se Ii = (ti- 1+rI 'S —riq),
ppt(s) > corp forall selP:=[s—r, s),

with a constant,; = cz(N, p) = min(cp,c1) > 0. Therefore, since
s—r—(tici+r} ) <s—t_1=2r_1=2Nr; forall ieN,

we estimate after a simple computation

S 1 1 1 1
ds — / ds+/ ds+/ = ds
/til ppt(S)P 11 Ppt(S)P 12 ppt(S)P 13 ppt(S)P
ca(N,p) (/2P +r1?) forall i=1,2,...

IN

Combining this information with Lemma A.1, and keeping (A.19) in mind, we
finally estimate the energy of,

ZP(r) = Zl/a ds+22/t.1pe

0

f 1/2p /2
< +C3(N, p) ) ri’ " +c3(N, p) < 0o,
i; rP i; I 22
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