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Conformal mapping of multiply connected Riemann domains

by a variational approach
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Abstract. We show with a new variational approach that any Riemannian metric on a multiply
connected schlicht domain in R

2 can be represented by globally conformal parameters. This
yields a “Riemannian version” of Koebe’s mapping theorem.
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1 Introduction

The aim of this paper is to give a new proof of the following result:

Theorem 1.1. Let .�; ds2/ be a k-fold connected Riemann domain of class Cm;˛;

m � 2; ˛ 2 .0; 1/, which is bounded by k closed, mutually disjoint Jordan curves

�1; : : : ; �k 2 Cm;˛: Then there is a conformal mapping � W N� ! NB of the closure of

� � R
2 onto the closure of a k-circle domain B in R

2 such that � 2 Cm;˛:

In order to establish this result we show that on every such Riemann domain
.�; ds2/ one can introduce conformal parameters in the large by means of a con-
formal mapping � W NB ! N� from the closure NB of a k-circle domain B in R

2 Š C

with � 2 Cm;˛. Then, clearly, Theorem 1.1 is obtained by choosing � as the inverse
of �:

We note that these results are well known (see e.g. Jost [14], [15]). The existence of
a conformal mapping � W B ! � essentially follows from the local Korn–Lichtenstein
Theorem (cf. [16], [19]), combined with a uniformization procedure. The extension
of � to a conformal mapping � W NB ! N� of NB onto N� in the spirit of Osgood–
Carathéodory–Kellogg–Warschawski requires an additional effort.

Here we give a new proof for the existence of the conformal mapping � W NB !
N� by solving a planar “Douglas problem”. In the spirit of J. Douglas we thereby
obtain the diffeomorphism � in one stroke up to the boundary. A similar approach
was used by C. B. Morrey in Chapter 9 of his monograph [22]; however, his proof is
invalid as it stands. Later, J. Jost (loc. cit.) provided another variational proof using
some of Morrey’s ideas. The proof presented here is possibly simpler and more direct.
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Its new feature consists in a simultaneous minimization of the area functional A and
the Dirichlet integral D in a “Douglas class” C.�/. This class consists of mappings
� 2 H 1;2.B;R2/; defined on variable k-circle domains B in R

2, which monotonically
and continuously map the boundary circles C1; : : : ; Ck of @B onto the closed curves
�1; : : : ; �k forming the boundary configuration � WD h�1; : : : ; �ki of �: The artifice
in obtaining such a simultaneous minimizer � of A and D consists in minimizing the
convex combinations A� WD .1 � �/A C �D for � 2 .0; 1�: This trick is borrowed
from earlier work of the authors on Cartan functionals and was already used in [12] to
establish the existence of a conformal mapping � W ND ! N� of the closure of a disk D

onto the closure N� of a simply connected Riemann domain .�; ds2/ of class Cm;˛.
This case is much simpler than the case k > 1 since all simply connected, bounded
domains � are conformally equivalent, while two multiply connected domains with
k closed boundary contours are in general of different conformal type. Therefore one
has to minimize A� over mappings � W B ! R

2 whose domains dom.�/ D B are not
kept fixed, but will be allowed to vary in the class of k-circle domains.

To solve the Douglas problem “A� ! min in C.�/” we follow Courant’s approach
[3], or rather a modification of this approach devised by M. Kurzke in his profound
Diploma thesis [17] and, later, by Kurzke and the second author [18]. Let us outline a
few ideas of our method. For this purpose we need some definitions.

For q 2 C and r > 0 we define the disk Br.q/ as

Br.q/ WD ¹w 2 C W jw � qj < rºI

it is a 1-circle domain. If q D 0 and r D 1, we call the unit disk B1.0/ the normed

1-circle domain. For k > 1, a k-circle domain B.q; r/ with q D .q1; : : : ; qk/ 2 C
k

and r D .r1; : : : ; rk/ 2 R
k , r1 > 0; : : : ; rk > 0, is a disk Br1.q1/, from which k � 1

closed disks NBr2.q2/; : : : ; NBrk
.qk/ are removed which are contained in Br1.q1/ and do

not intersect. That is,

B.q; r/ D Br1.q1/ n
°

NBr2.q2/ P[ : : : P[ NBrk
.qk/

±
;

and jq1 � qj j C rj < r1 for 1 < j � k as well as

rj C rl < jqj � ql j for j 6D l with 2 � j; l � k:

If, in addition, q1 D q2 D 0 and r1 D 1, then B.q; r/ is called a normed k-circle

domain.

Let N .k/ be the class of k-circle domains, and N1.k/ be the class of normed k-

circle domains.

Next we introduce Riemann domains in R
2 as diffeomorphic images of k-circle

domains, bounded by smooth curves and equipped with a Riemannian metric. To
formulate a clear cut notion we give the following
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Definition 1.2. A k-fold connected Riemann domain .�; ds2/ in R
2 of class Cm;˛,

m � 1, ˛ 2 .0; 1/, is an open, bounded subset � of R
2 whose closure is equipped

with a Riemannian metric

ds2 D gjl.x/dx
jdxl ; x 2 N�;

and which has the following properties:

(i) There is a B 2 N .k/ and a Cm;˛-diffeomorphism �0 of NB (viewed as subset of
R

2) such that N� D �0. NB/:
(ii) .gjl/ is a positive definite, symmetric, 2 � 2-matrix valued function on N� with

gjl 2 Cm�1;˛. N�/:

Extending .gjl/ suitably to all of R
2 we may and will assume that .gjl/ is a sym-

metric matrix function on R
2 with gjl 2 Cm�1;˛.R2/ satisfying

gjl.x/ D ıjl for jxj � 1;

and
m1j�j2 � gjl.x/�

j �l � m2j�j2 for all x; � 2 R
2 (1.1)

for some positive constants m1; m2 with m1 � m2:

Note that the boundary @� of the Riemann domain .�; ds2/ consists of k closed,
mutually disjoint Jordan curves �1; : : : ; �k of class Cm;˛ which are given by �0.C1/;

: : : ; �0.Ck/ where C1; : : : ; Ck are the “boundary circles” of B . The k-tuple

� D h�1; : : : ; �ki (1.2)

is called the boundary configuration of the Riemann domain .�; ds2/:

Example. If X 2 Cm;˛. N�;Rn/; n � 2; is an immersion of N� � R
2 and N� D �0. NB/;

B 2 N .k/, �0 a Cm;˛-diffeomorphism, then .�; ds2/ with the pulled-back metric
ds2 D X�.ds2

e/ of the Euclidean metric ds2
e in R

n is a k-fold connected Riemann
domain of class Cm;˛.

For � 2 H 1;2.B;R2/, B 2 N .k/, the functions

E.�/ WD gjl.�/�
j
u �

l
u; F .�/ WD gjl.�/�

j
u �

l
v; G .�/ WD gjl.�/�

j
v �

l
v

are integrable, and the pull-back ��ds2 of the given metric ds2 can be written as

��ds2 D E.�/du2 C 2F .�/dudv C G .�/dv2:

If � satisfies the conformality relations

E.�/ D G .�/; F .�/ D 0 on B , (1.3)
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then � is called weakly conformal. If, in addition, � defines a diffeomorphism from NB
onto N�, then � is said to be a conformal mapping from NB onto N� (or, more precisely,
from . NB; ds2

e/ onto . N�; ds2/; where ds2
e denotes the Euclidean metric ds2

e D du2 C
dv2 on R

2). Then we can write

��ds2 D �.w/.du2 C dv2/; � WD E.�/ D G .�/; w D .u; v/ � uC iv:

Note that for ds2 D ds2
e a conformal mapping in the above sense is a “classic” con-

formal mapping if detD� > 0 on NB , and it is “anticonformal” if detD� < 0:
Next we are going to define the area functional A.�/ and the Dirichlet integral

D.�/ for any � 2 H 1;2.B;R2/ with B D dom.�/ 2 N .k/ as

A.�/ WD
Z

B

q
E.�/G .�/ � F 2.�/ dudv;

D.�/ WD 1

2

Z

B

ŒE.�/C G .�/� dudv:

Recall that B , the domain of � , may vary with � and is allowed to be an arbitrary
k-circle domain. We note that

A.�/ � D.�/ for any � 2 H 1;2.B;R2/

and
A.�/ D D.�/ if and only if (1.3) is satisfied.

Finally we define the Douglas class C.�/ of admissible mappings � W B ! R
2 for the

variational procedure that we are going to set up, where � is given by (1.2).

Definition 1.3. A mapping � 2 H 1;2.B;R2/\C 0.@B;R2/withB D dom.�/ 2 N .k/

belongs to C.�/ if � j@B maps @B in a weakly monotonic way onto � D h�1; : : : ; �ki:
By this we mean the following: There is an enumeration C1; : : : ; Ck of the boundary
circles ofB such that � jCj

mapsCj in a weakly monotonic way onto �j , j D 1; : : : ; k:

If in the sequel we consider a mapping � 2 C.�/ with B D dom .�/ and @B D
C1 [ : : : [ Ck , we tacitly assume the boundary circles Cj to be enumerated in such a
way that �j D �.Cj /; j D 1; : : : ; k:

Now we can formulate our principal result, from which Theorem 1.1 follows in the
indicated way:

Theorem 1.4. Let .�; ds2/ be a k-fold connected Riemann domain of class Cm;˛,

m � 2; ˛ 2 .0; 1/, with the boundary configuration � D h�1; : : : ; �ki: Then there

exists a � 2 C.�/ \ Cm;˛. NB;R2/ with B D dom.�/ 2 N .k/ such that

A.�/ D inf
C.�/

A D inf
C.�/

D D D.�/: (1.4)

The mapping � provides a conformal mapping from . NB; ds2
e/ onto . N�; ds2/:
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Remarks. (i) Note that either detD� > 0 on NB or detD� < 0 on NB . In the second
case we compose � with the reflection � W .u; v/ 7! .u;�v/ which maps NB� onto
NB where B� is the mirror image of B D dom.�/ with respect to the u-axis. Then
�� WD � ı � is of class C.�/ \ Cm;˛. NB�;R2/ with B� D dom.��/ 2 N .k/ and
furnishes a conformal mapping from . NB�; ds2

e/ onto . N�; ds2/ with detD�� > 0: We
also have

A.��/ D inf
C.�/

A D inf
C.�/

D D D.��/:

(ii) Theorem 1.4 generalizes Koebe’s mapping theorem from Euclidean to Rieman-
nian metrics; see also R. Courant [3], Chapter V.

(iii) Suppose that �1 and �2 are two conformal mappings from . NB1; ds
2
e/ and . NB2; ds

2
e/

onto . N�; ds2/, B1; B2 2 N .k/, with detD�j > 0 for j D 1; 2: Then � W ��1
2 ı �1 is a

biholomorphic map from NB1 onto NB2. By virtue of a result of P. Koebe � is a Möbius
transformation (cf. [20], p. 278, footnote 354). A proof of this “uniqueness theorem”
can be found in [13], pp. 517–519, and, in a different formulation, in [2], pp. 187–191.

Thus we have found:

A conformal mapping � from . NB; ds2
e/, B 2 N .k/, onto . N�; ds2/ is uniquely de-

termined up to a composition � ı � with a Möbius transformation � W NB 0 ! NB;
B 0 2 N .k/:

As mentioned before we shall proceed by studying the minimum problem

A� ! min in C.�/ (1.5)

for the modified functional

A� WD .1 � �/A C �D (1.6)

with a fixed � 2 .0; 1�, instead of considering the problem “D ! min in C.�/” and
then proving “minC.�/ A D minC.�/ D” which needs sophisticated analytic tools.
Suppose we had a solution �� of (1.5). Since A is parameter invariant we would
obtain that the first inner variation of D at �� vanishes for all C 1-vector fields, i.e.

@D.��; �/ D 0 for all � 2 C 1. NB;R2/ with B D dom.��/: (1.7)

In Section 2 we prove that (1.7) implies the conformality relations

E.��/ D G .��/; F .��/ D 0; (1.8)

following Courant’s ideas (see [3], pp. 169–178, and also [17], Chapter 3). This en-
ables us to avoid Riemann’s mapping theorem for multiply connected domains in C.

After some technical preparations in Section 3 we shall formulate in Section 4 the
Douglas condition, and then prove the following intermediate result:
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Theorem 1.5. If the Riemann domain .�; ds2/ satisfies the Douglas condition then

there is an �0 2 .0; 1� such that (1.5) possesses a solution �� for every � 2 .0; �0�; and

in addition, �� fulfills (1.8).

On account of (1.8) one obtains in Section 5 that

A�.��/ D A.��/ D D.��/ for 0 < � < �0:

An easy reasoning will then imply

D.��/ � const on .0; �0�;

and one can conclude that, for any � 2 .0; �0�, the mapping � WD �� is a solution of
(1.4) and (1.3). Applying a similar reasoning as in [12] it follows that the assertions of
Theorem 1.4 hold under the additional assumption that .�; ds2/ satisfies the Douglas
condition. Having established this fact, the proof of Theorem 1.4 will be completed
by finally showing that this additional assumption is superfluous. The details of these
arguments will be carried out in Section 5.

Finally the authors would like to apologize for the unanticipated wealth of material
which led to this rather long exposition. This is in part caused by the fact that for
several of the results used here we have not found complete proofs in the literature, or
that these results could not be applied directly in the existing form.

2 Conformality relations

Consider a set B 2 N .k/ given by

B D Br1.q1/ n
k[

j D2

NBrj
.qj /

with NBrj
.qj / � Br1.q1/ and NBrj

.qj / \ NBrl
.ql / D ; for 2 � j; l � k; j 6D l:

Lemma 2.1. There is a Möbius transformation f such that f .B/ 2 N1.k/:

Proof. For k D 1 the mapping f is given by

f .w/ WD w � q
r

where r D r1 and q D q1:

If k > 1 then f WD  ı ' with

'.w/ WD w � q1

r1
;  .z/ WD z � p2

p2z � 1
; p2 WD '.q2/:
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Proposition 2.2. If � 2 C.�/ with dom.�/ D B satisfies

@D.�; �/ D 0 for all � 2 C 1. NB;R2/ (2.1)

then � fulfils the conformality relations (1.3).

Proof. Because of Lemma 2.1 and the conformal invariance of D we may assume that
B 2 N1.k/. If k D 1 the proof is given in [12]; so we now assume k > 1, q1 D 0;
r1 D 1: Let us view B as a subset of C and consider the mapping � W B ! C defined
by

� WD a � ib; a WD E.�/ � G .�/; b WD 2F .�/:

For � D .�1; �2/ 2 C 1. NB;R2/ the inner variation @D.�; �/ is given by

@D.�; �/ D 1

2

Z

B

Œa.�1
u � �2

v/C b.�2
u C �1

v/� dudv:

By writing �.w/ in complex notation �.w/ D �1.w/C i�2.w/ we obtain

Re.� Nw�/ D 1

2
Œ.�1

u � �2
v/aC .�2

u C �1
v/b�:

Thus (2.1) is equivalent to

Re

Z

B

� Nw� dudv D 0 for all � 2 C 1. NB;C/ Š C 1. NB;R2/: (2.2)

As a first step towards proving (1.3) we state

Lemma 2.3. Let ˛ be a closed Jordan curve in B of class C 1 which partitions B into

two disjoint open subsets B1 and B2, i.e. B D B1 P[˛ P[B2, and suppose that � D
�1 C i�2 is holomorphic on B1, .�1; �2/ 2 C 1. NB;R2/, and �.w/ D 0 for w 2 @B2 n˛:
Then, for any closed C 1-curve ˇ � B1 that is homologous to ˛, the complex line

integral
R

ˇ �.w/�.w/ dw is real, i.e.

Im

Z

ˇ

�.w/�.w/ dw D 0: (2.3)

Proof of the lemma. Since B D B1 P[˛ P[B2 and � Nw D 0 in B1 it follows from (2.2)
that

Re

Z

B2

� Nw� dudv D 0

whence Z

B2

Œa.�1
u � �2

v/C b.�2
u C �1

v/� dudv D 0:
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As � D 0 on @B2 n ˛, an integration by parts yields

0 D
Z

˛

.a�2 � b�1/ duC .a�1 C b�2/ dv

�
Z

B2

Œ.au�
1 C bu�

2/C .bv�
1 � av�

2/� dudv:

Furthermore,

2 Re.�� Nw/ D .au�
1 C bu�

2/C .bv�
1 � av�

2/;

and by the same reasoning as in [12] one proves that � is holomorphic in B , i.e.

� Nw.w/ D 0 on B .

Therefore, Z

˛

.a�2 � b�1/ duC .a�1 C b�2/ dv D 0:

A brief computation yields

Im.�� dw/ D .a�2 � b�1/ duC .a�1 C b�2/ dv;

and so

Im

Z

˛

�� dw D 0:

Since �� is holomorphic in B1 it follows that

Z

˛

�� dw D
Z

ˇ

�� dw

whence (2.3) is verified. Thus the lemma is proved.

Next we define for any set M in C the “thickening”

Bı.M/ WD ¹w 2 C W dist.w;M/ < ıº:

Then

Aj .ı/ WD B \ Bı.Cj /; j D 1; : : : ; k; ı > 0;

are the annuli Aj .ı/ of width ı about the boundary circles Cj D @Brj
.qj /, contained

in B and satisfying Aj .ı/ \ Al.ı/ D ; for j 6D l , 1 � j; l � k; provided that

ı < ı0 WD 1

2
min¹dist.Cj ; Cl/ W j 6D l; 1 � j; l � kº:
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Lemma 2.4. For any closed C 1-curve ǰ in Aj .ı/, 0 < ı < ı0, which is homologous

to Cj one has Z

ǰ

�.w/ dw D 0 (2.4)

and Z

ǰ

.w � qj /�.w/ dw D 0 (2.5)

for j D 1; : : : ; k:

Proof. Fix some j 2 ¹1; : : : ; kº and consider three vector fields �1, �2, �3 2 C1
c .B [

Cj ;C/ with
@

@ Nw�l .w/ D 0 in Aj .ı/; l D 1; 2; 3;

satisfying

�1.w/ WD
´
� for w 2 NAj .ı/

0 for w 2 NB n NAj .2ı/;

where � is an arbitrary complex number,

�2.w/ WD
´
w � qj for w 2 NAj .ı/

0 for w 2 NB n NAj .2ı/;

�3.w/ WD
´

�i.w � qj / for w 2 NAj .ı/

0 for w 2 NB n NAj .2ı/:

Let C 0
j be the circle @Aj .ı/ nCj and apply Lemma 2.3 to ˛ WD C 0

j and � WD �1: Then,
for any closed curve ǰ in Aj .ı/ homologous to ˛ and therefore homologous to Cj , it
follows that

Im
h
�

Z

ǰ

�.w/ dw
i

D 0 for all � 2 C:

This yields (2.4).
Applying the same reasoning to � WD �2 and � WD �3 respectively, we obtain

Im

Z

ǰ

.w � qj /�.w/ dw D 0 and Re

Z

ǰ

.w � qj /�.w/ dw D 0

which proves (2.5).

Remark. One can as well choose �2.w/ WD .w � qj /n and �3.w/ WD �i.w � qj /n on
NAj .ı/ with n 2 Z n ¹0º, �2.w/ D 0 and �3.w/ D 0 on NB n NAj .2ı/. Thus one even

obtains Z

ǰ

.w � qj /n�.w/ dw D 0 for all n 2 Z (2.6)
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and ǰ � Aj .ı/; 0 < ı < ı0 (0 < ı < 1 for k D 1). For B 2 N1.k/ one has

�.w/ D
1X

nD�1
anw

n if k D 1 or 2

(with an D 0 for n < 0 if k D 1). Applying (2.6) to q1 D q2 D 0 and 0 < r2 < r1 D 1
for k D 2, or to q1 D 0; r1 D 1 if k D 1, it follows that �.w/ � 0, and so Proposition
2.2 is proved for k D 1 or 2. The case k � 3 is more involved. We need the following
crucial result.

Lemma 2.5. One has

Im
�
.w � qj /2�.w/

�
D 0 for w 2 Cj ; 1 � j � k: (2.7)

Proof. (i) We first consider the case j D 1 where q1 D 0 and r1 D 1; by a suitable
Möbius transformation the cases j D 2; : : : ; k will be reduced to j D 1 in step (ii).

Fix some ı 2 .0; ı0/; and let be an arbitrary real valued function with 2 C 1. NB/
and

 .w/ D 0 for w 2 NB with jwj � 1 � 2ı:

Set

�.w/ WD �i Œw .w/� for w 2 NB:

By (2.2) we have

0 D Re

Z

B

� Nw� dudv D lim
R!1�0

Re

Z

B\BR.0/

� Nw� dudv:

As in the proof of Lemma 2.3 it follows that

0 D � lim
R!1�0

Im

Z

@BR.0/

iw .w/�.w/ dw:

With w D Rei� and dw D iw d� we obtain

0 D lim
R!1�0

Z 2�

0
 .Rei� /h.Rei� / d� (2.8)

if we denote by h W B ! R the harmonic function

h.w/ WD ImŒw2�.w/�; w 2 B:

Suppose now that  depends also on a further parameter z 2 NB�.0/ such that  .w; z/
is of class C 1 for .w; z/ satisfying 1 � 2ı � jwj � 1; jzj � � � 1 � � for � 2 .0; 2ı/:
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Then we obtain for f WD ReŒ� Nw.�; z/�� that
ˇ̌
ˇ̌
Z

B\BR.0/

f dudv

ˇ̌
ˇ̌ D

ˇ̌
ˇ̌
Z

B

f dudv �
Z

B\BR.0/

f dudv

ˇ̌
ˇ̌

D
ˇ̌
ˇ̌
Z

BnBR.0/

f dudv

ˇ̌
ˇ̌

� M �
Z

BnBR.0/

j�j dudv for R > 1 � �

where
M WD sup¹j� Nw.w; z/j W 1 � 2ı � jwj � 1; jzj � �º < 1:

Thus we achieve the uniform convergence of
R

B\BR.0/ f .w; z/ dudv to zero as R !
1 � 0 for z 2 NB�.0/; i.e.

Re

Z

B\BR.0/

� Nw.w; z/�.w/ dudv ! 0 uniformly in z 2 NB�.0/ as R ! 1 � 0;

since j�j 2 L1.B/: This implies that the convergence in (2.8) is uniform with respect
to z 2 NB�.0/, i.e.

Z 2�

0
 .Rei� ; z/h.Rei� / d� ! 0 uniformly in z 2 NB�.0/ as R ! 1 � 0: (2.9)

For 0 � r � � � 1 � � < R < 1 and w D Rei� ; z D rei# we introduce the Poisson
kernel K.w; z/ of the ball BR.0/ with respect to w 2 @BR.0/ and z 2 NB�.0/,

K.w; z/ WD R2 � r2

2�ŒR2 � 2rR cos.� � #/C r2�
:

Furthermore let � be a radial cut-off function of class C1.R/ with �.r/ D 1 for
r � 1 � �=2 and �.r/ D 0 for r � 1 � �; 0 < � < 2ı; and set

 .w; z/ WD �.jwj/K.w; z/

for z 2 NB�.0/, 0 < � � 1 � � , and 1 � 2ı < 1 � � � jwj � 1: Then  .w; z/
has the properties required above, and for R D jwj � 1 � �=2 one has �.jwj/ D 1:
Consequently it follows from (2.9) that

HR.z/ WD
Z 2�

0
K.Rei� ; z/h.Rei� / d�; z 2 BR.0/;

satisfies

kHRkC 0. NB�.0// ! 0 as R ! 1 � 0 for any � � 1 � �; 0 < � < 2ı: (2.10)
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By Poisson’s formula and Schwarz’s theorem it follows that HR is harmonic in the
disk BR.0/ and can be extended to a continuous function on NBR.0/ satisfying

HR.w/ D h.w/ for w 2 @BR.0/: (2.11)

In the sequel, A.r; r 0/ denotes the annulus

A.r; r 0/ WD ¹w 2 C W r < jwj < r 0º for 0 < r < r 0 < 1:

For R0 WD 1 � 2ı < R < 1 we now consider the excess function

ER.w/ WD h.w/ �HR.w/ for w 2 NA.R0; R/;

which is continuous on NA.R0; R/, harmonic in A.R0; R/, and vanishes on the circle
@BR.0/ according to (2.11). By reflection in this circle we can extend ER to a contin-
uous function on NA.R0; R

0/ with R0 WD R2=R0 which is harmonic in A.R0; R
0/ and

satisfies
max

@BR0 .0/
jERj D max

@BR0 .0/
jERj: (2.12)

Set
C D C.R0/ WD 2 max

@BR0 .0/
jhj; R0 D 1 � 2ı;

and for an arbitrarily chosen � > 0 we pick a number � with

0 < � < min

²
ı

2
;
�ı

2C

³
: (2.13)

Because of (2.10) there is a number R1 2 .1 � .�=2/; 1/ such that

max
@BR0 .0/

jHRj < C=2 for all R 2 .R1; 1/;

and so ER D h �HR satisfies

max
@BR0 .0/

jERj < C for all R 2 .R1; 1/:

In conjunction with (2.12) the maximum principle then implies

max
NA.R0;R0/

jERj < C for all R 2 .R1; 1/ (2.14)

where R0 D 1 � 2ı and R0 D R2=R0:

For R 2 .R1; 1/ we have 1 � �=2 < R < 1 and therefore R � .1 � �/ > �=2 > 0:
For any w 2 A.1 � �;R/ it follows that

dist.w; @A.R0; R
0// > .1 � �/ �R0 D 2ı � � > ı:
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Applying Cauchy’s estimate to rER on A.1 � �;R/ we then infer from (2.14) that

max
NA.1��;R/

jrERj � C.R0/

ı
for R 2 .R1; 1/:

Since ER.w/ D 0 for jwj D R, we can write

jER..1 � �/ei� /j �
Z R

1��

j@rER.re
i� /j dr

� �
C

ı
<
�ı

2C
� C
ı

whence

jER.w/j <
�

2
for jwj D 1 � � and R1 < R < 1

where R1 2 .1 � �=2; 1/ was chosen above and � is a fixed number satisfying (2.13).
Applying once more (2.10) it follows that for the chosen � there is a number R2 2

ŒR1; 1/ such that

max
NB1�� .0/

jHRj < �

2
for all R 2 .R2; 1/:

Because of

h.w/ D ER.w/CHR.w/ for w 2 NA.R0; R/

and R0 D 1 � 2ı < 1 � � < 1 � �=2 < R1 � R2 < R < 1 we arrive at

jh.w/j < �=2 C �=2 D � for jwj D 1 � �:

This implies for the harmonic function h.w/ D ImŒw2�.w/� that

lim
�!C0

max
@B1�� .0/

jhj D 0;

and so we can extend h continuously to B [C1, C1 D @B1.0/ by setting h.w/ D 0 for
w 2 C1, which completes the proof of (2.7) for j D 1:

(ii) Note that for the proof of (2.7) in the case j D 1 we only have used q1 D 0;
r1 D 1 and the fact that C1 D @B1.0/ contains C2; : : : ; Ck in its interior domain
B1.0/. Therefore we can reduce the cases j D 2; : : : ; k to (i) by applying the Möbius
transformation � W bC ! bC; bC WD C [ ¹1º; defined by

z D �.w/ WD rj

w � qj

where Cj D @Brj
.qj / D ¹w 2 C W jw � qj j D rj º: The mapping � maps B into

another k-circle domain B� whose exterior circle is C1 D @B1.0/, and C1 D �.Cj /:
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Let � WD ��1 be the inverse of �, and set �� WD � ı � with dom.��/ D B�; then (2.1)
implies

@D.��; �/ D 0 for all � 2 C 1. NB�;R2/

on account of the conformal invariance of D , and (i) yields

ImŒz2��.z/� D 0 for z 2 C1

where ��.z/ D a�.z/ � ib�.z/; z 2 B�; is defined by

a� WD E.��/ � G .��/; b� WD F .��/:

A straight-forward computation yields

.w � qj /2�.w/ D z2��.z/ for z 2 C1 and w D �.z/,

and since �.C1/ D Cj it follows that

Im
�
.w � qj /2�.w/

�
D 0 for w 2 Cj ; 2 � j � k:

This completes the proof of the lemma.

Precisely speaking we have shown that each of the holomorphic functions

Fj .w/ WD .w � qj /2�.w/; w 2 B; j D 1; : : : ; k;

has a harmonic imaginary part hj WD ImFj which can continuously be extended to
B [ Cj by setting hj .w/ D 0 for w 2 Cj . Then the reflection principle for harmonic
functions yields that hj can be extended as a harmonic function beyond Cj . Inspecting
the Cauchy-Riemann equations it follows that Fj can be extended holomorphically
across Cj and therefore � can be extended holomorphically to some domain G with
NB � G � C. This implies that either �.w/ � 0 in NB , or else � has finitely many zeros

in NB . Employing a method due to Hans Lewy (cf. Courant [3], p. 175) we will show
that the second case is impossible, thus verifying the assertion of Proposition 2.2.

Let r; � be polar coordinates around qj defined by w D qj C rei� ; and introduce
the 2�-periodic functions

fj .�/ WD r2
j e

i2��.qj C rj e
i� /; j D 1; : : : ; k;

that are real analytic in � and satisfy fj .�/ 2 R for � 2 R on account of (2.7). By
Lemma 2.4 applied to ǰ WD Cj it follows that

i

Z 2�

0
fj .�/ d� D 0 and ir�1

j

Z 2�

0
e�i�fj .�/ d� D 0;
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whence
Z 2�

0
fj .�/ d� D 0;

Z 2�

0
fj .�/ cos � d� D 0;

Z 2�

0
fj .�/ sin � d� D 0: (2.15)

Then fj .�/ 6� const, because the first equation would imply fj .�/ � 0 and there-
fore �.w/ � 0 on @Brj

.qj / which is impossible since �.w/ has only finitely many

zeros in NB . Moreover,
R 2�

0 fj .�/ d� D 0 shows that fj .�/ must change its sign in
Œ0; 2�/ at least once, and so it has a positive maximum and a negative minimum. Cor-
respondingly fj .�/ possesses two zeros �0; �1 2 Œ0; 2�/, i.e. j�0 � �1j < 2� since fj

is periodic. By choosing the polar angle � suitably we can assume that fj .�/ has the
two zeros �0 and ��0 with some �0 2 .0; �/; while the three equations (2.15) remain
valid. This yields Z �

��

fj .�/Œcos � � cos �0� d� D 0; (2.16)

and so the function fj .�/Œcos � � cos �0� changes its sign in .��; �/. Since g.�/ WD
cos � � cos �0 with g0.�/ D � sin � satisfies g0.�/ > 0 for �� < � < 0, g0.�/ < 0
for 0 < � < �; it follows that

g.�/ < 0 on .��;��0/ [ .�0; �/, g.�/ > 0 on .��0; �0/.

If fj .�/ did not have any other zero than �0 and ��0 then fj .�/g.�/ would not change
its sign in .��; �/, but this contradicts (2.16). Thus there is a third zero �3 of fj .�/

in .��; �/. We claim that there is even a fourth zero �4 of fj in .��; �/. In fact,
suppose that fj .�/ 6D 0 for � 2 .��; �/ with � 6D ˙�0; �3: If �3 2 .��0; �0/ then
again fj .�/g.�/ would not change its sign, a contradiction to (2.16). The other two
cases �3 < ��0 and �0 < �3 can be transformed to the case ��0 < �3 < �0 by a shift
of � which keeps (2.16) fixed because of (2.15). Thus we have found:

Lemma 2.6. If �.w/ 6� 0 in NB then � has at least four zeros on any boundary circle

Cj of B .

Now let wm 2 B be the interior zeros of � with the multiplicities �m; m D
1; : : : ;M; and �l 2 @B be the boundary zeros of � with the multiplicities �l ; l D
1; : : : ; L: Set N WD �1 C � � � C �M ; and choose � > 0 sufficiently small. Then, by
Rouché’s formula, the number N � 0 is given by

N D 1

2�i

Z

@G�

�0.w/

�.w/
dw; G� WD B n

L[

lD1

NB�.�l /:

The boundary @G� consists of ǰ .�/ WD Cj \ @G�; j D 1; : : : ; k; and of the circular
arcs 
l .�/ WD @B�.�l / \ B , l D 1; : : : ; L: Recall also that Fj .w/ D .w � qj /

2�.w/

is holomorphic in B [ Cj and real valued on Cj . Then we have

d logFj .w/ D d log.w � qj /2 C d log�.w/ on ǰ ;
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whence
�0.w/

�.w/
dw D

F 0
j .w/

Fj .w/
dw � 2

w � qj
dw for w 2 ǰ :

This implies
1

2�i

Z

ǰ .�/

�0.w/

�.w/
dw D Ij .�/ �Kj .�/

with

Ij .�/ WD 1

2�i

Z

ǰ .�/

F 0
j .w/

Fj .w/
dw

and

Kj .�/ WD 2
1

2�i

Z

ǰ .�/

dw

w � qj
:

We have

lim
�!C0

Kj .�/ D
´

2 for j D 1

�2 for j D 2; : : : ; k;

and it will be proved below that

lim
�!C0

Ij .�/ D 0: (2.17)

Thus

N D lim
�!C0

kX

j D1

ŒIj .�/ �Kj .�/�C lim
�!C0

LX

lD1

Pl.�/

with

Pl.�/ WD 1

2�i

Z


l .�/

�0.w/

�.w/
dw:

Since � is mirror symmetric with respect to the inversion at Cj it follows that (for

�

l
.�/ as reflection of 
l .�/ at Cj )

lim
�!C0

Pl.�/ D 1

4�i
lim

�!C0

Z


l .�/[
�
l

.�/

�0.w/

�.w/
dw

D 1

4�i
lim

�!C0

Z

�@B�.�l /

�0.w/

�.w/
dw D ��l

2

since the positive orientation of G� implies that circles @B�.�l / are to be taken as
negatively oriented. Since L � 4k and �l � 1 it follows that

N D �2 C 2.k � 1/ � 1

2

LX

lD1

�l � �4 C 2k � 1

2
� 4k D �4;

a contradiction to N � 0. Therefore we obtain �.w/ � 0 on NB .
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It remains to prove (2.17). Since

2�iIj .�/ D
Z

ǰ .�/

d log jFj .w/j D
Z

ˇ 0
j

.�/

d log j .�/j

with  .�/ WD Fj .qj C rj e
i� / and

ˇ0
j .�/ D Œ0; �1 � �.�/� [

p�1[

sD1

Œ�s C �.�/; �sC1 � �.�/� [ Œ�p C �.�/; 2��;

where � D �.�/ ! C0 as � ! C0; and �s WD ei�s are the zeros of Fj on Cj , we
obtain

Z

ˇ 0
j

.�/

d log j .�/j D
pC1X

sD1

h
log j .�/j

ibs.�/

as.�/

with

a1.�/ D 0; a2.�/ D �1 C �.�/; : : : ; ap.�/ D �p�1 C �.�/; apC1.�/ D �p C �.�/;

b1.�/ D �1 � �.�/; b2.�/ D �2 � �.�/; : : : ; bp.�/ D �p � �.�/; bpC1.�/ D 2�:

Thus we infer from  .0/ D  .2�/

Z

ˇ 0
j

.�/

d log j .�/j D
pX

sD1

h
log j .bs.�//j � log j .asC1.�//j

i

D
pX

sD1

log

ˇ̌
ˇ̌ .�s � �.�//
 .�s C �.�//

ˇ̌
ˇ̌ ! 0 for � ! C0

since
 .�s � �.�//
 .�s C �.�//

! 1 as � ! C0:

Thus we conclude Ij .�/ ! 0 as � ! C0, and we have verified (2.17).
This completes the proof of Proposition 2.2.

3 Cohesive sequences of mappings, and the pinching method

We say that a sequence ¹Bmº of k-circle domains

Bm D B.q.m/; r.m// 2 N .k/

converges to the domain

B D B.q; r/ D Br1.q1/ n
k[

j D2

NBrj
.qj /
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(denoted by Bm ! B as m ! 1) if

q.m/ ! q in C
k and r.m/ ! r in R

k as m ! 1:

By NN .k/ and NN1.k/ we denote the set of domains B that are limits of converging
sequences ¹Bmº in N .k/ and N1.k/, respectively.

Let ¹�mº be a sequence in C.�/ with Bm D dom.�m/ 2 N .k/ and A�.�m/ !
infC.�/ A� for some � > 0: We can assume that Bm 2 N1.k/ since by Lemma 2.1
there are Möbius transformations fm such that QBm WD fm.Bm/ 2 N1.k/: Then Q�m WD
�m ı f �1

m satisfy
A�. Q�m/ D A�.�m/ ! inf

C.�/
A�

and are “normalized” by QBm 2 N1.k/:

From any sequence ¹Bmº of domains Bm 2 N1.k/ we can extract a converging
subsequence ¹Bmj

º since jq.m/j; jr.m/j � 1: Then Bmj
! B 2 NN1.k/; but generally

not B 2 N1.k/; i.e. the limit domain B might be “degenerate” in the sense that B 2
NN1.k/ n N1.k/: If this were not the case for any convergent subsequence of domains
Bm 2 N1.k/ of normalized mappings �m 2 C.�/ forming a minimizing sequence
forA� in C.�/, we could find a minimizer of A� in C.�/ by the usual direct method.

Eventually the Douglas condition will be used to prevent the degeneration of the
limit domain. However, this condition is somewhat difficult to handle, and so we first
follow Courant’s approach to work with cohesive minimizing sequences.

Before we give the definition of cohesiveness we investigate how the limit B of a
convergent sequence ¹Bmº of Bm 2 N .k/ might be “degenerate”. To this end we

examine how the boundary circles C .m/
j WD @B

r
.m/

j

.q
.m/
j / of

Bm D B
r

.m/
1
.q

.m/
1 / n

k[

j D2

NB
r

.m/

j

.q
.m/
j /

behave if the Bm converge to a degenerate domain with the “boundary circles” Cj D
@Brj

.qj /: Here, rj might be zero; then Cj is just the point qj , i.e. C .m/
j ! ¹qj º as

m ! 1: Another form of degeneration is that two limit circles Cj and Cl , j 6D l , are
true circles which “touch” each other (this includes the possibility Cj D Cl ).

We distinguish three kinds of degeneration:

Type 1. Two limits Cj and Cl , j 6D l; are true circles which touch each other, i.e.
either Cj D Cl or Cj \ Cl D ¹w0º for some w0 2 NB:
Type 2. One limit Cl is a point p which lies on a true limit circle.

Type 3. One limit Cl is a point p which does not lie on any true limit circle.

For our purposes it suffices to consider degenerate limits B of domains Bm 2
N1.k/. Here we have for all m 2 N that

C
.m/
1 D C WD @B1.0/; C

.m/
2 D @B

r
.m/
2
.0/; 0 < r.m/

2 < 1:
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Case (a): k D 2: Then either r.m/
2 ! 1 or r.m/

2 ! 0, i.e. C1 D C2 D C (Type 1) or
C2 D ¹0º (Type 3), whereas Type 2 cannot occur for a degenerate limit B .

Case (b): k � 3: Then either r.m/
2 ! 1 or r.m/

2 ! r2 2 Œ0; 1/:
(b1) If r.m/

2 ! 1 then C1 D C2 D C and Cj D ¹qj º for j D 3; : : : ; k: Thus B is
both of Type 1 and 2.

(b2) If r.m/
2 ! r2 with 0 � r2 < 1, then C1 D C and either C2 D @Br2.0/ with

0 < r2 < 1 or C2 D ¹0º: Here we have at least one of the following possibilities:

(i) B is of Type 1 with Cj \ Cl D ¹w0º for some w0 2 NB; and possibly also of
Type 2, or Type 3, or both.

(ii) B is not of Type 1, but of Type 2, or of Type 3, or both.

We now want to state conditions ensuring that the limit B of domains Bm 2 N1.k/

is nondegenerate, that is, B 2 N1.k/: A first step in this direction is

Proposition 3.1. Let ¹�mº be a sequence of mappings �m 2 C.�/ such that Bm D
dom.�m/ 2 N1.k/, k � 2, and suppose that Bm ! B for m ! 1 as well as

D.�m/ � M for all m 2 N: Then B 2 NN1.k/ cannot be degenerate of Type 1.

Proof. Let �.�/ be the minimal distance of the curves �1; : : : ; �k from each other,
i.e.

�.�/ WD min¹dist.�j ; �l/ W 1 � j; l � k; j 6D lº > 0: (3.1)

If B is of Type 1, there are j; l 2 ¹1; : : : ; kº with j 6D l such that C .m/
j ! Cj and

C
.m/

l
! Cl as m ! 1; where Cj and Cl are true circles with Cj \ Cl 6D ;: Let

w0 2 Cj \Cl , and introduce polar coordinates �; � about w0 W w D w0 C �ei� : There
is a representative

�m.�; �/ WD �m.w0 C �ei� /

of �m which, for almost all � 2 .0; 2/, is absolutely continuous in � 2 Œ�1; �2� along
each arc 
.�/ WD ¹w0 C �ei� W �1 � � � �2º contained in NBm; we call 
.�/ �m-

admissible. The Courant–Lebesgue lemma (cf. [4, vol. I, p. 242]) yields:
For each m 2 N and each ı 2 .0; 1/ there is a �m-admissible arc 
m.�/ D ¹w0 C

�ei� W � .m/
1 � � � �

.m/
2 º in NBm with ı < � <

p
ı such that

osc
m.�/ �m � 2

"
2�M

�
log

1

ı

��1
#1=2

: (3.2)

Furthermore, there is an R > 0 such that @Br.w0/ intersects Cj and Cl for 0 <

r < 2R: Let ı be an arbitrary number with 0 <
p
ı < R: Since C .m/

j ! Cj and

C
.m/

l
! Cl asm ! 1, there is a numberN.ı;R/ 2 N such that the following holds:
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For m > N.ı;R/ and ı < � < R the circle @B�.w0/ intersects C .m/
j and C .m/

l
:

Then there is a �m-admissible subarc 
m.�/ of @B�.w0/ \ Bm with ı < � <
p
ı

which has its endpoints on two circles C .m/
j 0 and C .m/

l 0 (which might be different from

C
.m/

j and C .m/

l
), and, moreover, which satisfies (3.2).

It follows that

�.�/ � dist.�j 0 ; �l 0/ � 2

s
2�M

log 1
ı

for 0 < ı � 1:

Letting ı ! C0 we obtain �.�/ D 0, a contradiction to (3.2).

We note that, under the assumptions of Proposition 3.1, the limit B 2 NN1.k/ can
only be of Type 3 for k D 2 if B is degenerate at all.

The Types 2 and 3 of degeneration may indeed occur if we do not impose a further
condition, the condition of cohesion. For � 2 H 1;2.B;R2/; the composition � ı c of �
with a closed curve c 2 C 0.S1; NB/ is not defined in the usual sense. In order to give it
a well-defined meaning we restrict ourselves to special curves c.

Suppose that 
 is a closed Jordan curve in NB , i.e. the image 
 D c.S1/ of the unit
circle S

1 under a homeomorphism c W S
1 ! 
 � NB: If the inner domain G of 
 is a

“strong Lipschitz domain” (i.e. @G 2 C 0;1) then � has a well-defined trace � D “� j
 ”
on 
 D @G; which is of class L2

H 1.
;R
2/: If � has a continuous representative we

denote it again by � and call it the continuous representative of � on 
: Then � ı c W
S

1 ! R
2 is a well-defined closed continuous curve in R

2: (Note that G need not be a
subdomain of B .)

In our application we will be able to choose Sobolev mappings � with a continuous
representative on the boundary of a suitable domain G, where G will be either (i)
a disk, or (ii) a two-gon bounded by two circular arcs 
1 and 
2, one of which is
contained in @B:

In case (i), � is represented by a mapping ��.r; �/ with respect to polar coordinates
r; � about the origin of a suitably chosen diskG of radius R 2 .0; 1/ such that ��.r; �/
is absolutely continuous (denoted by AC) with respect to � 2 R for all r 2 .0; 1/nN1,
where H 1.N1/ D 0 and R 62 N1; and ��.r; �/ is AC with respect to r 2 .�; 1 � �/;

0 < � � 1; for almost all � 2 R: Then the continuous representative � D “� j
 ” of �
on the circle 
 D @G is given by � D ��.R; �/:

In case (ii), 
1 is a subarc of @B , B D dom.�/, and 
2 is a circular subarc in NB
with the same endpoints as 
1. Here, the continuous representative � D “� j
 ” is the
continuous trace of � on 
1 (recall that for � 2 C.�/ we have “� j@B” 2 C 0.@B;R2/),
while on 
2 the trace � D “� j
 ” is given as in (i) by

�.w0 CRei� / D ��.R; �/; �1 � � � �2;

where ��.r; �/ is a representation of � in polar coordinates around some point w0 2 C

such that ��.R; �/ is AC in � 2 Œ�1; �2�:
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Definition 3.2. (a) A sequence ¹�mº of mappings �m 2 H 1;2.Bm;R
2/ with Bm D

dom.�m/ 2 N .k/ is called separating if the following holds:
For any � > 0 there is an m0.�/ 2 N such that for any m > m0.�/ there exists a

closed Jordan curve 
m in NBm bounding a strong Lipschitz interior B�
m such that

(i) �m possesses a well-defined continuous trace �m WD “�mj
m
” on 
m D @B�

mI
(ii) diam �m.
m/ < �;

(iii) A homeomorphic representation cm W S
1 ! 
m of 
m is not homotopic to zero

in NBm.

(b) A sequence ¹�mº of mappings �m 2 H 1;2.Bm;R
2/ with Bm D dom.�m/ 2 N .k/

is said to be cohesive if none of its subsequences is separating.

We note that the properties “separating” and “cohesive” are “Möbius invariant”.
Precisely speaking, we have:

If ¹�mº is a sequence of mappings �m 2 H 1;2.Bm;R
2/ with Bm D dom.�m/ 2 N .k/,

and ¹�mº is a sequence of Möbius transformations from NB�
m onto NBm, NB�

m 2 N .k/,

then we have

(i) If ¹�mº is separating, then also ¹�m ı �mº.

(ii) If ¹�mº is cohesive, then also ¹�m ı �mº:
The proof of this observation can be omitted.

Now we turn to the proof of the fact that “cohesiveness prevents degeneration”. We
work out the details of the approach sketched in [3].

Proposition 3.3. Let ¹�mº be a cohesive sequence of mappings �m 2 C.�/ with Bm D
dom.�m/ 2 N1.k/, k � 2; and suppose that there is a constant M > 0 such that

D.�m/ � M for all m 2 N:

Assume also that Bm ! B as m ! 1: Then B is nondegenerate, i.e. B 2 N1.k/:

Proof. Clearly, B 2 NN1.k/. IfB were degenerate, it could not be of Type 1 on account
of Proposition 3.1; so we have to show that B can neither be of Type 2 nor of Type 3.

Suppose first that B is of Type 3, that is: One or several circles shrink to a point

p 2 NB which stays away from any other true limit circle. (Note that there might also

be other limit points distinct from p.) Since C .m/
1 � C WD @B1.0/ for all m 2 N, we

have C1 D C , and therefore p 62 C; i.e. p 2 NB n C: Thus the index set I WD ¹l 2 N W
2 � l � kº consists of two disjoint, nonempty sets I1 and I2 such that

C
.m/

j ! ¹pº as m ! 1 for j 2 I1;

C
.m/

l
! Cl (D point or circle) as m ! 1 with p 62 Cl for l 2 I2:
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Then we can find a number �0 2 .0; 1/ and an index m0 2 N such that for m � m0

the following holds true:

C
.m/

j � B�0.p/ for j 2 I1;

C
.m/

l
\ NB�0.p/ D ; for l 2 I2:

Secondly, for any �1 2 .0; �0/ there is an m1.�1/ 2 N with m1.�1/ � m0 such that

C
.m/

j � B�1.p/ for j 2 I1 and m > m1.�1/:

Clearly,
¹w 2 C W �1 � jw � pj � �0º � Bm for m > m1.�1/:

Furthermore, by virtue of a well-known extension theorem, there are Sobolev functions
�m 2 H 1;2.B1.0/;R2/ on the unit disk B1.0/ such that �mjBm

D �m.
We introduce polar coordinates r; � about p, and choose representatives Q�m.r; �/ of

�m restricted to B�0.p/ nB�1.p/, form > m1.�1/, which are absolutely continuous in
� for a.a. r 2 .�1; �0/; and absolutely continuous in r 2 .�1; �0/ for a.a. � 2 R: By
the Courant–Lebesgue lemma we have:

For any � > 0 there is a number ı�.�;M; �0/ 2 .0; 1/, depending only on

�, M , �0, which has the following properties:

(i) ı� <
p
ı� � �0;

(ii) For any �1 2 .0; ı�/, any ı with �1 < ı < ı�, and all m > m1.�1/,

there is a set Jm.ı/ � .ı;
p
ı/ with H 1.Jm/ > 0, such that Q�m.r; �/

is absolutely continuous with osc Q�m.r; �/ < � for all r 2 Jm.ı/.

(iii) Q�m.r; �/ is the trace of �m on @Br.p/ for any r 2 .�1; �0/ n Sm where

H 1.Sm/ D 0, and so we can assume that Jm.ı/ � .�1; �0/ n Sm.

(3.3)

Let us now fix some � > 0 and then some �1 > 0 with �1 < ı
�.�;M; �0/: Further-

more we choose some ı > 0 satisfying

�1 < ı < ı
�.�;M; �0/:

Then

¹w 2 C W ı � jw � pj �
p
ıº � B�0.p/ n B�1.p/ � Bm for m > m1.�1/:

For any m > m1.�1/ we choose some rm 2 Jm.ı/ and set 
m WD @Brm
.p/: Then 
m

is a Jordan curve in Bm which bounds the strong Lipschitz domain B�
m WD Brm

.p/:

By construction, �m is defined on B�
m, and �m.w/ D �m.w/ for w 2 B�0.p/ nB�1.p/:

Thus �m possesses the absolutely continuous representative

�m WD Q�m.rm; �/ D “�mj
m
”
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with diam �m.
m/ < �: Furthermore we have C .m/
j � B�

m for j 2 I1. Therefore no

homeomorphic representation cm W S
1 ! 
m of 
m is homotopic to zero in NBm.

Since � > 0 can be chosen arbitrarily, we see that ¹�mº contains a separating subse-
quence, a contradiction, since ¹�mº was assumed to be cohesive.

Now we turn to the last possibility: Suppose that B WD limm!1Bm is of Type
2. Then we have k � 3; see Case (a) of our discussion following our classification

of types of degeneracies. Here we again have C .m/
1 � C D @B1.0/ for all m 2 N;

whence C1 D C; and either C2 D ¹0º or C2 D @Br2.0/ with 0 < r2 < 1; since
we have excluded Type 1 already. Furthermore, Type 2 means that one sequence of

circles, say ¹C .m/
j º, converges to a true limit circle Cj , 1 � j � k, while one or

several other sequences ¹C .m/

l
º shrink to a point p 2 Cj : Here we can decompose

I 0 WD ¹l 2 N W 1 � l � k; l 6D j º into I 0
1 WD ¹l 2 I 0 W C .m/

l
! ¹pº as m ! 1º

and I 0
2 WD I 0 n I 0

1I then the limits Cl of C .m/

l
for m ! 1 and l 2 I 0

2 are either points
or circles which stay away from p.

We can find a number �0 2 .0; 1/ and an index m0 2 N such that for m � m0 the
following holds true:

@B�0.p/ intersects C .m/
j in exactly two points;

C
.m/

l
� B�0.p/ \ NBm n C .m/

j DW Sm
�0
.p/ for l 2 I 0

1I (3.4)

C
.m/

l
\ NB�0.p/ D ; for l 2 I 0

2:

Checking the three cases j D 1; j D 2; and 3 � j � k; one realizes that both I 0
1 and

I 0
2 are nonempty.

For any �1 2 .0; �0/ there is an m1.�1/ 2 N with m1.�1/ � m0 such that

C
.m/

l
� B�1.p/ \ NBm n C .m/

j DW Sm
�1
.p/ for l 2 I 0

1 and m > m1.�1/:

As in the preceding discussion we choose extensions �m 2 H 1;2.B1.0/;R2/ of �m

from Bm to B1.0/: Then we introduce polar coordinates r; � about p, and choose
representations Q�m.r; �/ of �m, restricted to Sm

�0
.p/ n Sm

�1
.p/, for m > m1.�1/ which

are absolutely continuous in � for a.a. r 2 .�1; �0/, and absolutely continuous in
r 2 .�1; �0/ for a.a. � such that w D p C rei� 2 Sm

�0
.p/ n Sm

�1
.p/:

Now we fix some � > 0 and notice that the boundary curve �j is of class C 2;˛,
which implies that there is a number �.�/ with 0 < �.�/ < �=2 such that for any two
points P and Q on �j with jP �Qj < �.�/ the shorter subarc �� � �j connecting
P with Q satisfies

diam�� < �=2: (3.5)
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Keeping this in mind we apply the Courant–Lebesgue lemma to obtain the following
statement analogous to (3.3):

There is a number ı�.�.�/;M; �0/ 2 .0; 1/, depending only on �.�/, M ,

�0, which has the following properties:

(i) ı� <
p
ı� � �0.

(ii) For any �1 2 .0; ı�/, any ı with �1 < ı < ı�, and all m > m1.�1/,

there is a set Jm.ı/ � .ı;
p
ı/ with H 1.Jm/ > 0, such that Q�m.r; �/

is absolutely continuous with osc Q�m.r; �/ < �.�/ for all r 2 Jm.ı/:

(iii) Q�m.r; �/ is the trace of �m on @Br.p/\ NBm for any r 2 .�1; �0/ n Sm,

where H 1.Sm/ D 0; and so we can assume that Jm � .�1; �0/nSm:

(3.6)

In addition, we may choose now �1 > 0 with �1 < ı�.�.�/;M; �0/ and then ı > 0
satisfying

�1 < ı < ı
�.�.�/;M; �0/:

Then it follows that, for � 2 .ı;
p
ı/ and m > m1.�1/, the circle @B�.p/ meets C .m/

j

in exactly two points w0
m.�/ and w00

m.�/. Set 
 0
m.�/ WD @B�.p/ \ NBm; the set 
 0

m.�/

is a connected, circular arc in NBm with the end points w0
m.�/ and w00

m.�/. Now we
restrict the radii � to lie in the sets Jm � .ı;

p
ı/ obtained in (3.6). Then the image

points Q0
m.�/ and Q00

m.�/ of w0
m.�/ and w00

m.�/ under Q�m.�; �/ respectively lie on �j ,
satisfy

jQ0
m.�/ �Q00

m.�/j < �.�/;
and they decompose �j into two closed arcs. We denote the smaller one by ��.m; �/
and conclude from (3.5) that

diam��.m; �/ < �=2 for m > m1.�1/ and � 2 Jm.ı/:

Instead of (3.4) we even have

C
.m/

l
� B�.p/ \ NBm n C .m/

j DW Sm
� .p/ for l 2 I 0

1I

C
.m/

l
\ NB�.p/ D ; for l 2 I 0

2I (3.7)

provided that m > m1.�1/ and � 2 Jm.ı/.

Choose some rm 2 Jm.ı/ � .ı;
p
ı/ and set

� 0
m WD image of 
 0

m.rm/ under the mapping Q�m;

� 00
m WD ��.m; rm/ D image of 
 00

m.rm/ under �m.

Here 
 00
m.rm/ is the connected arc on C .m/

j , bounded by w0
m.rm/, w

00
m.rm/, which is

mapped by the Sobolev trace �mj
C

.m/

j

in a continuous way onto � 00
m: Then we have

diam� 0
m C diam� 00

m <
�

2
C �

2
D � for m > m1.�1/:
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Consider the closed Jordan curve 
m WD 
 0
m.rm/ [ 
 00

m.rm/ in NBm, which bounds a
two-gon B�

m in B1.0/; B�
m is a strong Lipschitz domain. Because of (3.7), one realizes

that no homeomorphic representation cm W S
1 ! 
m of 
m is homotopic to zero in

NBm. There is a continuous representative �m of �m on 
m given by

�m WD �m.rm; �/ on 
 0
m

and
�m WD trace of �m on 
 00

m.

Then it follows

diam �m.
m/ � diam� 0
m C diam� 00

m < � for m > m1.�1/:

Since � > 0 can be chosen arbitrarily small, we obtain that ¹�mº contains a separating
subsequence, and so it cannot be cohesive, a contradiction to the assumption.

Thus we have shown that B cannot be degenerate, i.e. B 2 N1.k/:

Proposition 3.4. Let ¹�mº be a cohesive sequence of mappings �m 2 C.�/ with

dom.�m/ � B 2 N1.k/ for all m 2 N, k � 2; and suppose also that there is a

constant M > 0 such that D.�m/ � M for all m 2 N: Then the boundary traces

�mj@B are equicontinuous on @B , and there is a subsequence ¹�ml
º of ¹�mº such that

the traces �ml
j@B converge uniformly on @B as l ! 1:

Proof. We can essentially proceed as in [4], proof of Theorem 1 of Section 4.3, noting
that �mjCj

maps Cj continuously and in a weakly monotonic way onto �j . One only
has to ensure that small arcs on Cj are mapped onto small subarcs of �j . In the case
k D 1 this was achieved by imposing a three-point condition upon ¹�mº; for k � 2 the
same will be attained by the cohesivity condition. In fact, mapping small arcs on Cj

onto large arcs of �j would correspond to mapping large arcs on Cj onto small arcs
of �j . Connecting these large arcs on Cj with small circular arcs in B with the same
endpoints, on which the Courant–Lebesgue lemma guarantees small oscillation of a
continuous representative of �m, one would obtain Jordan curves 
m in B bounding
strong Lipschitz domains B�

m such that the continuous trace �m WD “�mj
m
” of �m on


m satisfies “diam �m.
m/ D small”. But 
m cannot be contracted continuously in NB
to some point of NB since NB \ NB�

m possesses at least one hole.

Now we state a slight generalization of Proposition 3.3 and 3.4 in the next proposi-
tion, which essentially is proved in the same way, so that we can omit the proof.

Proposition 3.5. Let ¹�mº be a sequence of k-fold connected domains �m in R
2

whose boundary configurations �m converge in the sense of Fréchet to the boundary

configuration � of � (denoted by �m ! �), and let ¹�mº � C.�m/ be a sequence of

mappings with a uniformly bounded Dirichlet integral, i.e. there is a constant C such

that

D.�m/ � C for all m 2 N:
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Then the following holds:

(i) If Bm � B 2 N .k/ for all m 2 N, and if ¹�mº is cohesive in case that k >

1, or satisfies a three point condition in case that k D 1, then the �mj@B are

equicontinuous on @B , and there is a subsequence of ¹�mº which converges

weakly in H 1;2.B;R2/ and uniformly on @B to some � 2 C.�/:

(ii) If ¹�mº is a cohesive sequence of mappings �m 2 H 1;2.Bm;R
2/ with Bm D

dom.�m/ 2 N1.k/; then there is a subsequence ¹Bm�
º and a domainB 2 N1.k/

such that Bm�
! B as � ! 1:

For comparison arguments it is important to work with sequences of mappings
which are defined on a fixed domain B 2 N1.k/; see statement (ii) of the preced-
ing proposition. For this purpose we use the following result:

Proposition 3.6. Let ¹�mº be a sequence of mappings �m 2 H 1;2.Bm;R
2/ withBm !

B 2 N1.k/ and D.�m/ ! L asm ! 1. Then there is a sequence of diffeomorphisms

�m from NB onto NBm such that:

(i) ��
m WD �m ı �m 2 H 1;2.B;R2/ for all m 2 N;

(ii) D.��
m/ ! L as m ! 1;

(iii) ¹��
mº is cohesive if and only if ¹�mº is cohesive.

The proof of this result is fairly obvious and will be omitted (for details, see e.g.
[17], Lemma 3.1).

Next we will show that we can replace small parts of a mapping by the constant
mapping �0.w/ � 0 without gaining much energy. This argument works for general
functionals

H�.�/ WD
Z

�

H.�;r�/ dudv; H WD HB

with a Lagrangian H.x; p/ 2 C 0.R2 � R
2�2/ satisfying

0 � H.x; p/ � �

2
jpj2

for some constant � > 0:

Proposition 3.7. Suppose that � 2 C.�/: Then, for any ı > 0 and any point p 2 B WD
dom.�/; there exists a number r0 with 0 < r0 < dist.p; @B/, depending on �; ı, p, and

�, such that for any r 2 .0; r0/ there is a mapping �r 2 C.�/ with dom.�r / D B and

H .�r / < H .�/C ı; and �r .w/ � 0 on Br.p/.

Proof. Pick any ı > 0 and p 2 B; then there is someR 2 .0; 1/ withR < dist.p; @B/
such that Z

B�.p/

jr� j2 dudv < ı0 WD ı

2�
for all � 2 .0; R/: (3.8)
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Then we take some � 2 .0; R/ such that the trace � j@B�.p/ is absolutely continuous on
@B�.p/: Set

M WD sup
@B�.p/

j� j:

Next we choose some h 2 H 1;2.B�.p/;R
2/ such that

�h D 0 in B�.p/, h D � on @B�.p/.

It follows that h � � 2
ı
H 1;2.B�.p/;R

2/, and the maximum principle implies

sup
B�.p/

jhj D sup
@B�.p/

jhj D M: (3.9)

Furthermore, using Dirichlet’s principle and (3.8), we obtain
Z

B�.p/

jrhj2 dudv �
Z

B�.p/

jr� j2 dudv < ı0: (3.10)

For some constant � 2 .0; �/ to be fixed later, set

'�2
.s/ WD

8
<̂

:̂

1 for � < s;

1 C log ��log s
log �

for �2 � s � �;

0 for 0 � s < �2;

and define for w 2 B the mapping ��2
by

��2
.w/ WD

´
�.w/ for jw � pj � �;

'�2
.jw � pj/h.w/ for jw � pj < �:

Furthermore, writing '.w/ WD '�2
.jw � pj/ we obtain

Z

B�.p/

jr'j2 dudv D 1

.log �/2

Z 2�

0

Z �

�2

1

r2
r drd�

D � 2�

log �
DW ı1.�/ > 0;

and then
Z

B�.p/

jr��2 j2 dudv D
Z

B�.p/

°
j'uhC 'huj2 C j'vhC 'hvj2

±
dudv

� 2M 2
Z

B�.p/

jr'j2 dudv C 2

Z

B�.p/

jrhj2 dudv

� 2M 2ı1.�/C 2ı0;

taking (3.9) and (3.10) into account.
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Now we choose �0 2 .0; �/ so small that M 2ı1.�/ < ı0 for 0 < � < �0: Then

1

2

Z

B�.p/

jr��2 j2 dudv < 2ı0 for 0 < � < �0:

Setting r WD �2 with 0 < � < �0 and �r WD ��2
; we obtain

H .�r/ D HBnB�.p/.�/C HB�.p/.�
r /

� H .�/C �

2

Z

B�.p/

jr�r j2 dudv

< H .�/C 2ı0� D H .�/C ı for r 2 .0; �2
0/:

Moreover, we have j�r j � j� j and

Z

B

jr�r j2 dudv �
Z

B

jr� j2 dudv C 4ı0;

whence �r 2 H 1;2.B;R2/, and

�r .w/ � 0 on Br.p/; �r .w/ � �.w/ on B n Bp
r.p/.

This implies �r 2 C.�/ since � 2 C.�/. Setting r0 WD �2
0 ; the proposition is proved.

The previous result as well as the next one are generalizations of results due to
Courant [3].

Proposition 3.8 (Pinching method). Let Q� be a boundary configuration of a Riemann

domain .�; ds2/ consisting of k Jordan curves where the metric ds2 D gjl.x/dx
jdxl

satisfies (1.1) with constants 0 < m1 � m2. For givenK > 0, ı > 0 there is a constant

�0 2 .0; 1/, depending only on Q� ,K, ı; m1; m2, and on kgjlkC 1.R2/ such that for every

Q 2 R
2 and � 2 .0; �0/ there is a Lipschitz mapping ˆ�;Q � ˆ� W R

2 ! R
2 with the

following properties:

If � is an arbitrary mapping of class C. Q�/ and if D.�/ � K; then we have

(i) �� WD ˆ�. Q�/ consists of k Jordan curves such that the Fréchet distance

4. Q�; ��/ of Q� and �� satisfies 4. Q�; ��/ < ı;

(ii) ˆ� ı � 2 C.��/ and dom.ˆ� ı �/ D dom.�/;

(iii) ˆ�.x/ D x for x 2 R
2 with jx �Qj � �;

(iv) ˆ�.x/ � Q for x 2 R
2 with jx �Qj � �2;

(v) A�.ˆ� ı �/ � A�.�/C ı for all � 2 Œ0; 1�:
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Proof. Choose �0 2 .0; 1=e/ so small that for the constant m in (3.13) below we have

m�1
1

h
m�0 C 3m2j log �0j�1

i
<
ı

K
; (3.11)

and such that

�0 <
1

2
min¹dist. Q�j ; Q�l/ W j 6D l; j; l D 1; : : : ; kº;

where Q� D h Q�1; : : : ; Q�ki: Then, for � 2 .0; �0/, Q 2 R
2 and x 2 R

2, we set

ˆ�;Q.x/ � ˆ�.x/ WD QC '�.jx �Qj/.x �Q/

with

'�.r/ WD

8
<̂

:̂

1 for � < r;

1 C log ��log r
log �

for �2 � r � �;

0 for 0 � r < �2:

The assertions (iii) and (iv) follow immediately from the definition of ˆ� . Assertion
(i) can easily be deduced from the facts that Q� consists of Jordan curves and ˆ� is a
Lipschitz mapping from R

2 onto itself which maps R
2 n NB�2.Q/ in a 1-1 way onto

R
2 n ¹Qº and pinches the disk NB�2.Q/ to the point Q: In the same way it follows that

ˆ� ı � is a continuous, weakly monotonic mapping from @B onto �� if B D dom.�/.
Since ˆ� satisfies a Lipschitz condition on R

2 we have ˆ� ı � 2 H 1;2.B;R2/, and so
we infer ˆ� ı � 2 C.��/; which is (ii).

It remains to show assertion (v). From

jˆ�.x/ � xj D jx �Qj �
�
1 � '�.jx �Qj/

�

we infer
jˆ�.x/ � xj � � for all x 2 R

2;

whence
jˆ� ı � � � j � � on B: (3.12)

Furthermore,
p
g 2 C 1.R2/; and for some constant m > 0 we have

j
p
g.x/ �

p
g.y/j C jgjl.x/ � gjl.y/j�j �l � mjx � yj

for x; y; � 2 R
2; j�j � 1:

(3.13)

By (1.1) we also have

m1j�j2 � gjl.x/�
j �l � m2j�j2 for all x; � 2 R

2; (3.14)

and
m1 �

p
g.x/ � m2 for all x 2 R

2: (3.15)
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For the following computations we write

Q� WD ˆ� ı � and e WD � �Q
j� �Qj ;

and we note that on

R WD ¹w 2 B W �2 < j�.w/ �Qj < �º

we have

Q� D QC '�.j� �Qj/.� �Q/ with '�.j� �Qj/ D 2 � log j� �Qj
log �

;

and

@

@u
'�.j� �Qj/ D �e � �u

.log �/j� �Qj ;
@

@v
'�.j� �Qj/ D �e � �v

.log �/j� �Qj :

Then,

Q�u D '�.j� �Qj/�u � 1

log �
.e � �u/e on R,

Q�v D '�.j� �Qj/�v � 1

log �
.e � �v/e on R.

(3.16)

Since 0 � '� � 1 and jej D 1 we get

E. Q�/ D gjl. Q�/ Q�j
u Q� l

u

� gjl. Q�/�j
u �

l
u � 2

log �
gjl. Q�/�j

u .e � �u/e
l C 1

j log �j2gjl. Q�/ej el.e � �u/
2:

By (3.14) it follows that

gjl. Q�/�j
u e

l.e � �u/ � m2j�ujjej.e � �u/ � m2j�uj2

� m�1
1 m2gjl.�/�

j
u �

l
u D m�1

1 m2E.�/ on R,

and

gjl. Q�/ej el.e � �u/
2 � m2jej2.e � �u/

2 � m2j�uj2 � m�1
1 m2E.�/ on R.

Furthermore, (3.12) implies j Q� � � j � � on B . Thus by (3.13) and (3.14)

gjl. Q�/�j
u �

l
u D ¹gjl.�/C Œgjl. Q�/ � gjl.�/�º�j

u �
l
u

� E.�/Cm�j�uj2 � E.�/Cmm�1
1 �E.�/;
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and we obtain

E. Q�/ � E.�/C Œmm�1
1 �Cm�1

1 m2.2j log �j�1 C j log �j�2/�E.�/

� E.�/Cm�1
1 Œm�C 3m2j log �j�1�E.�/

since �0 < 1=e: By (3.11) it follows

E. Q�/ � E.�/C .ı=K/E.�/ on R;

and analogously one finds

G . Q�/ � G .�/C .ı=K/G .�/ on R:

This leads to
DR. Q�/ � DR.�/C .ı=K/D.�/ � DR.�/C ı: (3.17)

Now we want to show that also

AR. Q�/ � AR.�/C ı: (3.18)

From (3.16) we obtain on R:

detD Q� D Q�u ^ Q�v D '2
�.j� �Qj/�u ^ �v

C j log �j�1'�.j� �Qj/¹.e � �v/.�u ^ e/C .e � �u/.e ^ �v/º:

Applying the identity

.e � b/.a ^ e/C .e � a/.e ^ b/ D a ^ b for a; b; e 2 R
2 with jej D 1,

it follows that

detD Q� D ¹'2
�.j� �Qj/C j log �j�1'�.j� �Qj/º detD�;

whence
j detD Q� j � .1 C j log �j�1/j detD� j on R:

Since j Q� � � j � � on B , we infer from (3.13) and (3.15)

j
p
g. Q�/ �

p
g.�/j � m�; m1 �

p
g.�/;

p
g. Q�/ � m2:

Consequently,
p
g. Q�/j detD Q� j �

p
g. Q�/.1 C j log �j�1/j detD� j on R;

and by (3.11)
p
g. Q�/.1 C j log �j�1/ �

p
g.�/C j

p
g. Q�/ �

p
g.�/j C

p
g. Q�/j log �j�1

�
p
g.�/¹1 Cm�1

1 Œm�Cm2j log �j�1�º

� .1 C ı=K/
p
g.�/:
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Thus we obtain

p
g. Q�/j detD Q� j �

p
g.�/.1 C ı=K/j detD� j on R:

Since AR.�/ D
R

R

p
g.�/j detD� j dudv; and analogously for AR. Q�/; it follows

AR. Q�/ � AR.�/C .ı=K/AR.�/

� AR.�/C .ı=K/DR.�/ � AR.�/C .ı=K/D.�/;

and so we have (3.18).
From (3.17), (3.18), and A�

R D .1 � �/AR C �DR we infer

A�
R. Q�/ � A�

R.�/C ı:

Set B 0 WD ¹w 2 B W j�.w/ �Qj � �2º and B 00 WD ¹w 2 B W j�.w/ �Qj � �º. Then
B D B 0 P[R P[B 00; and A�

B 0. Q�/ D 0; A�
B 00. Q�/ D A�

B 00.�/: Thus we finally arrive at

A�. Q�/ � A�.�/C ı for 0 � � � 1 and Q� D ˆ� ı �;

which is (v).

4 The Douglas problem for A
� assuming the Douglas condition

For 0 � � � 1 we consider the conformally invariant functionals

A�.�/ WD .1 � �/A.�/C �D.�/

which are defined for � 2 H 1;2.B;R2/ with B D dom.�/ 2 N .k/: Clearly,

A0.�/ D A.�/; A1.�/ D D.�/;

and we have
A.�/ � A�.�/ � D.�/ for 0 � � � 1:

For 0 < � � 1 we obtain A.�/ D A�.�/ D D.�/ if and only if � satisfies

E.�/ D G .�/; F .�/ D 0:

Our ultimate goal is to find a mapping � 2 C.�/ that simultaneously minimizes A and
D in C.�/. As a preliminary step we shall in this section prove Theorem 1.5, i.e. for

any � 2 .0; �0� with 0 < �0 � 1 there is a minimizer �� of A� in C.�/ provided that

the Riemann domain .�; ds2/ satisfies the Douglas condition. In Section 5 it will be
shown that this hypothesis is superfluous and that any �� with 0 < � � �0 furnishes a
minimizer for both A and D in C.�/:
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In this first step the Douglas condition is used to find a minimizing sequence ¹�nº
of A� in C.�/ with Bn D dom.�n/ 2 N .k/ such that Bn ! B 2 N .k/: Without this
condition it would be conceivable that the limit domain B of the Bn is degenerate, i.e.
B 62 N .k/. It is well known that this may happen for the Douglas problem in R

N if
N � 3: In our situation we have N D 2 and we shall be saved by the fact that surfaces
� 2 C.�/ have co-dimension zero.

In order to define the Douglas condition for k > 1 we have to consider the class of
mappings � W B ! R

2 whose domains B are disconnected. Precisely speaking we
assume that B is a set ¹B1; : : : ; Bsº of k�-circle domains B� 2 N .k�/ with

k D k1 C k2 C � � � C ks; s > 1;

and � is a collection ¹� .1/; : : : ; � .s/º of mappings

� .�/ 2 H 1;2.B� ;R2/ \ C 0.@B� ;R2/

such that � .�/j@B� is a weakly monotonic mapping of @B� onto a collection �� of k�

disjoint closed, rectifiable Jordan curves, and that ¹�1; : : : ; �sº forms a permutation
of the curves �1; : : : ; �k defined by �j WD �0.Cj / (see Section 1). The set CC.�/ of
such mappings � is called the class of splitting mappings bounded by �:

Now we define A�.�/ for � D .� .1/; : : : ; � .s// by

A�.�/ D A�.� .1//C � � � C A�.� .s//;

and then
d.�; �/ WD inf

C.�/
A�; dC.�; �/ WD inf

CC.�/
A�;

in particular
a.�/ WD inf

C.�/
A; aC.�/ WD inf

CC.�/
A;

that is, a.�/ D d.�; 0/ and aC.�/ D dC.�; 0/.

Definition 4.1. The Douglas condition is the hypothesis

a.�/ < aC.�/:

In the following discussion we need a third function of � besides d.�; �/ and
dC.�; �/; namely

d�.�; �/ WD inf¹lim inf
m!1

A�.�m/ W ¹�mº D separating sequence of �m 2 C.�/º:

Lemma 4.2. The infima d.�; �/, dC.�; �/; d�.�; �/ are nondecreasing functions of

� 2 Œ0; 1�, and

d.�; 0/ D lim
�!C0

d.�; �/; dC.�; 0/ D lim
�!C0

dC.�; �/: (4.1)
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Proof. Since A.�/ � D.�/ we obtain for 0 � � � �0 that

A�.�/ D A.�/C �
h
D.�/ � A.�/

i

� A.�/C �0
h
D.�/ � A.�/

i
D A�0

.�/;

which shows that d.�; �/, dC.�; �/, and d�.�; �/ are nondecreasing, whence in partic-
ular

d.�; 0/ � lim
�!C0

d.�; �/:

Suppose that
ı WD lim

�!C0
d.�; �/ � d.�; 0/ > 0:

Then there is a mapping � 2 C.�/ such that

A.�/ � d.�; 0/C ı

2
D lim

�!C0
d.�; �/ � ı

2
:

Choosing �� 2 .0; 1/ so small that

0 � ��
h
D.�/ � A.�/

i
� ı=4;

it follows that

A��

.�/ D A.�/C ��
h
D.�/ � A.�/

i
� A.�/C ı

4

� lim
�!C0

d.�; �/ � ı

2
C ı

4

� d.�; ��/ � ı

4
� A��

.�/ � ı

4
;

a contradiction. Thus we have ı D 0 and therefore d.�; �/ ! d.�; 0/ as � ! C0.
Analogously the second relation in (4.1) is proved.

Lemma 4.3. Let � 2 Œ0; 1� and C � 0, and suppose that ¹�mº is a sequence of k-

fold connected domains �m in R
2 whose boundary configurations �m converge to

the boundary configuration � of � in the sense of Fréchet (denoted by �m ! �) as

m ! 1: Then for any cohesive sequence of mappings �m 2 C.�m/ with

D.�m/ � C for all m 2 N (4.2)

there exists a mapping � 2 C.�/ with B D dom.�/ 2 N1.k/ such that

d.�; �/ � A�.�/ � lim inf
m!1

A�.�m/:
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Proof. We omit the proof for k D 1 since it follows readily from Proposition 3.5 using
the method of [12], and so we suppose k > 1: By virtue of Lemma 2.1 we may also
assume that

Bm WD dom.�m/ 2 N1.k/:

There is a subsequence ¹�m�
º such that

lim
�!1

A�.�m�
/ D lim inf

m!1
A�.�m/; (4.3)

and because of (4.2) we can also assume that

D.�m�
/ ! L 2 Œ0; C � as � ! 1: (4.4)

On account of Proposition 3.5, (ii), we may furthermore assume Bm�
! B 2 N1.k/

since ¹�mº is cohesive. By Proposition 3.6 there are C 1-diffeomorphisms �� W NB !
NBm�

from NB onto NBm�
such that

��
� WD �m�

ı �� 2 H 1;2.B;R2/ \ C.�m� /

defines a cohesive sequence ¹��
� º which satisfies

D.��
� / ! L as � ! 1: (4.5)

Using a suitable variant of Poincaré’s inequality and passing to a subsequence of ¹��
� º

which is again denoted by ¹��
� º we obtain

��
� * � in H 1;2.B;R2/

and
��

� j@B ! � j@B in L2.@B;R2/ as � ! 1:

By Proposition 3.5, (i), we can assume that

��
� j@B ! � j@B in C 0.@B;R2/ as � ! 1

(uniform convergence), and so � j@B provides a continuous and weakly monotonic
mapping from @B onto � since �m ! � in the Fréchet sense. Thus � 2 C.�/

with dom.�/ D B 2 N1.k/ and d.�; �/ � A�.�/: The lower semicontinuity theorem
by Acerbi and Fusco [1] implies

A�.�/ � lim inf
�!1

A�.��
� /: (4.6)

Now, since A is invariant under C 1-diffeomorphisms of the domain,

A�.��
� / D .1 � �/A.��

� /C �D.��
� /

D .1 � �/A.�m�
/C �D.�m�

/C �
h
D.��

� / � D.�m�
/
i

D A�.�m�
/C �

h
D.��

� / � D.�m�
/
i
;
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and h
D.��

� / � D.�m�
/
i

! 0 as � ! 1

on account of (4.4) and (4.5). This implies

lim
�!1

A�.��
� / D lim

�!1
A�.�m�

/;

and by (4.3) and (4.6) we arrive at the assertion.

Lemma 4.4. For all � 2 Œ0; 1� we have

d.�; �/ � d�.�; �/ � dC.�; �/:

Proof. For any separating sequence ¹�mº in C.�/ we have

d.�; �/ � A�.�m/ for all m 2 N;

which implies d.�; �/ � d�.�; �/. Thus we have to prove

d�.�; �/ � dC.�; �/: (4.7)

This is obvious for k D 1 since then CC.�/ D ; and therefore dC.�; �/ D 1: Thus
we consider the case k > 1: We have to prove the following:

For any partition ¹�1; : : : ; �sº of � with s � 2 one has

d�.�; �/ �
sX

j D1

d.�j ; �/: (4.8)

This is equivalent to the following assertion:
For every number � > 0 there is a separating sequence ¹�mº of mappings �m 2

C.�/ such that

lim inf
m!1

A�.�m/ �
sX

j D1

d.�j ; �/C �: (4.9)

We begin with s D 2 and an arbitrary partition ¹�1; �2º of �: For an arbitrarily chosen
ı > 0 there are � .�/ 2 C.��/ with B� D dom.� .�// 2 N .k�/, � D 1; 2; k1 Ck2 D k,
such that

A�.� .�// � d.�� ; �/C ı for � D 1; 2:

Applying Proposition 3.7 to H WD A� we construct new mappings �� 2 C.��/ with
dom.��/ D B� 2 N .k�/ and

�� jB2r .p�/ D 0 for some disks B2r.p�/ �� B�

such that
A�.��/ � A�.� .�//C ı for � D 1; 2:
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Shifting B2 in a suitable way we may assume that p1 D p2; set p WD p1 D p2: Let �
be the inversion with respect to the circle @B2r.p/ and set

B�
2 WD �.B2 n B2r.p//:

Furthermore, let C � be the “outer” boundary circle ofB�
2 , andB� be the disk bounded

by C �: Set
B�

1 WD B1 n B�

and
��

1 WD �1jB�
1
; ��

2 WD �2 ı ��1jB�
2
:

Then

�� WD
´
��

1 on B�
1

��
2 on B�

2

defines a mapping �� 2 C.�/ with

dom.��/ D B�
1 [ B�

2 2 N .k/:

Since A� is conformally invariant it follows

A�.��/ D A�.��
1 /C A�.��

2 / D A�.�1jB�
1
/C A�.�2jB2nB2r .p//

D A�.�1/C A�.�2/

� A�.� .1//C ı C A�.� .2//C ı

� d.�1; �/C d.�2; �/C 4ı:

Given � > 0 we choose ı WD �=4 and �m WD �� for all m 2 N: Then ¹�mº is a
separating sequence satisfying (4.9) for a partition ¹�1; �2º of �:

Similarly, if � is partitioned as ¹�1; : : : ; �sº, we fix a ı > 0 and choose � .�/ 2
C.��/ with B� D dom.� .�// 2 N .k�/; k1 C � � � C ks D k, such that

A�.� .�// � d.�� ; �/C ı; � D 1; : : : ; s:

By the above procedure, carried out .s � 1/ times, we find a mapping �� 2 C.�/ with
dom.��/ 2 N .k/ satisfying

A�.��/ �
sX

�D1

A�.� .�//C 2s�1ı

whence

A�.��/ �
sX

�D1

d.�� ; �/C .s C 2s�1/ı:

Choosing ı WD .s C 2s�1/�1� and considering the separating sequence ¹�mº with
�m WD �� for all m 2 N we again arrive at (4.9). Thus inequality (4.8) is verified, and
this implies (4.7).
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Lemma 4.5. (a) Let �m ! � as m ! 1 in the Fréchet sense, and ¹�mº be a

sequence of mappings �m 2 C.�m/ where �m is the boundary configuration of a

k-fold connected domain �m in R
2; m 2 N: Then

d.�; �/ � lim inf
m!1

A�.�m/ for any � 2 .0; 1�. (4.10)

(b) For any � with 0 < � � 1 we have

d�.�; �/ D dC.�; �/: (4.11)

Proof. (a) Inequality (4.10) is trivially satisfied if lim infm!1 A�.�m/ D 1: Thus
we may assume that the numbers A�.�m/ converge as m ! 1; i.e.

lim inf
m!1

A�.�m/ D lim
m!1

A�.�m/ < 1 (4.12)

(otherwise we pass to a suitable subsequence which is again denoted by ¹�mº). Since
D.�m/ � ��1A�.�m/ we have

D.�m/ � C for all m 2 N (4.13)

and some constant C D C.�/ < 1 if 0 < � � 1: Then (4.10) follows from Lemma
4.3 provided that ¹�mº is cohesive; in particular the assertion is established for k D 1
since then any sequence is cohesive.

Now we are going to prove (4.10) by induction over k where we can restrict our-
selves to noncohesive sequences ¹�mº, and we fix � 2 .0; 1�:

Induction hypothesis. Suppose that (4.10) is satisfied for boundary configurations
consisting of at most k � 1 closed curves, k > 1.

Consider now a noncohesive sequence ¹�mº such that �m 2 C.�m/ and Bm D
dom.�m/ 2 N .k/, k > 1, satisfying (4.12) and therefore also (4.13). By Lemma 2.1
we may in fact assume Bm 2 N1.k/: As ¹�mº is noncohesive, it possesses a separating
subsequence which we again call ¹�mº. Then there exist points Qm 2 R

2, numbers
�m > 0 with �m ! 0; closed Jordan curves 
m in NBm which are not homotopic to
zero in NBm and bound a strong Lipschitz domain B�

m in R
2; such that �m possesses a

well-defined continuous trace �m D “�mj00
m
on 
m D @B�

m with

sup

m

j�m �Qmj � �2
m:

Then we choose a sequence of numbers ıj > 0 with ıj ! 0 and apply Proposition 3.8
with ı WD ıj and K WD C.�/: Let �0;j be the corresponding number �0 2 .0; 1/: For a
suitable sequence ¹mj º ofmj 2 N withm1 < m2 < m3 < : : :we have �mj

< �0;j for
all j 2 N: Renaming �mj

; Qmj
; �mj

; �mj
; as �j ; Qj ; �j ; �j ; respectively, it follows

�j < �0;j for all j 2 N;
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and by Proposition 3.8 there are mappings

ĵ WD ˆ�j ;Qj
� ˆ�j

W R
2 ! R

2

with the following properties:

(i) �j � WD ĵ .�
j / is a configuration of k closed Jordan curves such that the

Fréchet distance 4.�j ; �j �/ of �j and �j � satisfies

4.�j ; �j �/ < ıj for all j 2 N:

Choosing the numbers ıj sufficiently small we can also assume that the curves
of �j � are the boundary curves of a bounded, k-fold connected domain ��

j in

R
2;

(ii) ĵ ı �j 2 C.�j �/ and dom. ĵ ı �j / D Bj ;

(iii) ĵ D IdR2 on R
2 n B�j

.Qj /;

(iv) ĵ .x/ � Qj on NB�2
j
.Qj /;

(v) A�. ĵ ı �j / � A�.�j /C ıj :

In particular we have

ĵ ı �j D Qj for all j 2 N:

Then we define
B1

j WD Bj \ B�
j ; B2

j WD Bj n NB1
j ;

where B�
j is the “inner domain” of 
j , i.e. cutting along 
j we decompose Bj into two

disjoint parts B1
j and B2

j : Since 
j is not homotopic to zero in NBj , both B1
j and B2

j

contain at least one of the boundary circles of Bj . Therefore there is a circle ǰ in B1
j

whose center does not lie in NBj : Let �j be the inversion with respect to ǰ , and set

E1
j WD B��

j [ �j .B
1
j / with B��

j WD “inner domain” of �j .
j /;

E2
j WD B�

j [ B2
j :

We note that E1
j 2 N .k0/, E2

j 2 N .k00/ with 1 � k0; k00 < k and k D k0 C k00:

Now we define new mappings �1
j 2 H 1;2.E1

j ;R
2/ and �2

j 2 H 1;2.E2
j ;R

2/ by

�1
j WD

´
ĵ ı �j ı ��1

j on �j .B
1
j /

Qj on B��
j ;

�2
j WD

´
ĵ ı �j on B2

j

Qj on B�
j :
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Roughly speaking this process amounts to “pinching” �j to a point Qj in the neigh-
bourhood of the closed curve 
j and to decomposing the resulting surface into two
surfaces of lower topological type by cutting through 
j .

Then there is a decomposition � D ¹ Q�1; Q�2º of � and correspondingly a decompo-
sition �j D ¹ Q�j;1; Q�j;2º of �j such that

�1
j 2 C. ĵ . Q�j;1//; �2

j 2 C. ĵ . Q�j;2//

and that

ĵ . Q�j;1/ ! Q�1 and ĵ . Q�j;2/ ! Q�2 as j ! 1
in the sense of Fréchet. Furthermore the construction yields

A�.�1
j /C A�.�2

j / D A�. ĵ ı �j jB1
j
/C A�. ĵ ı �j jB2

j
/

D A�. ĵ ı �j /;

and the induction hypothesis implies

d.� l ; �/ � lim inf
j !1

A�.� l
j / for l D 1; 2:

The partition � D ¹ Q�1; Q�2º leads to

dC.�; �/ � d. Q�1; �/C d. Q�2; �/;

and by Lemma 4.4 we have
d.�; �/ � dC.�; �/:

Therefore
d.�; �/ � dC.�; �/ � lim inf

j !1
A�. ĵ ı �j /:

On account of (v) we arrive at

d.�; �/ � dC.�; �/ � lim inf
j !1

A�.�j /; (4.14)

which completes the proof by induction, and we have verified assertion (a).
(b) For k D 1 we have d�.�; �/ D dC.�; �/ D 1; and so (4.11) holds true. If

k > 1 then by Lemma 4.4 we have d�.�; �/ � dC.�; �/ < 1I so it suffices to show
dC.�; �/ � d�.�; �/: For given ı > 0, there is a separating sequence ¹�mº in C.�/

with
lim inf
m!1

A�.�m/ � d�.�; �/C ı:

By the same proof as in (a) we obtain (4.14) for this sequence. Therefore

dC.�; �/ � d�.�; �/C ı

for any ı > 0 whence
dC.�; �/ � d�.�; �/

which finishes the proof of part (b).
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Now we can prove the final result of this section which is just Theorem 1.5, namely:

Theorem 4.6. If the Douglas condition a.�/ < aC.�/ is satisfied, then there is an

�0 2 .0; 1� such that for each � 2 .0; �0� there is a mapping �� 2 C.�/ with

A�.��/ D d.�; �/

and

E.��/ D G .��/; F .��/ D 0: (4.15)

Proof. If k D 1 then aC.�/ D 1, and so the Douglas condition is always satisfied.
In this case the assertion is proved in [12]. Thus we assume k > 1. Since according to
Lemma 4.2

d.�; �/ ! d.�; 0/ D a.�/; dC.�; �/ ! dC.�; 0/ D aC.�/ as � ! C0;

and a.�/ < aC.�/, there is an �0 with 0 < �0 � 1 such that

d.�; �/ < dC.�; �/ for 0 < � � �0: (4.16)

Fix some � 2 .0; �0� and choose a sequence ¹�mº in C.�/ with

A�.�m/ ! d.�; �/ as m ! 1:

If ¹�mº were not cohesive there were a separating subsequence ¹�mj
º whence

d�.�; �/ � lim
j !1

A�.�mj
/ D d.�; �/

which in combination with (4.11) contradicts (4.16). Thus ¹�mº has to be cohesive,
and by Lemma 4.3 applied to �m � � and �m � � there is a �� 2 C.�/ such that

d.�; �/ � A�.��/ � lim inf
m!1

A�.�m/ D d.�; �/:

Consequently,
A�.��/ D d.�; �/;

which means
A�.��/ � A�.�/ for all � 2 C.�/:

Hence the inner variation @A�.��; �/ vanishes for any � 2 C 1. NB;R2/, and since � > 0
it follows

@D.��; �/ D 0 for all � 2 C 1. NB;R2/:

This implies (4.15) by virtue of Proposition 2.2.
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5 Proof of the main result

Theorem 5.1. Suppose that the Douglas condition a.�/ < aC.�/ holds. Then there

is a mapping � 2 C.�/ such that

A.�/ D inf
C.�/

A D inf
C.�/

D D D.�/: (5.1)

Moreover, � is a conformal mapping from NB onto N� of class Cm;˛. NB;R2/:

Proof. Let �0 2 .0; 1� be as in Theorem 4.6, and consider a mapping �� 2 C.�/

for 0 < � � �0 with A�.��/ D d.�; �/ and E.��/ D G .��/, F .��/ D 0. Then
A�.��/ D D.��/; and consequently

d.�; �/ D A�.��/ D A.��/ D D.��/ for 0 < � � �0:

For arbitrary � 2 C.�/ we have

A�.��/ � A�.�/ � D.�/

and therefore
D.��/ � D.�/ for any � 2 C.�/;

in particular
D.��/ � D.��0

/ for all �; �0 2 .0; �0�

whence
D.��/ � const DW c0 for � 2 .0; �0�:

This implies

c0 � D.��/ D A.��/ D A�.��/ D d.�; �/ for 0 < � � �0:

By Lemma 4.2 we have d.�; �/ ! a.�/ as � ! C0; and so we obtain

d.�; �/ � a.�/ for all � 2 .0; �0�:

Thus it follows for any � 2 .0; �0� that

D.��/ D A.��/ D a.�/:

Moreover, since
a.�/ D inf

C.�/
A � inf

C.�/
D � D.��/

we arrive at

A.��/ D inf
C.�/

A D inf
C.�/

D D D.��/ for 0 < � � �0:
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Therefore, setting � WD �� for some � 2 .0; �0�; we have a solution � 2 C.�/ of (5.1)
satisfying

E.�/ D G .�/; F .�/ D 0:

From (1.1) one gets

m1

Z

B

jr� j2 dudv � 2D.�/ � m2

Z

B

jr� j2 dudv

for any � 2 H 1;2.B;R2/. Then a well-known reasoning due to Morrey yields

� 2 C 0. NB;R2/ \ C 0;ˇ .B;R2/ with ˇ WD m1=m2.

Since � satisfies a local chord-arc condition, one finds even � 2 C 0;
 . NB;R2/ for some

 > 0 (see e.g. [4], vol. II). As in [12] it follows that � W NB ! R

2 is a minimal surface
of class Cm;˛. NB;R2/ in .R2; ds2/ satisfying the asymptotic expansion

�w.w/ D a.w � w0/
� C o.jw � w0j�/ as w ! w0 2 NB (5.2)

with a 2 C
2 n¹0º; gjl.�.w0//a

jal D 0; and � 2 N; �w WD 1
2.�u �i�v/: From here we

can proceed as in [12] to prove that �. NB/ D N� and � is a diffeomorphism and, in fact,
a conformal mapping from NB onto N�, using the area formula. Only the topological
argument leading to the inclusion

N� � �. NB/ (5.3)

needs to be modified in the following way:
If k D 1 then (5.3) follows from the fact that � is continuous on NB and maps

@B weakly monotonically and therefore also diffeomorphically onto � , on account
of (5.2).

If k > 1 we may assume that � maps the outer circle C1 WD @Br1.q1/ of @B onto
the outer boundary �1 of �; and that �.Cj / D �j for j D 2; : : : ; k; Cj WD @Brj

.qj /:

The idea to prove (5.3) consists in filling the holes Bj WD Brj
.qj /, 2 � j � k;

thereby reducing the case k > 1 to k D 1. To this end we construct a mapping
� 2 C.�1/ \ C 0. NB1;R

2/ with dom.�/ D B1 WD Br1.q1/ by setting

�.w/ WD
´
�.w/ for w 2 NB
Q��1
j .hj .w// for w 2 Bj ; 2 � j � k;

where hj is defined as the solution of the Dirichlet problem

�hj D 0 in Bj , hj D Q�j ı � jCj
on @Bj , for 2 � j � k;

and Q�j is chosen as a diffeomorphism from N�j onto NBj ; with �j WD inner domain of
the Jordan curve �j , 2 � j � k: (For instance we could choose Q�j as the inverse of the
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conformal mapping from NBj onto N�j whose existence is proven in [12].) Since � jCj
is

a diffeomorphism from Cj onto �j , the mapping Q�j ı � jCj
furnishes a diffeomorphism

from Cj onto itself. By H. Kneser’s theorem (see e.g. [4], vol. I, p. 274, Lemma 3)
it follows that hj provides a diffeomorphism of NBj onto itself; in particular we obtain
hj . NBj / D NBj and therefore

�. NBj / D N�j for j D 2; : : : ; k: (5.4)

On the other hand, the reasoning for k D 1 implies

N�1 � �. NB1/: (5.5)

From (5.4) and (5.5) we can deduce (5.3).

Now we are going to prove Theorem 1.4 by showing that the Douglas condition is

always satisfied in the present situation.

Theorem 5.2. One has a.�/ < aC.�/:

Proof. Since � D h�1; : : : ; �ki is rectifiable it follows that C.�/ 6D ;; and therefore
a.�/ < 1:

If k D 1 then CC.�/ D ; and consequently aC.�/ D 1 whence a.�/ < aC.�/:
For k > 1 we prove the Douglas condition by induction. Suppose that it holds up to

k � 1, and consider an � with a boundary configuration � D h�1; : : : ; �ki where �1

is the outer boundary of� and �2; : : : ; �k are the inner boundary contours. Let�j be
the inner domain of �j for j D 1; : : : ; k: Then

� D �1 n

0
@

k[

j D2

N�j

1
A :

Set

ı0 WD 1

2
min¹H 2.�j /; j D 2; : : : ; kº > 0; (5.6)

where H 2 denotes the two-dimensional Hausdorff measure. Choose a mapping � D
¹� .1/; : : : ; � .s/º 2 CC.�/ with A.�/ � aC.�/C ı0 and dom.�/ D B where

B D B1 [ : : : [ Bs; s > 1; Bj 2 N .kj /; k D k1 C � � � C ks;

in particular 1 � kj < k for j D 1; : : : ; s: We then can partition � in

� D ¹
1; : : : ; 
sº with 
j D h
j
1 ; : : : ; 


j

kj
i
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such that � .j /jCj
maps Cj WD @Bj continuously and weakly monotonically onto 
j

for j D 1; : : : ; s. Furthermore, � .j / lies in C.
j / for 1 � j � s; hence

a.
1/C � � � C a.
s/ � A.� .1//C � � � C A.� .s//

D A.�/ � aC.�/C ı0: (5.7)

We can assume that 
1
1 D �1: Denote by !1 the k1-fold connected domain with the

boundary configuration 
1 D h
1
1 ; : : : ; 


1
k1

i: Since k1 < k there is (at least) one l 2
¹2; : : : ; kº with �l 2 � n 
1; and by the induction hypothesis we can apply Theorem
5.1. This way we obtain a domain b1 2 N .k1/ and a conformal mapping � .1/ from Nb1

onto N!1 such that
a.
1/ D A.� .1// D H 2.!1/: (5.8)

Furthermore,
H 2.!1/ D H 2.!1 n�l/C H 2.�l/: (5.9)

Since .�; ds2/ is a k-fold connected Riemann domain, there is a B0 2 N .k/ and a
diffeomorphism �0 from NB0 onto N� such that �0 2 C.�/: Then

a.�/ � A.�0/ D H 2.�/: (5.10)

Since � � !1 n�l it follows

H 2.�/ � H 2.!1 n�l/ D H 2.!1/ � H 2.�l/;

taking (5.9) into account. By virtue of (5.8) we obtain

H 2.�/ � a.
1/ � H 2.�l /

and by (5.10) we arrive at

a.�/ � a.
1/ � H 2.�l/

� a.
1/C a.
2/C � � � C a.
s/ � H 2.�l/:

Applying (5.7) this leads to

a.�/ � aC.�/C ı0 � H 2.�l/:

By (5.6) we get H 2.�l/ � 2ı0; and so we find

a.�/ � aC.�/ � ı0 < a
C.�/;

i.e. the Douglas condition is also satisfied for k. This proves the assertion of the
theorem.

Proof of Theorem 1.4. The assertion follows from Theorems 5.1 and 5.2.
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