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Plateau’s problem for parametric double
integrals: II. Regularity at the boundary

Dedicated to Friedrich Hirzebruch on the occasion of his 75th birthday

By Stefan Hildebrandt and Heiko von der Mosel at Bonn

Abstract. We establish global regularity of class H>> N C%* 0 < a < 1, up to the
boundary for conformally parametrized minimizers of parametric functionals under the
assumption that there exists a perfect dominance function.

1. The main result
Let #(X) be a parametric double integral of the form
F(X) = [F(X,XyuAX,)dudv
B

defined on surfaces X € H!''?(B,R") whose parameter domain is the open unit disk
B:={w=(u,v) e R*: u?> +v> < 1}. The Lagrangian F(x,z) of & is defined for
(x,z) e R" x B", where B" =~ RY, N :=n(n—1)/2, is the space of bivectors { = & Ay,
&,n € R”, and satisfies the homogeneity condition

(H) F(x,tz) = tF(x,z) forallt>0, (x,z) e R" x RV,

Throughout we also assume that there are numbers m1;, m; with 0 < m; < m; such that

(D) mi|z| £ F(x,z) < mylz| forall (x,z) e R" x RY
and that
(©) F(x,z) is convex in z for any x € R".

Suppose that T" is a closed, rectifiable Jordan curve in R”, n = 2, and let (I') be the
(nonempty) class of surfaces X € H?(B, R") whose Sobolev traces X|,, are continuous
and monotonic mappings of 0B onto I.



208 Hildebrandt and von der Mosel, Plateau’s problem 11: Boundary regularity

In Section 2 of [8] we have proved that, under the assumptions (H), (D), (C), there is
a solution X of the Plateau problem

(2) Z — min in%(l),
satisfying the conformality relations
(1.1) 1X,)* = |X.)*, X, -X,=0 ae. onB.

(A slightly weaker result was proved in [7].) Moreover, it was shown in [7] and [§]
respectively that every conformally parametrized minimizer X of % in €(I') is of class
C°(B,R") n C"7(B,R"), y := my /my, and satisfies

2y
[ VX dudv < <L> [ |VX|? dudy
B, (wo) R Br(wo)

for any wo = (up, v9) € Band 0 <r < R< 1— |wg|, where B,(wg) := {w e R%: |w — wy| < r}.
In addition, one has X € C%?(B, R") for some ¢ € (0,1/2] and

20
| |VX|2dudv§const<%> [IVX|* dudv
B

Bn B,— (W() )

for all wo e Band 0 < r < R < 1, provided that, for some M > 1,5, > 0, the curve I sat-
isfies an (M,dy)-chord arc condition (i.e. for any two points P, Q € I' with |P — Q| < Jy
the length L(I'*) of the smaller arc, I'*, of the two subarcs of I" with the end points P, Q is
estimated by L(I'*) < M|P — Q).

The aim of the present paper is to prove the following result:

Theorem 1.1.  Suppose that F is of class C*(R" x (RY — {0})) and has the properties
(H), (D), (C). Suppose also that F possesses a perfect dominance function G, and that T is of

class C*. Then there is some o € (0, 1) such that any conformally parametrized minimizer X
of F in 6(T) is of class H**(B,R") n C*(B,R") and satisfies

”XHH2-2(B,R") + HXHcm(é,w) <, F)
where the number ¢(I', F) depends only on T and F.

The key to this result are the notions dominance function and perfect dominance
function for F that were introduced in [8], following a remarkable suggestion due to Morrey
[11], Chapter 9. We shall recall the definitions of such dominance functions in the next
section.

The test functions that are, for instance, used in the case of minimal surfaces, can
also be applied to minimizers of the general parametric integral # (X), provided that
its Lagrangian F possesses a perfect dominance function G. However, it is far from
being trivial that these test functions are admissible. This, in fact, is the main difficulty
we have to overcome in the present work. In order to prove H?2-regularity we employ a
global straightening of the boundary and an unusual simultaneous estimation procedure at
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many local patches. In conjunction with this result, a new algebraic lemma for parametric
Lagrangians guarantees that some test function is applicable which is used to start the hole-
filling procedure with the aim of establishing C'*-regularity. The third new ingredient is an
approximation device developed in [8], by which we overcome the difficulty that the asso-
ciated Lagrangian f(x, p) := F(x, p1 A p>) and any dominance function are not of class
C?. This is one of the major difficulties of our problem, together with the fact that it lacks a
nice variational equation with principal part in diagonal form.

Let us now outline the proof of Theorem 1.1. The main property of all dominance
functions G(x, p) for F(x,z) is that

F(x,p1Ap2) £ G(x,p) for p=(p1,p2) e R" x R,

where the equality sign holds if and only if | p1|2 = | p2|2 and p; - p» = 0. With G we asso-
ciate the functional 4 : ¢(I') — R defined by

9(X):= [G(X,VX)dudv.

It turns out that 1r(1f) F = 1I(1f) %, and that every conformally parametrized minimizer X of
%(T (T

Z in €(I') is also a minimizer of ¥ (cf. [7] and [8]). This suggests to operate with the
functional ¢ and its variational inequality 0%(X,¢) = 0, because a perfect dominance
function G has much better regularity properties than F. Following this idea we have
proved in [8] that any conformally parametrized minimizer X of % in %(I') is of class
H2Z2(B,R") n Ch*(B, R") and satisfies

(12) ||X||H2'2<B/,R”) + ||X||C1'“(E,R") é C(F,F,d)

for any B’ =< B, where d := dist(B’,0B). Moreover, in [9] we have derived analogous
boundary regularity results for solutions of partially free boundary problems “% — min
in (I, S)” with a smooth supporting surface S at the “free boundary”. We were not able
to carry over this approach directly to the Plateau problem since the Plateau boundary
condition is rather inconvenient to handle, as it requires monotonicity of the boundary
values of any admissible comparison surface. Therefore it is by no means obvious that the

test function in (4.2),
(1.3) $= A k(P ALY)

satisfies 0% (Y, $) = 0, where Y and ¢ are the transforms of X and ¢ when the boundary
is locally straightened. (Here, # is a localizing cut-off function, and A ;Y denotes the tan-
gential difference quotient of Y.) We have found a way out of this dilemma: Introduc-
ing global normal coordinates about I' (so-called Fermi coordinates) we can at least
prove the inequality 0%(Y,¢) = 0 for ¢ defined by (1.3), with a cut-off function # hav-
ing support along the whole boundary. From this we can derive X € H>?(4’, R") and
[ Xl 722047, gm) < ¢(T', F) on a narrow annulus 4’ = B with 0B as its outer boundary.
However, the derivation of this estimate is quite subtle, as the local estimation of the
L?*-norm of VA, Y does not suffice; rather these estimates have to be carried out simulta-
neously at a large number of local patches, and the resulting bounds must be combined in
a suitable manner. This procedure is somewhat tricky; therefore we have carried out all the
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elementary steps in some detail (cf. Section 5). Sections 3 and 4 provide the necessary
geometric preparations used in Section 5. The use of Fermi coordinates requires that
I e C* once X € H*? is proved we only need I' € C? (cf. [9] where S € C? is required). To
keep the paper in a reasonable length we have not repeated all the manipulations leading to
inequality (5.3); we refer to Section 4 of [8] for the somewhat tedious details.

Once we have X € H>%(B,R") we know that VX|,z € L?(0B,R"); but still it is
not obvious that the new test vector ¢ = —y> A _; A Y satisfies 0%(Y,¢) = 0 where ¢
and Y are the local transforms of ¥ and X, since it is not clear that Y + e¢ satisfies the
(transformed) Plateau boundary condition. However, using the Euler-Lagrange equation,
an integration by parts yields at least

G(Y,$) = —jG (Y,VY)4' du,

where I’ is an interval on the flat part of éB and B is now the semidisk
{(u,v) : u> + v*> < 1,0 > 0}; cf. Proposition 6.3.

In Section 8 we prove qul(Y, VY) =0 on I’ using an algebraic identity derived in
Section 7. The proof of this identity which so far seems to have gone unnoticed is amaz-
ingly simple, see Lemma 7.1. We expect that the identity will be useful also in other sit-
uations. After these preparations one has 0%(Y, ¢) = 0; then Widman’s hole-filling device
leads to Y € C1*(Qp, R") on Qg := B B,(0) and to the associated C!*-estimates of Y.
Thus we obtain X € C!"*(A4’,R") on a closed annulus 4’ = B with outer boundary 9B, and
together with the interior estimates (1.2) we arrive at X € C'»*(B, R") and the correspond-
ing estimate || X|| 1.z gr) = (I, F); cf. Section 9. Again we only outline the necessary
steps, once the basic equatlon 5% (Y,$) =0 for ¢ = —n> /A A Y is proved, since one can
essentially follow the last part of Section 4 in [§].

We note that our regularity result is only “global”, because in Section 5 we are
operating with global Fermi coordinates about the boundary. Our result does not furnish
a result of the kind: X e Ct*(BUC',R") if C' < 0B, X(C')=T'cT,and "cT is a
subarc of class C*; we can only admit C’ = 0B, but no proper subarcs of 0B.

Except for the cases of minimal surfaces and surfaces of prescribed mean curva-
ture (cf. e.g. [4]-[6] and in particular [1], vol. II, Section 7), which have the dominance
functions

Gx.p) = 31p + Q) (1 A 2).

there exist to our knowledge no other general results on boundary regularity for parametric
functionals, not even in codimension one and in the realm of geometric measure theory. We
are only aware of work by R. Hardt [3] and B. White [15] in geometric measure theory
who treated # -minimizing embeddings whose boundaries are extreme (i.e. lie on convex
surfaces), or satisfy other special conditions of similar kind. Because of a result of J. Taylor
[13], however, one cannot necessarily expect that % -minimizers in the class of immersions,
and even more so minimizers in the more general class 4 (I") considered here, are as well-
behaved as % -minimizing embeddings, see the discussion in [10], Section 1. Moreover we
mention a recent uniqueness theorem by S. Winklmann [16] generalizing Radé’s theorem to
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minimal immersions of 7 (X) = [ F(X, A X,) dudv. On account of this result, well-known
B

regularity results for extremals of the nonparametric companion for & can be interpreted
as a regularity theorem for F-minimal immersions if I" is a graph over the boundary of a
convex domain Q in R

2. Dominance functions

Here we want to recall the definitions of a dominance function and a perfect domi-
nance function for a parametric Lagrangian F introduced in [7], [8], and some result about
such functions obtained in [10].

Definition 2.1. Let F(x,z) be a Lagrangian of class C°(R" x R") satisfying (H),
and denote by f(x, p) its associated Lagrangian defined by

f(x,p) =F(x,prAp2), p=(p1,p2) e R" x R" = R™.

(i) A function G : R" x R* — R is called a dominance function for F if it is continu-
ous and satisfies the following two conditions:

(D1) f(x,p) £ G(x,p) forany (x,p) e R" x R,
(D2) f(x,p) = G(x,p) if and only if p € Iy,
where TITj denotes the algebraic surface in R* defined by
’2

Mo :={p = (p1,p2) e R : |p1|* = |pa|*, p1 - po = 0}.

(i) A dominance function G for F is said to be quadratic if
(D3) G(x,tp) = *G(x, p) forall >0, (x,p) € R" x R*,

and it is called positive definite if there are two constants x; and u, with 0 < x; < u, such
that

(D4 wlpl < Glx,p) S wlpl® forany (x, p) € R" x R™.

Definition 2.2. A continuous function G : R” x R*" — R is called a perfect domi-
nance function for the parametric Lagrangian F if G is of class C?(R" x (R* — {0})) and
satisfies (D1)—(D4) as well as the ellipticity condition

(E)  7-Gylx, p)n = A(Ro)|n|> for |x| £ Ry and p,me R™, p %0,

and any Ry > 0 where A(R() > 0 is a number depending only on Ry.

For example, the area integrand A(z) := |z| has the associated Lagrangian

a(p) = |p1 A pal = /I P 1pal = (p1 - o)’

and possesses the perfect dominance function
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1 1 1
D(p) = §|P|2 = §|1T71|2 +§|P2|2, p=(p1,p) e R™

One might conjecture that any Lagrangian F(x,z) possesses a perfect dominance function,
if it satisfies F € C*(R" x (RY —{0})), (H), (D), and strict ellipticity in z, in the sense that

(SC) Colz|Fea(x,2)C 2 APEC)? forxeR™, z,(eRY, 240

holds for some 4 > 0 and |PZLC|2 = |£|2 - |z|_2(z . C)z. It is unknown whether or not this is
true. However, we have the following weaker result:

Theorem 2.3.  Suppose F* € CO(R" x RY) n C*(R" x (RY — {0})) satisfies (H), (D)
with constants m{,mj, and the strict ellipticity condition

(o z|Foz(x,2)0 2 /1*|PZLC|2 forxeR" z,Le RN,z %0,

for some 2* > 0. Then for any k with
k > ko :=2[m; — min{A", m; /2}]
the parametric Lagrangian F defined by
F(x,z):==kA(z) + F*(x,z),
where A(z) = |z|, possesses a perfect dominance function.

The proof of this result is based on Morrey’s construction in [11]; we refer the
reader to [10] and also to [8], Proof of Theorem 1.10. We note that the associated
Lagrangian f(x, p) = F(x, p1 A p2) of a parametric Lagrangian F(x,z) cannot be better
than C?(R" x (R* — II)), where

I:={p=(p1,p2) € R¥: p1 Apr=0}.

Thus most dominance functions are also singular on I, for instance

1
G(x, p) =5 00(x, p)|p|’

with w(x, p) == F(x,|p1 N Ap2)) for p ¢ I and w(x, p) :=m; for p € I1. There-
fore it is quite remarkable that Morrey was able to show the existence of dominance
functions of class C?(R" x (R* — {0})) satisfying (D1)-(D4). However, his construction
G(x, p) is only strictly rank-one convex in p, and this does not suffice to prove regularity
as the discontinuity of G,,(x, p) at p = 0 prevents the derivation of a Gdrding inequality.
By the way, even strict quasiconvexity or strict polyconvexity of G(x, p) in p would not
give regularity, as the presently available techniques require G € C?(R" x R*") since they
are based on various versions of the blow-up technique. Note also that, by a result due to
M. Griiter, the regularity of the Lagrangian G(x, p) of a conformally invariant functional
% at p =0 implies a very special form of G (cf. [8], Proposition 1.7) and therefore of F.
Hence a singularity of G(x, p) at p = 0 is, in general, unavoidable.
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3. Global Fermi coordinates about I"

Let T be a closed Jordan curve of class C* in R” with the length L, n > 2. Then
there is a mapping y € C*(R, R"), satisfying |j| = 1 and y(s + L) = y(s) for all s € R, such
that y(]0, L]) =T. Let ¢ :=  be the tangent vector field corresponding to this representa-
tion of I'. We choose an L-periodic mapping U : R — SO(n) of class C* with the row
vectors fy,0,..., 1, such that t; =1¢, ie., s— T(s) := (i(s), f2(s),...,t(s)) is a moving
orthonormal frame along I" the first vector of which is tangential to I'. Let pr- € (0, 0] be
the global radius of curvature of T as defined in [2], choose some d € (0, pr), and denote by
V = V(I',d) the tubular neighbourhood

V([,d):={xeR":dist(x,I') < d}

of T. According to Lemma 7 in [2], which can be carried over from R* to R”, for any

x € V, there are values s,7,...,r, with s€ R and r3 + - - - 4+ r2 < d* such that
(3.1) x =p(s) + rata(s) + - - - + rutn(s),
where the new coordinates s, 72, . . ., r, of x with respect to the moving frame 7" are uniquely

determined by x except for s which is merely unique modulo L. Moreover, any point x of
the form (3.1) with 13 + -+ +r2 < d° liesin V. We set y! :=s,y? :=ry,..., )" :=1, and
denote y := (y!,..., y") as Fermi coordinates of x with respect to I'.

Then we can write (3.1) as
x=~h(y) withye W:=Rx Ky, K;:=By0)cR",
where 7 e C3(W,R") maps W surjectively onto V(I',d) and [R/L-Z] x K, bijectively
onto V(T',d). The mapping / is L-periodic with respect to its first variable y', and its
restriction to Wy := [0, L) x K, can be viewed as a diffeomorphism of W, onto the solid
torus V' (I',d). In particular,
(3.2) I ={h(»'0,...,0): ' eR}.

Let X be a conformal minimizer of % in %(T). Since X is continuous on B and X (0B) =T,
there is a number 0 € (0, 1/4) such that X maps the annulus

As:={weR*:1-0=Z|w 21}

into V(I',d/2). We confine X to 4; and express X|, in terms of polar coordinates r,
around the origin w = 0 as

(3.3) Z(r,0) := X(rcos@,rsinf) for (r,0) eXs:=[1—-0,1] x R.

Then there are uniquely determined coordinate functions Y'!(r,0), ..., Y"(r,0) such that

(3.4) Z(r,0) = y(Y\(r,0)) + 22 Y/(r,0),(Y\(r, 0)),
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and
(3.5) Y'(r,0+27) = Y'(r,0) + L,
Y/(r,0+427) = Y/(r,0), j=2,...,n
Introducing the surface Y : X5 — R” by
Y(r,0) = (Yl(r, 0),...,Y"(r,0)),

we obtain Z =ho Y, ie.,

Z(r,0) = h(Y(r,0)) for (r,0) €Xs

with Z(r,0 + 2n) = Z(r,0). Note that both Z and Y are continuous on Xs, and their
restrictions to

0s = (1-4,1) x (0,27)
are of class H'2. From X € %(I") we infer that
I'={Z(1,0):0e R} = {h(Y(1,0)) : 0 e R},
and (3.2) then implies
(3.6) Y/(1,0) =0 forj=2,...,nand e R.
Moreover, the conformality relations (1.1) for X are transformed into
(3.7) \Z,|* =12\ Z)*, Z,-Zy=0 ae. on3y.
Let H := h’ be the Jacobian matrix of 4, and Z:= H” - H be the corresponding Gramian
matrix. The matrix function & : W — R™" is positive definite, symmetric, and L-periodic
in the variable y'. There are numbers 41,4, > 0 such that
(3.8) MIEP £ E-B(0)E < )E)* forall ye Wand & e R
From Z = h(Y) we infer Z, = H(Y)Y, and Z, = H(Y)Yy whence
Z | =Y, E(V)Y,, |Z =Yy -E(Y)Y,
and
(3.9) VX =|Z) +rHZ = Y, E(Y) Y, +r2Y, - E(Y) Y.

The conformality relations (3.7) yield

[1]

(3.10) Y, (Y)Y, =r %Y, -E(Y)Yy,

[1]

(Y)Yp=0 ae.onZ;.
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Now we recall the Dirichlet growth condition for X stated in Section 1:

J \VX|*dudv < M{p** foranywye Band0 < p <1,
BB, (wy)

where M > 0 and ¢ € (0, 1). By an elementary geometric reasoning we infer

(3.11) [ (D, Y)? +|DgY|*)drdd < Mop* forall{yeZsand 0 < p <0
250B,(Co)

for some number M, depending only on Mj, o, and o, taking (3.9), (3.10), and
dudv = rdrd0 into account. Next we transform the variational integral ¥, from the
old variables (u, v, x) to the new variables (r, 0, y). By (3.3) we have

Z, = X,cos0+ X,sinf), Zy=—X,rsinf+ X,rcosf

where Z,, Zy stand for Z,(r, 0), Zy(r,0), and X,, X, for X,,(rcos0,rsin ), X,(rcos@,rsin @),
respectively. Therefore

X, =Z,cos0 —r'Zysin0, X,= Z,sin0+r'Zycos0.

Let us introduce the functions

(3.12) 91(r,0. v, q1,92) == H(y)[g1 cos 0 — qor" sin 0],
92(r, 0, v, q1,42) := H(»)[g1 sin 0 + gor~" cos 0],
g(ra07y7Q) = (gl(ryeayaq))g2(r107y7q))

with ¢ = (¢1,¢2) € R” x R", and

(3.13) G(r,0,,q9) = rG(h(y),g(r,0,,q)).
It follows that
Xy=g1(r,0,Y,VY), X, =g(r,0,Y,VY),
where Y is the abbreviation for Y (r,0) and VY for (Y,(r,0), Yy(r,0)). Therefore

[G(X, X, X,) dudv = [ G(r,0, Y, Y,, Yy) drdo.
As 05

Setting

9(Y) = Qj(;(r, 0,Y,Y,, Y)drdo

for any mapping Y : X5 — R” with f/(2~(5) = W which is continuous on Qy, of class H'+?
on Qy, and whose components Y, ... Y satisfy

(3.14) Y'(r,04+2n)=Y'(r,0)+ L,

Y/(r,0+2n) = Y/(r,0) forj=2,....n,
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we arrive at
(3.15) 4(Y) =9, (h(Y)),

where we view A(Y) as a function of the original variables u, v. In particular, we have
(3.16) G(Y) =%,(X).

Definition 3.1. A mapping ¢ : 5 — R" of class H''?(Qs, R") n C°(Zs, R") is called
an admissible variation of Y if it satisfies the following conditions:

(i) ¢ is 2z-periodic in 6;

(i) ¢/(1,0) =0for j=2,...,n and 0 e R;

(iii) ¢(r,0) =0 for all (r,0) e[l —0,1 —0/2] x R;

(iv) there is some €y =¢€o(¢) >0, possibly depending on ¢, such that
Y'(1,6) + e4'(1,6) is monotonically increasing in 6 for any value of the parameter e, pro-
vided that 0 < € < ¢g;

(v) for any € € [0, €], the mapping Y'© := Y + e¢ satisfies Y9(Z;) = W.

Note that, for any e € [0, €], the mapping Y satisfies conditions (3.14) (with ¥
replaced by Y(9).

Let ¢ be an admissible variation of Y. Then h(Y + e¢) is well-defined for 0 < € « 1,
and we can introduce

o [ X(u,v) for (u,v) € B1_5(0),
X (u,0) = {h(Y(r, 0) + ch(r.0) for (u,0) € As

with r = Vu? +v> and 0 = H(u,v) (= arctan(v/u) for u=0,0=0) being the polar
angle of (u,v) € A5 with 0 <0 < 2z. By construction, the surfaces X© are of class
%(T') if 0 < e« 1. Then the minimum property of X yields %(X) < %(X'9) whence
%4, (X) £ %, (X)), Because of (3.15) and (3.16) it follows that

0=

A | -

- 1 - .
[9,(X')) = %1, (X)] = —[9(Y + ed) = (V)]
for 0 < e « 1. By [8], Proposition 3.3,

lim ¢! [%;,(X9) - %, (X))

e——+0
exists, and so we obtain
1 -~ -
(3.17) liToE[g(Y+e¢) -9%(Y) =0

for any admissible variation ¢ of Y.
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We note that, by assumption (D3) on G, we have
G(C y,19) = *G(C, y,q) fort>0

and for all { = (r,0) € Z5, y € W, ¢ € R*". Consequently, there exist constants co, ¢1, s > 0
such that for all z = ({, y,q) € Z5 x W x R*"

(B.18) |G| +1G:(2)| +1Gee(2) + G, (=) + Gy (2)] + |Gy (2)] £ ol
|Gy (2)| + Gy (2)] + |Gy (2)] < g,
and, if g & 0,
(3.19) 1Gyy(2)] < ca.

The simple proof of these estimates follows as in [8], Section 3, also using that G(r, 0, y, q)
and its derivatives are 2z-periodic in 0 and L-periodic in y!.

Since Qs is compact and 1 —J < r < 1 we infer from (3.17)—(3.19) as in [8], Section 3,
that

0% lim L[G(Y + )~ G(Y)] = 05(Y ¢)
for any admissible variation ¢ of ¥ where the first variation 6%(Y, ¢) is defined by
29(Y.9) = [16L Y, VY) ¥4+ G(C ¥,VY) - gl dC
with d{ = drd0.
Thus we have proved:
Proposition 3.2. If X is a conformally parametrized minimizer of 4 in €(I") and

Y = (Y',..., Y") is the representation of X | 4, on Xy in Fermi- and polar coordinates defined
by (3.3) and (3.4), then we have

(3.20) 0%(Y,¢) =0
for any admissible variation ¢ of Y in the sense of Definition 3.1.

Furthermore, the ellipticity condition (E) for G is transformed into an analogous
ellipticity condition for G if we take Ry in (E) so large that V(I',d) = Bg,(0) = R” and in
particular |A(y)| < Ry for all y € W. In fact, with

}vG"(R()) = (1 _5)AG(RO)A~1
we obtain from (E), (3.8), (3.12), (3.13):

Proposition 3.3.  For any { = (r,0) € £, y € W, g € R*" the Lagrangian G defined by
(3.12) and (3.13) satisfies

(3.21) &Gl 9,9)¢ = Aa(Ro)|E)> for all & e R™™.
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4. A special admissible variation

Now we want to define a particular admissible variation ¢ of Y to be inserted in the
variational inequality (3.20). For this purpose we use suitable difference quotients of Y.

Let n € C*(Z}) be a cut-off function on X := [1 —J, 1 +J] x R which is independent
of 0 and satisfies #(r) =1 for [r— 1| < p, n(r) =0for 2p < |r—1/ <6, 0 <n(r) =1, and
|n.(r)| = 2/p for p < |r— 1] £, where p € (0,0/6) is a number to be chosen later.

For k + 0 and a mapping z : X5 — R" we define the tangential shift z; by
zk(r,0) == z(r,0 + k)
and the tangential difference quotient /\ .z by
Az(r, 0) ==k~ [zi(r, 0) — z(r, 0)].
Recall that for any z,Z : X5 — R”" one has the discrete product rule
Np(z-2) = (Lgz) - 24z - (AkZ2) = (Agz) - Zx + 2 - (Dg2).
If z - Z is 2z-periodic in 0 and z,z € L*(Qs, R") we can integrate by parts according to the

formula

(41) IZ-AkZdCZ—I(A_kZ)-Z_dC.
s 05

Proposition 4.1. If X is a conformally parametrized minimizer of 4 in €(I') and
Y = (Y',..., Y") is the new representation of X|,, on X defined by (3.3) and (3.4), then the
function ¢ defined by

(4.2) $() = Ak (P L Y)(E) for {eZs

is an admissible variation of Y in the sense of Definition 3.1.

Proof. From (3.5) it follows that all components A;Y/ of AyY are 2zn-
periodic, and so A;Y is 2z-periodic. Therefore #?/A;Y and finally A (> AyY) are
2n-periodic. The boundary conditions (3.6) are not destroyed if we take tangential
difference quotients; therefore A _,(n? AxY/) =0 for j=2,...,n. Since n(r) =0 for
1-0<r=<1-6/3<1-2pwealsohave A _;(n?/ArY)=0on][l —J,1 —35/2] x R. Thus
we have verified conditions (i)—(iii) of Definition 3.1 for the test vector ¢ defined by (4.2),
and condition (v) follows from the facts that X (4s) = V(I',d/2), ie., Y(Z5) = R x Ky
and ¢ € L7 (%), as ¢ : £s — R" is continuous and 2z-periodic in 6.

It remains to verify that Part (iv) of Definition 3.1 holds. As 7(1) = 1 we have

€

2
YN(1,0) +ep'(1,0) = é Y (1,0) + (1 —k—j) YH(1L.0) + 25 Y1 (1,0),

that is, for 0 < e < k2/2 the function Y'(1,0) + e¢'(1,0) is a convex combination of the
three monotonically increasing functions Y'(1,60), Y,!(1,6), and Y!' (1,0), and so it is
increasing as well. []
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The Propositions 3.2, and 4.1 in conjunction with (4.1) imply

Proposition 4.2. If X is a conformally parametrized minimizer of 4 in €(I') and
Y = (Y',..., Y") is the new representation of X|, on X defined by (3.3) and (3.4), then, for
any k + 0,

43)  JIAkG(& Y, VY)] - V(> A Y)dC £ = [[AkGy(L Y, VY)] -0 Ay Y L
05 05

Inequality (4.3) will be the starting point of the estimation procedure carried out in
the next section.

5. Global H?>2- estimates at the boundary
The aim of this section is to prove the following result:

Proposition 5.1.  If T e C* then every conformally parametrized minimizer X of F in
% () is of class H*?(B, R"), and we have

(5.1) XN 228,y = (T, F)
where ¢(I', F) > 0 does not depend on X.
Proof. Since V[n? Ay Y] = n*V ALY +2yVy A Y, inequality (4.3) yields

(5.2) [[8kG,(L Y, VY- > VALY dL S Ty + s,
Os

where

Ji = — [[8kG,(L, Y, VY)] - 27V A Y dC,
0

Jy = — [[AkG(L Y, VY)] - > Ay Y dC.
05

Copying the reasoning used in Section 4 of [8], we can estimate J; and J, by

1] S e [20|Va|(L+ [ A Y| Ak YA+ c2 [ 27| V| VALY || AR Y] dE,
Q(3 Qr5

ol < co [P IVYR (L + |2k YD AR Y|dE + er [ VALY (VY] + [VYi|)| A Y] de,
0s 0s

and the left-hand side of (5.2) can be bounded from below by
[12kGy (& Y, VY] - n?V ArY dC
Os

> J6(Ro) [ VALY de — e [P (VY| + VY| | A Y)IVALY | dE.
0s 0s
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Here we have employed the estimates (3.18) and (3.19) as well as Proposition 3.3,
and Rpe (0,00) is chosen so large that V(I',d) < Bg,(0) =« R” (and in particular
1Y)l co(p, mry = Ro)- Since |Vy| = |n,| <2/p, inequality (5.2) implies that, for every
e >0, :

J6(Ro) [1PIVARYPdC < € [PV ALY L+ ()| [PV Y[+ | A Y P
05 05 05

T [+ MY dE+ [ VY| AR Y P dl],
Q(5 Q(S

where the number c*(¢) merely depends on the value of e. With the choice € := 4z(Ro)/2
we can absorb the first term of the right-hand side by the left-hand side. Furthermore,

[1AxYPdE < [|Yo*dC
0Os 05

and

[IVYi*de = [|VY|*dC
0Os 0Os

since VY (r,0) is 2n-periodic in 0, and (3.8), (3.9) imply

[IVY]*d¢ < const Z(X),
Os
where we have used the notation
1 2
D(X) == [|VX]" dudv.
25
It follows that
(53)  [nPIVAarYPdl
05

< ¢(Ro) [(IVYI? + VYD) AcY P dl + ¢ (p, Ro)[1 + 2(X)),
Qs

where ¢(Ry) does not depend on p.

To estimate the first term on the right-hand side of (5.3) we cover the strip
S3, :=[1 = 3p,1 4+ 3p] x R of width 6p about the center line ¥ := {(1,0) : 0 € R} by the
rectangles R; := {(r,0) : [r — 1| = 3p,|0 — 0;| < 2p} centered at p; := (1,0;) with p :=n/I
and 0; := 2pj, j € Z, where [ denotes a positive integer which will be fixed later on. Pres-
ently we require p < J/6 in accordance with Section 4. Denote by W; the cubes

W= [1-3p,1+3p] x (0; —3p,0; + 3p)

centered at p;. Each point { € S3, is contained in at least two of the rectangles R; and in at
most three of the cubes ;.
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Let £ : S3, — R be a function of class C*, depending only on ¢ and not on r such that
&(0) = 1for |0] = 2p, E(0) =0 for [0] =2 3p, 0 =< =1, and [&y| = 2/p. Define &; € C*(S3,)
by &;({) := &(C = pj),ie. &(0) = E(0 — 0;). Then we have &; = 1 on R;, &; = 0 on S3, — W),
0=¢ =1, and |V&;| <2/p. The function 7 := Z éf is of class C*(S3,) and satisfies

2<7<3. Thus §;:= &/\/T, j€Z, defines functions of class C*(S3,) with 0 < Bi=1,
B =0o0n S, — W, B;({) = Bo({ — pj) and /3]-2 =1 on 3, in particular

Jj=—o
I+1
> ﬂ (O)=1 forle QsnSs,.
j=—1
Since
Vé; 1
Vﬂj 7] 2 3/2 5/ Z ZélVél
we obtain
1 2 3 2
‘Vﬂj‘ é \/_—|Vél‘ +21/2 Z ’ é‘ \/— 23/2

whence [VB;| < 5/p.

Now we define 7; € C° (B4p(pj)) by 7, := B;n, where 5 is the cut-off function
introduced in Section 4. It follows that 0 <#; <1, |Vi;| < n|VB;| + B;|Vn| < 7/p, and

o0
> 7 =n*on Sy, Since n = 0 and 7; = 0 on Qs — Sy, we have

Jj=—
1+1
(5.4) 3RO =0 forle0s
=
Set
(5.5) (o) = {IVY(C)|2 + VYO for (e,
0 otherwise.

From (5.3) and (5.4) we then infer
(56) [ IVARY[Pdl
Os
I+1
SRS [ Wl aRYPde+c(p Ryl + 2(X)]

J==1Qs0B4,(p))

Next we extend Y by reflection across the line % to a function Y*:S; — R" on
Ss:=[1-0,140] x R:

Y*(r.0) = Y(r,0) forl1—-0=r=<1,0eR,
S\ Y2-r0) forl £r<1+46,0€eR.
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We note that Y* is of class H'? on every rectangle [l—d,1+0]x [a,b],
—w<a<b< o, andsonJAkY*eH1 (Bap(p)), R").

By (5.5) and (3.11) the function y € L] (R?) satisfies the Morrey condition

loc

[ |W|drdo <2Myr*
Q!(CO)

for all {, € X5 and all # > 0 where Q,({y) := Q N B;({y) and Q := By,(p;). Consequently, we
may apply Morrey’s Lemma as formulated in [8] (cf. Section 4, Propositions 4.1 and 4.2),
and we obtain

[ Wl Ak Y P drd < 2MoMy |V A Y )| 72 (4p) 21212
Q&)

for all {; € R?, ¢ > 0, v € (0,20), and some constant M, (o, v). Particularly, for {, = p; and
t = 4p we have Q,({y) = Bs,(p;) and therefore with a suitable constant ¢(o):

(5.7) |l kY drdo < é(0)Mop®™ [ |V(n; Ak Y)| dr do.

By, (pj) By, (py)

From V(i Ay Y™) =g,V ALY + (Vig;) A Y™ and |V;| < 7/p we infer
IV 0k Y )P S22V A Y P 4272 p 2| A Y,

Furthermore, 7 and Y* are symmetric with respect to the line #; therefore also | A Y*|
and |[VA Y™ ] are symmetric. Consequently, (5.7) implies

[ oY Pdl s [yl ocY P de
Qs Bay(p)) By, (p))

< 2:26(0)Mop™ [ mFIVALY[dL
(57> 2(50B4/,([)j)

F2-2-PMpp¥ 2 [ |AcYPdC
2(5ﬂB4/7(pj)

We can assume that p = 7// satisfies also p < n/4 taking / € N sufficiently large; then the
periodicity of A Y with respect to 6 yields

[ |ARYPPdE S [|ARY]PdE < const 2(X).
250 B4,(p)) 05

We therefore arrive at the following estimate :

(5.8) (RIS ghris
050 By, (pj)

<4é(0)Mop™ [ pIIVALY])Pdl + constp? 2 (X).
%50 By(p))

In conjunction with (5.6) it follows that
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2 2 ~ 2 &2 2 2
[PIVALYP L S 4c(R)E()Mop™ Y- [ VALY dC
Os J=-1 20‘034/)(171‘>

+¢"(p, Ro)[1 + 2(X)]

because of / = n/p. If we recall the construction of p;,7;,p and take the periodicity of
VALY into account we obtain

= 2 2 R 2

J=23%50B4,(pj) J==10;

and

2 2 I+1 2 2
| mIVAYPdC S Y [ IVAYPdC
250 Bup(pi) j=—10;s

fori=—1,0,1,/—1,/,1+ 1. Thus, because of 7 = 0, ; = 0 outside of S, and p < /6,
1+1 ) 5 1+1 ) )
59 X[ pvaarasTl( T )verPd
J==1Z5nB4y(p)) Q5 \j=-1

= 7 [P IVA Y|P dC,
(54 QE” | <
whence

[PV ARY P dE <28 - e(Ro)E(@) Mop™ [P |V ALY dC+ ¢ (p, Ro)[1 + Z(X)].
Q(5 Q(i

Now we can absorb the first term on the right-hand side by the left-hand side if we choose
!/ € N so large that besides p = n// < min{J/6,n/4} we also have

28 - ¢(Rg)é(a) Mop*® < 1/2.

It follows that
[nVALY|?d¢ < const[l + D(X))]
s

for any k & 0. As k — 0 we arrive at

(5.10) [#*VDyY|? d < const[l + Z(X)),
05

i. Since p = n// is fixed by now, (5.8) implies also

where Dy := 30

I+1 1+1
S J";71.2|VY|2|AkY|2dC§const[E | n]-ZIVAkY|2dC+@(X)]
j=10; " J==1%50Bu,(p;)

< const{ [ VALY dC + @(X)} ,
(5.9) 0s
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and therefore, by (5.4),

(5.11) j;y VY| Ar Y| dC<const[f17 VALY dE+ 9(X)
(o)

< const[l + Z(X)].
(5.10)

With k& — 0 we obtain

[ IVYP|DpY|?d¢ < const[l + Z(X)],
o (5.11)

in particular,

[#?|Dy Y |* dl < const[l + Z(X)).
05

From (3.8) and (3.10) we derive

DY = (1-0)7(22/ )| Do Y ",

0 .
where D, := e and so we arrive at
(5.12) [?|VY|*d¢ < const[l + Z(X)).
05

To estimate | #2|D,.D, Y|* d¢ we proceed similarly as in [9], Section 4, Step 3: Using the

0s o o
interior regule{)rity of X proved in [8] we obtain Y e Hlif(z(;, R™) n Ch*(Zs, R") for the
transformed surface Y. This allows us to write down the Euler-Lagrange equations

(5.13) ~DylGy (LY. VY] + Gy((, Y, VY) =0

for j=1,...,n, which is satisfied a.e. on the open set O} := {{ € Qs : [VY({)| > 0}. (This
is poss1ble since all variations ¢ € H" 2(Qs,R") n C°(Z5, R™), which are 2z-periodic, are
admissible according to Definition 3.1, and one can replace (3.20) by the corresponding
differential equation and integrate by parts since G, (., Y(.),VY(.)) € H,. L2(zs, R

loc
Now (5.13) implies
G, Y, VY)V2Y = =Gy (L, Y, VY)VY — Gue(¢, Y, VY)VC
+G,((,Y,VY) ae.onQf
and by (3.18) it follows that
|G,y(C, Y, VY)V2Y| < const(l + [VY|*) a.e. on Qf
and (3.19) yields |G, ({, Y, VY)| < ¢2. Moreover, if r = (', 0 = ¢?, then

G (&, Y,VY)D,D,Y = G,y({, Y, VY)V?Y — Z (’}W(c, Y,VY)D,DpY
(.f)+
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on QF . By (3.21) the (1 x n)-matrix G,,,, (., Y(.),VY(.)) is invertible on Qf , and its inverse
is uniformly bounded in norm on Qj . It follows that

(5.14) |D,D,Y|* < const(1 4+ |VDy Y >+ |[VY[*) a.. on Qf,

and a.e. on {{ € Qs : VY ({) = 0} we have V>Y = O since Y € Hli’cz(i;, R"), so that (5.14) is
trivially satisfied. Therefore,

J";y2|D,D,Y|2dC < const[l + fn2|VD(;Y|2dC+ J";72|VY|4dC},
05 Qs Qs

and now, by (5.10) and (5.12),

(5.15) [#?|D,D, Y|* d < const[l + Z(X)).
05

Since n =1o0n Q, := (1 —p,1) x (0,2x) we finally infer from (5.10), (5.12), and (5.15) that

[(V2Y 2+ |VY[*) d¢ < const[l + Z(X)].
(X

Since Z = h(Y) we get VZ = h'(Y)VY and
V2Z =1 (Y)V?Y + 1" (Y)VYVY.
It follows that

[|V2Z|*rdrd0 < const [(|V2Y|* +|VY|*)drdo
Qp Q/)

< const[l + 2(X)],

and therefore

[IV2X|* dudv < const[1 + Z(X)).
y

»

Together with the results on interior regularity we obtain X € H*?(B, R") and

[IV2X|? dudv < const[l + Z(X)],
B

which leads to the estimate (5.1). [

6. Local straightening of the boundary
In order to show C'!-*-regularity of conformally parametrized .7 -minimizers X € 4(I")
near a point xo € I' it is convenient to assume that, by a suitable conformal mapping, the

parameter domain is brought into the form

B:={w=(u,v) e R* : u’> + v> < 1,0 > 0}.
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The boundary 0B of B consists of the open interval
I:={(u,0)eR?: |ul < 1}
on the u-axis, and the closed semicircle
C:={(u,v) eR*:u* +v* = 1,0 = 0}.

Moreover, we assume:

(i) X(0) = xo with 0 = (0,0);

(ii) X(I) = %, where % == R" is an open neighbourhood of x( in R”;

(iii) there is a C*-diffeomorphism g of R” onto itself such that g(xp) =0,
g(u) =K :={yeR":|y| <1}, and

gCnU)={yeK:y*=0,...,y" =0}.
Set Qg := B B,(0). Then, for any r € (0, 1) sufficiently small, we have X (Qo) < %, so that
Y := g o X satisfies Y(Qq) = K. Furthermore, we have Y € H'2(B,R") n C%?(B,R") and
Y|q, € H**(Qo, R"). Since X maps 0B continuously and monotonically onto T' we find
(after fixing a suitable orientation):
(iv) Y(.,0) e C°(0B,R") n H2(I',R") where I' := I n Qy, i.e.
I':={(u,0) e R?: |u| £r}
and Y(0,0) = 0;

(v) Y!(u,0) is monotonically increasing for u € I';

(vi) Y/(u,0) =0 for uel’ and j=2,...,n; therefore Y/(u,0) =0 a.e. on I’ for
j=2,...,n.

Let h := ¢g~! be the inverse of g and H := /' be the Jacobian matrix of 4. Then we can
write

(6.1) X=nY):=hoV,
X, = H(Y)Ys, X,=H(Y)Y,

Let Z: R" — R™" be the symmetric, positive definite matrix function of class C* defined
by

(6.2) Z:=H" H.

We may assume that 4(y) = y for |y| > 1. Then E(y) is the identity matrix for |y| > 1, and
so there are numbers A; and A, with 0 < 4; £ 4, such that
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2 — 2
e < E-E(y)E < Ale> forall y,¢ e RY.

The conformality relations |X,|* = |X,|*, X, - X, = 0 are transformed similarly as in Sec-
tion 3, and so we obtain:

(vii) the transformed conformality relations:
Y, E(Y)Y, =Y, E(Y)Y,, Y, -E(Y)Y,=0onB.
Next we introduce the new Lagrangians f and G by

(63) J;(JCQI,QZ) = f(h(y)vH(y)qlaH(y)q2)7

G(y,q1,92) == G(h(y), H(»)q1, H(»)q2),
yeR" qg=(q1,q2) € R" x R", where f(x, p1,p2) is the associate Lagrangian of F(x, z),

ie. f(x,p1, p2) = F(x, p1 A p2) and G(x, p1, p2) is a perfect dominance function for F, as
assumed in Section 1. It follows that

feCUR" x R*) n C*(R" x (R —1I)),
G e CO(R" x R™) n C*(R" x (R* — {0})).
Recall that
Mo ={p = (p1,p2) eR" x R": |p1|* = |pa|*, p1 - po = 0}.

Definition 6.1. For y € R” we introduce ITy(y) = R" x R" by
(64)  Io(»):={g=1(q1,92) e R" x R": H(y)q = (H(y)q1. H(y)42) € Iy }.
By (6.2) we can write ITo(y) as
o(») :={¢=(q1,02) eR" X R": 1 - E())q1 = @2 - E(»)q2,¢1 - E(¥)g2 = O}

From the fact that G is a perfect dominance function for F' one immediately obtains the
following result, taking (6.1)—(6.4) into account:

Proposition 6.2. The Lagrangians f and G satisfy

(D1) f(y,9) = G(».q) for any (y,q) € R" x R™";

(D2) f(y.9) = G(y.q) if and only if q € To(y) for all y € R";
(D3) G(y,tq) = *G(y,q) forall t >0, (p,q) € R" x R*";
(D4) there are numbers fiy, fi, with 0 < fi; < i, such that

flgl” < G(y.q) < lg*  for any (y,q) € R" x R™;
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(E) for any Ry > 0 there is a constant J.z(Ro) > 0 such that
& Gy, 9)E Z A(Ro)E|* for y € Br,(0), ¢, € R™, g + 0.
For ¢ € H"“2(B,R") n L* (B, R") we consider the first variation

(6.5) = [[G,(Y,VY)D,p' + G,i(Y,VY)$'| dudv
B

of the functional ¢ at Y in direction of ¢ where % is defined by

9(7) = gé(z, VZ)dudv forany Z € H'?(B,R").

Then %(ho Z) = 9(Z) and in particular %(X) = %(Y), so that
(6.6) 9(Y)<%(Z) forall Ze H"*(B,R") with h(Z) e €(I).

Ifge IfIm(B, R") n L*(B,R") it follows that k(Y + t¢) € (') for any ¢ € R sufficiently
small; therefore,

G(Y)<9(Y +1tp) forlt] <1,

and consequently,
d -~
E%(Y + t9)|,_, = 0.
Thus we obtain
(6.7) 09(Y,$) =0 forall g H"2(B,R") A L*(B,R").
Let us introduce the class of test functions, 7y(Qy), by
(6.8)  To(Q) :={¢pe H"}(B,R") nL*(B,R") : ¢(w) =0 for we B — Qq,
and ¢*(u,0) = 0,...,¢"(u,0) =0 fora.e. ueI'}.
Since Y|, € H*(Qo,R") and Y(.,0)|,, € H"*(I',R"), an integration by parts yields

(6.9) 0G(Y,¢) = j{ —D,[G,i(Y,VY)] + G,i(Y,VY)}¢' dudb

— IG (Y,VY)p' du for all ¢ € F5(Q).
i

The boundary integral vanishes if ¢|;, = 0, in particular for ¢ € C5°(Qo, R") = 75(Qo), and
so (6.7), (6.9), and the fundamental lemma of the calculus of variations imply

—D,[G,(Y,VY)|+Gu(Y,VY)=0 onQ 1<i<n

This together with (6.8) and (6.9) leads to
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Proposition 6.3. For any ¢ € 75(Qq) we have

0G(Y,¢) = —Ij/ G (Y, VY)$' du.

Now we want to show that 69(Y,¢) = 0 for all ¢ € F5(Qo). Unfortunately this does
not immediately follow from (6.6) since it is not a priori clear that, for ¢ € 75(€), Y + t¢
satisfies h(Y + t¢) e €(T) for |t| « 1. (Note that Fp(Qo) & H"?(B,R") n L*(B,R") so
that (6.7) does not apply.) This difficulty forces us to make a detour via an algebraic lemma
which will be formulated in the next section.

7. Algebraic identities

Lemma 7.1. Let F be a parametric Lagrangian of class C'(R" x (RN — {0})) with
the associated Lagrangian f € C! (IR” x (R¥ — H)) Then

(7.1) I, p)-p2 =0, fp(x,p) - p1 =0
for any (x, p) € R" x [(R*" — TT) U {0}] and
(7.2) G (x,p) - p2=0, Gp(x,p) - p1=0
for any (x, p) e R" x Iy, if G e C'(R" x (R — {0})) is a dominance function for F.

Proof. For p =0 the assertions are trivial because f, and G, can be continuously
extended to R” x [(R* —IT) U {0}] and R" x R*" respectively by setting £, (x,0) := 0 and
Gy(x,0) := 0 (cf. [10], Section 2).

Suppose now that p ¢ I1. As in [10] (cf. Section 2, Lemma 2) we use the notation

) (J,k) (j:5)

(P1AD2 =& pips

for the (j, k)-th component of the bivector p; A py € RY, where (j, k) denotes the double
index with entries j, k € {1,...,n} ordered by j < k. Moreover, ¢ is the permutation tensor

1 if j=s, k=t j<k,
& =1 if j=t k=s,j<k,
0  otherwise,

and repeated indices s, ¢ are to be summed from 1 to n. A straight-forward computation
yields

i ik i
I (6, P) - P2 = S (6, p)Ps = 3 Fasn (%, pr A pa)es! " pips

(k)
= —F.(x,p1Ap2) - (p2Ap2) =0.

Similarly one obtains

(X, p) - p1 =0,
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and so (7.1) is proved. Identity (7.2) follows from (7.1) and the fact that
Jo(x,p) = Gy(x, p)  for (x,p) e R" x I
(cf. [10], Lemma 1, or [8], Lemma 3.5). [
From Lemma 7.1 we infer

Corollary 7.2. Let f and G be defined by (6.3). Then

ft]l(y’q)'q2 =0, fqz(%Q)‘QI =0
for any (y,q) € R" x [(R* —TI) U {0}] and

(7.3) Gy(3,9) 92=0, Gu(»,q9)-q1 =0

for any y € R" and q € TIy(y).
Proof. We obtain
Jo @) - @2 = (3, 0)a = fo (h(3), H(p)ar H(y)g2) H} g

- ﬁ’f(x’phpz)pé = fo (X, P1,02) - P2 (7:1)07

and similarly fqz( ¥,4q) - q1 = 0. Analogously (7.2) implies (7.3). [

Remark. Note that our definition of the bivector as an exterior product differs
slightly from that of the standard cross product in R?, i.e. in the case n = N = 3.

8. The local variational equation
Now we can derive the basic local variational equation.

Proposition 8.1. Let X be a conformally parametrized minimizer of 7 in €(I'), and Y
be its local transform as defined in Section 6. Then

(8.1) 0%(Y, ) =0 forall p e T5(Q)
where 09(Y , ) is given by (6.5) and To(Q) is defined by (6.8).
Proof. On account of Proposition 6.3 it suffices to prove

(8.2) G

1
L5

(Y(,0),VY(u,0)) =0 forae uel
To verify this equation, we first note that the properties (vi) and (vii) of Section 6 imply
83)  En(Y(®,0))Y,(,0)Y, (u,0) = Y(u,0) - Z(Y(«,0)) Y, (u,0)

forae.uel,if 2= (Ey).
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Case 1. If E’ul (u,0) = 0 then (8.3) implies Y,(«,0) = 0, and therefore VY (u,0) = 0.
By (D3) we have G,(,0) = 0 (cf. [8], Lemma 3.1); hence

(8.4) G,(Y(.,0),VY(.,0)) =0 ae.on{uel : Y} (4,0) =0}
Case?2. Let Y!(u,0) # 0. Then, by (7.3) and Property (vi) of Section 6, it follows that
0= Gy, (Y(,0),VY(1,0)) - Y,(1,0) = G, (Y (1,0), VY (1,0)) Y, (, 0),
and so we obtain

(8.5) G

a0

(Y(.,0),VY(.,0)) =0 ae.on{uel :Y,(u0)+0}.

Now (8.4) and (8.5) imply the desired relation (8.2). [

9. C“- estimates at the boundary

Let r€(0,1) be chosen as in Section 6, and recall that Q¢ = B B,(0). We also
introduce Q := B B,/»(0).

Proposition 9.1. Let X be a conformally parametrized minimizer of  in €(I'), and
Y be its local transform as defined in Section 6. Then there is some o€ (0,1) such that
Y e CY*(Q, R"), and we have

(9.1) VY (w) = VY(W)| Z c(r)|w —w'|*  for w,w’ e Q
where c(r) is a number that depends only on r.

Proof. Fix some {, = (up,0) with |ug| < r/2 and some p, € (0,7/4). Let 0 < p =< p,
and choose some cut-off function # € C° (ng(CO)) with # =1 on B,({y), 0 =n <1, and
|Vn| < 2/p. Then by

p(w) :== =" &k A Y](w), weB,
we obtain a function of class H'(B,R") n L* (B, R") with ¢(w) = 0 for w e B — Qg and
¢/ (u,0) =0foruel’ =[—r,rland j=2,...,n, provided that |k| <2 ((r/4) — py) =: ko.

Thus we have ¢ € 7y(Qy) if |k| < ko, and so ¢ is admissible in (8.1). By the same manipu-
lations that led to (4.25) in [8], by the estimate

|D,D,Y|* < const(|VD,Y|* +|VY|*) ae. on B,
proved in a similar way as (5.14) (cf. also [9], Step 3), and after k — 0 we arrive at

(9.2) [ IV2Y)? dudy < const[ [ IVY[*dudv+p2 [ |D,Y — C|*dudb|,
Q,(¢) ,(o) T,

where Q,({,) and 7, denote the semidisk Q,({y) := B n B({,) and the “half-annulus”

Tgp = sz(go) - ﬁp(Co) = [B2p(C0) - BP(CO)] N B.
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The constant C in (9.2) can be an arbitrary vector in R”; we choose C as the mean value

C .= 3[ D, Y dudv
TZp

of D,Y over T,,. By Poincaré’s inequality there is a constant Kp such that

[ DY = C)* dudv < Kpp® [|VD,Y|* dudb,
Tzﬂ sz

and so we infer from (9.2) that

[ |V2Y|2dudv§const[f|V2Y|2dudv+ [ |VY\4dudu]
Q, () Ty, (%)

As in [8], Section 4, hole filling and Sobolev’s inequality lead to

[ IV2Y|?dudv < 6, [ [ IV2Y|? dudy + K(ﬂ)pz_m}
Q, (%) ,,(¢o)

for 0 < p < py, p € (0,1/2), and some constants 0 € (0, 1) and x(f) > 0. Here we can take
po = r/4 as we have passed with k to 0. A standard iteration procedure (cf. e.g. [8], Section
4) yields

(9.3) [ |V2Y|*dudv < const(p/p;)** for0 < p < p,
Q,(%)

where
Coel” :={(u,0) : lup| £r/2}, o:=—(logh)/(2log2),
0 :=max{0p,27>"*} € (0,1), t€(28,1), p, :=min{py,p*},
pTi=107"e(B) (27 = ],

The interior estimates of [8] imply for wy € Q that

(9.4) [ |v? Y|* dudv < const(p/p,)** for0 < p < p,,
B,(wo)

where p, := min{r/2,p*} = p,. Combining the estimates (9.3) with (9.4), an interpolation
reasoning as in the proof of Theorem 1.5 of [9] yields

(9.5) [ IV2Y)Pdudy < c(r)p* forallp>0
B/,(wo)r\Q/,l (o)

provided that {y € I” and wo € Q, ({y). By Morrey’s Dirichlet growth theorem we infer
from (9.5) that VY is of class C** on Q, ({o). A covering argument and the C Lo regularity
of Y in the interior yields the assertions of Proposition 9.1. [

Proof of Theorem 1.1. With VX =h'(Y)VY, where Y satisfies (9.1) of Proposi-
tion 9.1, we obtain for X in the situation described in the beginning of Section 6 that
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X e C*(I u B,R"). Since the point xo = X ({,) was chosen arbitrarily on I we have, after
a conformal transformation back to the original parameter domain

B={(u,v) e R*: > +v* < 1}

and after another covering argument, that X e C"*(B,R") n H>?(B, R") if we take Pro-
position 5.1 into account as well. [
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