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Plateau’s problem for parametric double
integrals: II. Regularity at the boundary
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By Stefan Hildebrandt and Heiko von der Mosel at Bonn

Abstract. We establish global regularity of class H 2;2 XC1;a, 0 < a < 1, up to the
boundary for conformally parametrized minimizers of parametric functionals under the
assumption that there exists a perfect dominance function.

1. The main result

Let FðXÞ be a parametric double integral of the form

FðXÞ :¼
Ð
B

FðX ;Xu5XvÞ du dv

defined on surfaces X A H 1;2ðB;RnÞ whose parameter domain is the open unit disk
B :¼ fw ¼ ðu; vÞ A R2 : u2 þ v2 < 1g. The Lagrangian Fðx; zÞ of F is defined for
ðx; zÞ A Rn � Bn, where Bn GRN , N :¼ nðn� 1Þ=2, is the space of bivectors z ¼ x5h,
x; h A Rn, and satisfies the homogeneity condition

Fðx; tzÞ ¼ tF ðx; zÞ for all t > 0; ðx; zÞ A Rn � RN .ðHÞ

Throughout we also assume that there are numbers m1;m2 with 0 < m1 em2 such that

m1jzjeFðx; zÞem2jzj for all ðx; zÞ A Rn � RNðDÞ

and that

Fðx; zÞ is convex in z for any x A Rn.ðCÞ

Suppose that G is a closed, rectifiable Jordan curve in Rn, nf 2, and let CðGÞ be the
(nonempty) class of surfaces X A H 1;2ðB;RnÞ whose Sobolev traces X jqB are continuous
and monotonic mappings of qB onto G.



In Section 2 of [8] we have proved that, under the assumptions (H), (D), (C), there is
a solution X of the Plateau problem

F ! min in CðGÞ;ðPÞ

satisfying the conformality relations

jXuj2 ¼ jXvj2; Xu � Xv ¼ 0 a:e: on B.ð1:1Þ

(A slightly weaker result was proved in [7].) Moreover, it was shown in [7] and [8]
respectively that every conformally parametrized minimizer X of F in CðGÞ is of class
C0ðB;RnÞXC0; gðB;RnÞ, g :¼ m1=m2, and satisfies

Ð
Brðw0Þ

j‘X j2 du dve r

R

� �2g Ð
BRðw0Þ

j‘X j2 du dv

for any w0 ¼ ðu0; v0Þ A B and 0< reRe 1� jw0j, where Brðw0Þ :¼ fw A R2 : jw� w0j< rg.
In addition, one has X A C0;sðB;RnÞ for some s A ð0; 1=2� and

Ð
BXBrðw0Þ

j‘X j2 du dve const
r

R

� �2sÐ
B

j‘X j2 du dv

for all w0 A B and 0 < reRe 1, provided that, for some Mf 1; d0 > 0, the curve G sat-
isfies an ðM; d0Þ-chord arc condition (i.e. for any two points P;Q A G with jP�Qj < d0
the length LðG�Þ of the smaller arc, G�, of the two subarcs of G with the end points P;Q is
estimated by LðG�ÞeMjP�Qj).

The aim of the present paper is to prove the following result:

Theorem 1.1. Suppose that F is of class C2
�
Rn � ðRN � f0gÞ

�
and has the properties

(H), (D), (C). Suppose also that F possesses a perfect dominance function G, and that G is of

class C4. Then there is some a A ð0; 1Þ such that any conformally parametrized minimizer X

of F in CðGÞ is of class H 2;2ðB;RnÞXC1;aðB;RnÞ and satisfies

kXkH 2; 2ðB;RnÞ þ kXkC 1; aðB;RnÞ e cðG;FÞ

where the number cðG;FÞ depends only on G and F.

The key to this result are the notions dominance function and perfect dominance

function for F that were introduced in [8], following a remarkable suggestion due to Morrey
[11], Chapter 9. We shall recall the definitions of such dominance functions in the next
section.

The test functions that are, for instance, used in the case of minimal surfaces, can
also be applied to minimizers of the general parametric integral FðXÞ, provided that
its Lagrangian F possesses a perfect dominance function G. However, it is far from
being trivial that these test functions are admissible. This, in fact, is the main di‰culty
we have to overcome in the present work. In order to prove H 2;2-regularity we employ a
global straightening of the boundary and an unusual simultaneous estimation procedure at
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many local patches. In conjunction with this result, a new algebraic lemma for parametric
Lagrangians guarantees that some test function is applicable which is used to start the hole-
filling procedure with the aim of establishing C1;a-regularity. The third new ingredient is an
approximation device developed in [8], by which we overcome the di‰culty that the asso-
ciated Lagrangian f ðx; pÞ :¼ Fðx; p15p2Þ and any dominance function are not of class
C2. This is one of the major di‰culties of our problem, together with the fact that it lacks a
nice variational equation with principal part in diagonal form.

Let us now outline the proof of Theorem 1.1. The main property of all dominance
functions Gðx; pÞ for Fðx; zÞ is that

Fðx; p15p2ÞeGðx; pÞ for p ¼ ðp1; p2Þ A Rn � Rn;

where the equality sign holds if and only if jp1j2 ¼ jp2j2 and p1 � p2 ¼ 0. With G we asso-
ciate the functional G : CðGÞ ! R defined by

GðXÞ :¼
Ð
B

GðX ;‘XÞ du dv:

It turns out that inf
CðGÞ

F ¼ inf
CðGÞ

G, and that every conformally parametrized minimizer X of

F in CðGÞ is also a minimizer of G (cf. [7] and [8]). This suggests to operate with the
functional G and its variational inequality dGðX ; fÞf 0, because a perfect dominance
function G has much better regularity properties than F . Following this idea we have
proved in [8] that any conformally parametrized minimizer X of F in CðGÞ is of class
H

2;2
loc ðB;RnÞXC1;aðB;RnÞ and satisfies

kXkH 2; 2ðB 0;RnÞ þ kXk
C 1; aðB 0;RnÞ e cðG;F ; dÞð1:2Þ

for any B 0HHB, where d :¼ distðB 0; qBÞ. Moreover, in [9] we have derived analogous
boundary regularity results for solutions of partially free boundary problems ‘‘F ! min
in CðG;SÞ’’ with a smooth supporting surface S at the ‘‘free boundary’’. We were not able
to carry over this approach directly to the Plateau problem since the Plateau boundary
condition is rather inconvenient to handle, as it requires monotonicity of the boundary
values of any admissible comparison surface. Therefore it is by no means obvious that the
test function in (4.2),

f ¼ h�kðh2hkYÞð1:3Þ

satisfies d ~GGðY ; fÞ ¼ 0, where Y and ~GG are the transforms of X and G when the boundary
is locally straightened. (Here, h is a localizing cut-o¤ function, and hkY denotes the tan-
gential di¤erence quotient of Y .) We have found a way out of this dilemma: Introduc-
ing global normal coordinates about G (so-called Fermi coordinates) we can at least
prove the inequality d ~GGðY ; fÞf 0 for f defined by (1.3), with a cut-o¤ function h hav-
ing support along the whole boundary. From this we can derive X A H 2;2ðA 0;RnÞ and
kXkH 2; 2ðA 0;RnÞe cðG;FÞ on a narrow annulus A 0 HB with qB as its outer boundary.
However, the derivation of this estimate is quite subtle, as the local estimation of the
L2-norm of ‘hkY does not su‰ce; rather these estimates have to be carried out simulta-
neously at a large number of local patches, and the resulting bounds must be combined in
a suitable manner. This procedure is somewhat tricky; therefore we have carried out all the
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elementary steps in some detail (cf. Section 5). Sections 3 and 4 provide the necessary
geometric preparations used in Section 5. The use of Fermi coordinates requires that
G A C4; once X A H 2;2 is proved we only need G A C3 (cf. [9] where S A C3 is required). To
keep the paper in a reasonable length we have not repeated all the manipulations leading to
inequality (5.3); we refer to Section 4 of [8] for the somewhat tedious details.

Once we have X A H 2;2ðB;RnÞ we know that ‘X jqB A L2ðqB;RnÞ; but still it is
not obvious that the new test vector f ¼ �h2h�khkY satisfies d ~GGðY ; fÞ ¼ 0 where ~GG
and Y are the local transforms of G and X , since it is not clear that Y þ �f satisfies the
(transformed) Plateau boundary condition. However, using the Euler-Lagrange equation,
an integration by parts yields at least

d ~GGðY ; fÞ ¼ �
Ð
I 0

~GGq1
2
ðY ;‘YÞf1 du;

where I 0 is an interval on the flat part of qB and B is now the semidisk
fðu; vÞ : u2 þ v2 < 1; v > 0g; cf. Proposition 6.3.

In Section 8 we prove ~GGq1
2
ðY ;‘YÞ ¼ 0 on I 0 using an algebraic identity derived in

Section 7. The proof of this identity which so far seems to have gone unnoticed is amaz-
ingly simple, see Lemma 7.1. We expect that the identity will be useful also in other sit-
uations. After these preparations one has d ~GGðY ; fÞ ¼ 0; then Widman’s hole-filling device
leads to Y A C1;aðW0;R

nÞ on W0 :¼ BXBrð0Þ and to the associated C1;a-estimates of Y .
Thus we obtain X A C1;aðA 0;RnÞ on a closed annulus A 0 HB with outer boundary qB, and
together with the interior estimates (1.2) we arrive at X A C1;aðB;RnÞ and the correspond-
ing estimate kXkC 1; aðB;RnÞ e cðG;FÞ; cf. Section 9. Again we only outline the necessary
steps, once the basic equation d ~GGðY ; fÞ ¼ 0 for f ¼ �h2h�khkY is proved, since one can
essentially follow the last part of Section 4 in [8].

We note that our regularity result is only ‘‘global’’, because in Section 5 we are
operating with global Fermi coordinates about the boundary. Our result does not furnish
a result of the kind: X A C1;aðBWC 0;RnÞ if C 0H qB, X ðC 0ÞHG 0 HG, and G 0 HG is a
subarc of class C4; we can only admit C 0 ¼ qB, but no proper subarcs of qB.

Except for the cases of minimal surfaces and surfaces of prescribed mean curva-
ture (cf. e.g. [4]–[6] and in particular [1], vol. II, Section 7), which have the dominance
functions

Gðx; pÞ ¼ 1

2
jpj2 þQðxÞ � ðp15p2Þ;

there exist to our knowledge no other general results on boundary regularity for parametric
functionals, not even in codimension one and in the realm of geometric measure theory. We
are only aware of work by R. Hardt [3] and B. White [15] in geometric measure theory
who treated F-minimizing embeddings whose boundaries are extreme (i.e. lie on convex
surfaces), or satisfy other special conditions of similar kind. Because of a result of J. Taylor
[13], however, one cannot necessarily expect that F-minimizers in the class of immersions,
and even more so minimizers in the more general class CðGÞ considered here, are as well-
behaved as F-minimizing embeddings, see the discussion in [10], Section 1. Moreover we
mention a recent uniqueness theorem by S. Winklmann [16] generalizing Radó’s theorem to
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minimal immersions of FðX Þ ¼
Ð
B

FðXu5XvÞ du dv. On account of this result, well-known

regularity results for extremals of the nonparametric companion for F can be interpreted
as a regularity theorem for F -minimal immersions if G is a graph over the boundary of a
convex domain W in R2.

2. Dominance functions

Here we want to recall the definitions of a dominance function and a perfect domi-

nance function for a parametric Lagrangian F introduced in [7], [8], and some result about
such functions obtained in [10].

Definition 2.1. Let Fðx; zÞ be a Lagrangian of class C0ðRn � RNÞ satisfying (H),
and denote by f ðx; pÞ its associated Lagrangian defined by

f ðx; pÞ :¼ Fðx; p15p2Þ; p ¼ ðp1; p2Þ A Rn � Rn GR2n:

(i) A function G : Rn � R2n ! R is called a dominance function for F if it is continu-
ous and satisfies the following two conditions:

f ðx; pÞeGðx; pÞ for any ðx; pÞ A Rn � R2n;ðD1Þ

f ðx; pÞ ¼ Gðx; pÞ if and only if p A P0;ðD2Þ

where P0 denotes the algebraic surface in R2n defined by

P0 :¼ fp ¼ ðp1; p2Þ A R2n : jp1j2 ¼ jp2j2; p1 � p2 ¼ 0g:

(ii) A dominance function G for F is said to be quadratic if

Gðx; tpÞ ¼ t2Gðx; pÞ for all t > 0; ðx; pÞ A Rn � R2n;ðD3Þ

and it is called positive definite if there are two constants m1 and m2 with 0 < m1 e m2 such
that

m1jpj
2
eGðx; pÞe m2jpj

2 for any ðx; pÞ A Rn � R2n:ðD4Þ

Definition 2.2. A continuous function G : Rn � R2n ! R is called a perfect domi-

nance function for the parametric Lagrangian F if G is of class C2
�
Rn � ðR2n � f0gÞ

�
and

satisfies (D1)–(D4) as well as the ellipticity condition

p � Gppðx; pÞpf lðR0Þjpj2 for jxjeR0 and p; p A R2n; p3 0;ðEÞ

and any R0 > 0 where lðR0Þ > 0 is a number depending only on R0.

For example, the area integrand AðzÞ :¼ jzj has the associated Lagrangian

aðpÞ :¼ jp15p2j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jp1j2jp2j2 � ðp1 � p2Þ2

q

and possesses the perfect dominance function
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DðpÞ :¼ 1

2
jpj2 ¼ 1

2
jp1j2 þ

1

2
jp2j2; p ¼ ðp1; p2Þ A R2n:

One might conjecture that any Lagrangian Fðx; zÞ possesses a perfect dominance function,
if it satisfies F A C2

�
Rn � ðRN � f0gÞ

�
, (H), (D), and strict ellipticity in z, in the sense that

z � jzjFzzðx; zÞzf ljP?
z zj

2 for x A Rn; z; z A RN ; z3 0ðSCÞ

holds for some l > 0 and jP?
z zj

2 ¼ jzj2 � jzj�2ðz � zÞ2. It is unknown whether or not this is
true. However, we have the following weaker result:

Theorem 2.3. Suppose F � A C0ðRn � RNÞXC2
�
Rn � ðRN � f0gÞ

�
satisfies (H), (D)

with constants m�
1 ;m

�
2 , and the strict ellipticity condition

z � jzjFzzðx; zÞzf l�jP?
z zj

2
for x A Rn; z; z A RN ; z3 0;

for some l� > 0. Then for any k with

k > k0 :¼ 2½m�
2 �minfl�;m�

1=2g�

the parametric Lagrangian F defined by

Fðx; zÞ :¼ kAðzÞ þ F �ðx; zÞ;

where AðzÞ ¼ jzj, possesses a perfect dominance function.

The proof of this result is based on Morrey’s construction in [11]; we refer the
reader to [10] and also to [8], Proof of Theorem 1.10. We note that the associated
Lagrangian f ðx; pÞ ¼ Fðx; p15p2Þ of a parametric Lagrangian Fðx; zÞ cannot be better

than C2
�
Rn � ðR2n �PÞ

�
, where

P :¼ fp ¼ ðp1; p2Þ A R2n : p15p2 ¼ 0g:

Thus most dominance functions are also singular on P, for instance

Gðx; pÞ :¼ 1

2
oðx; pÞjpj2

with oðx; pÞ :¼ F
�
x; jp15p2j�1ðp15p2Þ

�
for p B P and oðx; pÞ :¼ m1 for p A P. There-

fore it is quite remarkable that Morrey was able to show the existence of dominance
functions of class C2

�
Rn � ðR2n � f0gÞ

�
satisfying (D1)–(D4). However, his construction

Gðx; pÞ is only strictly rank-one convex in p, and this does not su‰ce to prove regularity
as the discontinuity of Gppðx; pÞ at p ¼ 0 prevents the derivation of a Gårding inequality.
By the way, even strict quasiconvexity or strict polyconvexity of Gðx; pÞ in p would not
give regularity, as the presently available techniques require G A C2ðRn � R2nÞ since they
are based on various versions of the blow-up technique. Note also that, by a result due to
M. Grüter, the regularity of the Lagrangian Gðx; pÞ of a conformally invariant functional
G at p ¼ 0 implies a very special form of G (cf. [8], Proposition 1.7) and therefore of F .
Hence a singularity of Gðx; pÞ at p ¼ 0 is, in general, unavoidable.
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3. Global Fermi coordinates about G

Let G be a closed Jordan curve of class C4 in Rn with the length L, nf 2. Then
there is a mapping g A C4ðR;RnÞ, satisfying j _ggj ¼ 1 and gðsþ LÞ ¼ gðsÞ for all s A R, such
that gð½0;L�Þ ¼ G. Let t :¼ _gg be the tangent vector field corresponding to this representa-
tion of G. We choose an L-periodic mapping U : R ! SOðnÞ of class C3 with the row
vectors t1; t2; . . . ; tn such that t1 ¼ t, i.e., s 7! TðsÞ :¼

�
tðsÞ; t2ðsÞ; . . . ; tnðsÞ

�
is a moving

orthonormal frame along G the first vector of which is tangential to G. Let rG A ð0;y� be
the global radius of curvature of G as defined in [2], choose some d A ð0; rGÞ, and denote by
V ¼ VðG; dÞ the tubular neighbourhood

VðG; dÞ :¼ fx A Rn : distðx;GÞe dg

of G. According to Lemma 7 in [2], which can be carried over from R3 to Rn, for any
x A V , there are values s; r2; . . . ; rn with s A R and r22 þ � � � þ r2n e d 2 such that

x ¼ gðsÞ þ r2t2ðsÞ þ � � � þ rntnðsÞ;ð3:1Þ

where the new coordinates s; r2; . . . ; rn of x with respect to the moving frame T are uniquely
determined by x except for s which is merely unique modulo L. Moreover, any point x of
the form (3.1) with r22 þ � � � þ r2n e d 2 lies in V . We set y1 :¼ s; y2 :¼ r2; . . . ; y

n :¼ rn and
denote y :¼ ðy1; . . . ; ynÞ as Fermi coordinates of x with respect to G.

Then we can write (3.1) as

x ¼ hðyÞ with y A W :¼ R� Kd ; Kd :¼ Bdð0ÞHRn�1;

where h A C3ðW ;RnÞ maps W surjectively onto VðG; dÞ and ½R=L � Z� � Kd bijectively
onto VðG; dÞ. The mapping h is L-periodic with respect to its first variable y1, and its
restriction to W0 :¼ ½0;LÞ � Kd can be viewed as a di¤eomorphism of W0 onto the solid
torus VðG; dÞ. In particular,

G ¼ fhðy1; 0; . . . ; 0Þ : y1 A Rg:ð3:2Þ

Let X be a conformal minimizer of G in CðGÞ. Since X is continuous on B and XðqBÞ ¼ G,
there is a number d A ð0; 1=4Þ such that X maps the annulus

Ad :¼ fw A R2 : 1� de jwje 1g

into VðG; d=2Þ. We confine X to Ad and express X jAd
in terms of polar coordinates r; y

around the origin w ¼ 0 as

Zðr; yÞ :¼ X ðr cos y; r sin yÞ for ðr; yÞ A Sd :¼ ½1� d; 1� � R:ð3:3Þ

Then there are uniquely determined coordinate functions Y 1ðr; yÞ; . . . ;Y nðr; yÞ such that

Zðr; yÞ ¼ g
�
Y 1ðr; yÞ

�
þ

Pn
j¼2

Y jðr; yÞtj
�
Y 1ðr; yÞ

�
;ð3:4Þ
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and

Y 1ðr; yþ 2pÞ ¼ Y 1ðr; yÞ þ L;ð3:5Þ

Y jðr; yþ 2pÞ ¼ Y jðr; yÞ; j ¼ 2; . . . ; n:

Introducing the surface Y : Sd ! Rn by

Y ðr; yÞ :¼
�
Y 1ðr; yÞ; . . . ;Y nðr; yÞ

�
;

we obtain Z ¼ h � Y , i.e.,

Zðr; yÞ ¼ h
�
Y ðr; yÞ

�
for ðr; yÞ A Sd

with Zðr; yþ 2pÞ ¼ Zðr; yÞ. Note that both Z and Y are continuous on Sd, and their
restrictions to

Qd :¼ ð1� d; 1Þ � ð0; 2pÞ

are of class H 1;2. From X A CðGÞ we infer that

G ¼ fZð1; yÞ : y A Rg ¼
�
h
�
Y ð1; yÞ

�
: y A R

�
;

and (3.2) then implies

Y jð1; yÞ ¼ 0 for j ¼ 2; . . . ; n and y A R:ð3:6Þ

Moreover, the conformality relations (1.1) for X are transformed into

jZrj2 ¼ r�2jZyj2; Zr � Zy ¼ 0 a:e: on Sd:ð3:7Þ

Let H :¼ h 0 be the Jacobian matrix of h, and X :¼ HT �H be the corresponding Gramian
matrix. The matrix function X : W ! Rn�n is positive definite, symmetric, and L-periodic
in the variable y1. There are numbers l1; l2 > 0 such that

l1jxj2 e x � XðyÞxe l2jxj2 for all y A W and x A Rn:ð3:8Þ

From Z ¼ hðYÞ we infer Zr ¼ HðYÞYr and Zy ¼ HðYÞYy whence

jZrj2 ¼ Yr � XðYÞYr; jZyj2 ¼ Yy � XðY ÞYy

and

j‘X j2 ¼ jZrj2 þ r�2jZyj2 ¼ Yr � XðY ÞYr þ r�2Yy � XðYÞYy:ð3:9Þ

The conformality relations (3.7) yield

Yr � XðYÞYr ¼ r�2Yy � XðY ÞYy;ð3:10Þ

Yr � XðY ÞYy ¼ 0 a:e: on Sd:
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Now we recall the Dirichlet growth condition for X stated in Section 1:

Ð
BXBrðw0Þ

j‘X j2 du dveM 0
0r

2s for any w0 A B and 0 < re 1;

where M 0
0 > 0 and s A ð0; 1Þ. By an elementary geometric reasoning we infer

Ð
SdXBrðz0Þ

ðjDrY j2 þ jDyY j2Þ dr dyeM0r
2s for all z0 A Sd and 0 < re dð3:11Þ

for some number M0 depending only on M 0
0, s, and d, taking (3.9), (3.10), and

du dv ¼ r dr dy into account. Next we transform the variational integral GAd
from the

old variables ðu; v; xÞ to the new variables ðr; y; yÞ. By (3.3) we have

Zr ¼ Xu cos yþ Xv sin y; Zy ¼ �Xur sin yþ Xvr cos y

where Zr, Zy stand for Zrðr; yÞ, Zyðr; yÞ, and Xu, Xv for Xuðr cos y; r sin yÞ, Xvðr cos y; r sin yÞ,
respectively. Therefore

Xu ¼ Zr cos y� r�1Zy sin y; Xv ¼ Zr sin yþ r�1Zy cos y:

Let us introduce the functions

g1ðr; y; y; q1; q2Þ :¼ HðyÞ½q1 cos y� q2r
�1 sin y�;ð3:12Þ

g2ðr; y; y; q1; q2Þ :¼ HðyÞ½q1 sin yþ q2r
�1 cos y�;

gðr; y; y; qÞ :¼
�
g1ðr; y; y; qÞ; g2ðr; y; y; qÞ

�

with q ¼ ðq1; q2Þ A Rn � Rn, and

~GGðr; y; y; qÞ :¼ rG
�
hðyÞ; gðr; y; y; qÞ

�
:ð3:13Þ

It follows that

Xu ¼ g1ðr; y;Y ;‘YÞ; Xv ¼ g2ðr; y;Y ;‘Y Þ;

where Y is the abbreviation for Yðr; yÞ and ‘Y for
�
Yrðr; yÞ;Yyðr; yÞ

�
. Therefore

Ð
Ad

GðX ;Xu;XvÞ du dv ¼
Ð
Qd

~GGðr; y;Y ;Yr;YyÞ dr dy:

Setting

~GGð ~YYÞ :¼
Ð
Qd

~GGðr; y; ~YY ; ~YYr; ~YYyÞ dr dy

for any mapping ~YY : Sd ! Rn with ~YY ðSdÞHW which is continuous on Qd, of class H
1;2

on Qd, and whose components ~YY 1; . . . ; ~YY n satisfy

~YY 1ðr; yþ 2pÞ ¼ ~YY 1ðr; yÞ þ L;ð3:14Þ

~YY jðr; yþ 2pÞ ¼ ~YY jðr; yÞ for j ¼ 2; . . . ; n;
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we arrive at

~GGð ~YYÞ ¼ GAd

�
hð ~YYÞ

�
;ð3:15Þ

where we view hð ~YYÞ as a function of the original variables u; v. In particular, we have

~GGðYÞ ¼ GAd
ðX Þ:ð3:16Þ

Definition 3.1. A mapping f : Sd ! Rn of class H 1;2ðQd;R
nÞXC0ðSd;R

nÞ is called
an admissible variation of Y if it satisfies the following conditions:

(i) f is 2p-periodic in y;

(ii) f jð1; yÞ ¼ 0 for j ¼ 2; . . . ; n, and y A R;

(iii) fðr; yÞ ¼ 0 for all ðr; yÞ A ½1� d; 1� d=2� � R;

(iv) there is some �0 ¼ �0ðfÞ > 0, possibly depending on f, such that
Y 1ð1; yÞ þ �f1ð1; yÞ is monotonically increasing in y for any value of the parameter �, pro-
vided that 0e �e �0;

(v) for any � A ½0; �0�, the mapping ~YY ð�Þ :¼ Y þ �f satisfies ~YY ð�ÞðSdÞHW .

Note that, for any � A ½0; �0�, the mapping ~YY ð�Þ satisfies conditions (3.14) (with ~YY
replaced by ~YY ð�Þ).

Let f be an admissible variation of Y . Then hðY þ �fÞ is well-defined for 0e �f 1,
and we can introduce

~XX ð�Þðu; vÞ :¼
X ðu; vÞ for ðu; vÞ A B1�dð0Þ;
h
�
Y ðr; yÞ þ �fðr; yÞ

�
for ðu; vÞ A Ad

�

with r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ v2

p
and y ¼ Qðu; vÞ ð¼ arctanðv=uÞ for uf 0; vf 0Þ being the polar

angle of ðu; vÞ A Ad with 0e y < 2p. By construction, the surfaces ~XX ð�Þ are of class
CðGÞ if 0e �f 1. Then the minimum property of X yields GðXÞeGð ~XX ð�ÞÞ whence
GAd

ðXÞeGAd
ð ~XX ð�ÞÞ. Because of (3.15) and (3.16) it follows that

0e
1

�
½GAd

ð ~XX ð�ÞÞ � GAd
ðXÞ� ¼ 1

�
½ ~GGðY þ �fÞ � ~GGðY Þ�

for 0 < �f 1. By [8], Proposition 3.3,

lim
�!þ0

��1½GAd
ð ~XX ð�ÞÞ � GAd

ðXÞ�

exists, and so we obtain

lim
�!þ0

1

�
½ ~GGðY þ �fÞ � ~GGðYÞ�f 0ð3:17Þ

for any admissible variation f of Y .
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We note that, by assumption (D3) on G, we have

~GGðz; y; tqÞ ¼ t2 ~GGðz; y; qÞ for t > 0

and for all z ¼ ðr; yÞ A Sd, y A W , q A R2n. Consequently, there exist constants c0; c1; c2 > 0
such that for all z ¼ ðz; y; qÞ A Sd �W � R2n

j ~GGðzÞj þ j ~GGzðzÞj þ j ~GGzzðzÞj þ j ~GGyðzÞj þ j ~GGyzðzÞj þ j ~GGyyðzÞje c0jqj2;ð3:18Þ

j ~GGqðzÞj þ j ~GGqzðzÞj þ j ~GGqyðzÞje c1jqj;

and, if q3 0,

j ~GGqqðzÞje c2:ð3:19Þ

The simple proof of these estimates follows as in [8], Section 3, also using that Gðr; y; y; qÞ
and its derivatives are 2p-periodic in y and L-periodic in y1.

Since Qd is compact and 1� de re 1 we infer from (3.17)–(3.19) as in [8], Section 3,
that

0e lim
�!0

1

�
½ ~GGðY þ �fÞ � ~GGðY Þ� ¼ d ~GGðY ; fÞ

for any admissible variation f of Y where the first variation d ~GGðY ; fÞ is defined by

d ~GGðY ; fÞ :¼
Ð
Qd

½ ~GGqðz;Y ;‘YÞ � ‘fþ ~GGyðz;Y ;‘YÞ � f� dz

with dz ¼ dr dy.

Thus we have proved:

Proposition 3.2. If X is a conformally parametrized minimizer of G in CðGÞ and

Y ¼ ðY 1; . . . ;Y nÞ is the representation of X jAd
on Sd in Fermi- and polar coordinates defined

by (3.3) and (3.4), then we have

d ~GGðY ; fÞf 0ð3:20Þ

for any admissible variation f of Y in the sense of Definition 3.1.

Furthermore, the ellipticity condition (E) for G is transformed into an analogous
ellipticity condition for ~GG if we take R0 in (E) so large that VðG; dÞHBR0

ð0ÞHRn and in
particular jhðyÞjeR0 for all y A W . In fact, with

l ~GGðR0Þ :¼ ð1� dÞlGðR0Þl1

we obtain from (E), (3.8), (3.12), (3.13):

Proposition 3.3. For any z ¼ ðr; yÞ A Sd, y A W , q A R2n the Lagrangian ~GG defined by

(3.12) and (3.13) satisfies

x � ~GGqqðz; y; qÞxf l ~GGðR0Þjxj2 for all x A R2n:ð3:21Þ
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4. A special admissible variation

Now we want to define a particular admissible variation f of Y to be inserted in the
variational inequality (3.20). For this purpose we use suitable di¤erence quotients of Y .

Let h A CyðS�
dÞ be a cut-o¤ function on S�

d :¼ ½1� d; 1þ d� � R which is independent
of y and satisfies hðrÞ ¼ 1 for jr� 1je r, hðrÞ ¼ 0 for 2re jr� 1je d, 0e hðrÞe 1, and
jhrðrÞje 2=r for re jr� 1je d, where r A ð0; d=6Þ is a number to be chosen later.

For k3 0 and a mapping z : Sd ! Rn we define the tangential shift zk by

zkðr; yÞ :¼ zðr; yþ kÞ

and the tangential di¤erence quotient hkz by

hkzðr; yÞ :¼ k�1½zkðr; yÞ � zðr; yÞ�:

Recall that for any z; z : Sd ! Rn one has the discrete product rule

hkðz � zÞ ¼ ðhkzÞ � zþ zk � ðhkzÞ ¼ ðhkzÞ � zk þ z � ðhkzÞ:

If z � z is 2p-periodic in y and z; z A L2ðQd;R
nÞ we can integrate by parts according to the

formula Ð
Qd

z �hkz dz ¼ �
Ð
Qd

ðh�kzÞ � z dz:ð4:1Þ

Proposition 4.1. If X is a conformally parametrized minimizer of G in CðGÞ and

Y ¼ ðY 1; . . . ;Y nÞ is the new representation of X jAd
on Sd defined by (3.3) and (3.4), then the

function f defined by

fðzÞ :¼ h�kðh2hkYÞðzÞ for z A Sdð4:2Þ

is an admissible variation of Y in the sense of Definition 3.1.

Proof. From (3.5) it follows that all components hkY
j of hkY are 2p-

periodic, and so hkY is 2p-periodic. Therefore h2hkY and finally h�kðh2hkYÞ are
2p-periodic. The boundary conditions (3.6) are not destroyed if we take tangential
difference quotients; therefore h�kðh2hkY

jÞ ¼ 0 for j ¼ 2; . . . ; n. Since hðrÞ ¼ 0 for
1� de re 1� d=3e 1� 2r we also have h�kðh2hkYÞ ¼ 0 on ½1� d; 1� d=2� � R. Thus
we have verified conditions (i)–(iii) of Definition 3.1 for the test vector f defined by (4.2),
and condition (v) follows from the facts that X ðAdÞHVðG; d=2Þ, i.e., Y ðSdÞHR� Kd=2

and f A LyðSdÞ, as f : Sd ! Rn is continuous and 2p-periodic in y.

It remains to verify that Part (iv) of Definition 3.1 holds. As hð1Þ ¼ 1 we have

Y 1ð1; yÞ þ �f1ð1; yÞ ¼ �

k2
Y 1

k ð1; yÞ þ 1� 2�

k2

� �
Y 1ð1; yÞ þ �

k2
Y 1

�kð1; yÞ;

that is, for 0e �e k2=2 the function Y 1ð1; yÞ þ �f1ð1; yÞ is a convex combination of the
three monotonically increasing functions Y 1ð1; yÞ, Y 1

k ð1; yÞ, and Y 1
�kð1; yÞ, and so it is

increasing as well. r
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The Propositions 3.2, and 4.1 in conjunction with (4.1) imply

Proposition 4.2. If X is a conformally parametrized minimizer of G in CðGÞ and

Y ¼ ðY 1; . . . ;Y nÞ is the new representation of X jAd
on Sd defined by (3.3) and (3.4), then, for

any k3 0,

Ð
Qd

½hk
~GGqðz;Y ;‘YÞ� � ‘ðh2hkY Þ dze�

Ð
Qd

½hk
~GGyðz;Y ;‘Y Þ� � h2hkY dz:ð4:3Þ

Inequality (4.3) will be the starting point of the estimation procedure carried out in
the next section.

5. Global H 2, 2- estimates at the boundary

The aim of this section is to prove the following result:

Proposition 5.1. If G A C4 then every conformally parametrized minimizer X of F in

CðGÞ is of class H 2;2ðB;RnÞ, and we have

kXkH 2; 2ðB;RnÞ e cðG;FÞð5:1Þ

where cðG;FÞ > 0 does not depend on X.

Proof. Since ‘½h2hkY � ¼ h2‘hkY þ 2h‘hhkY , inequality (4.3) yields

Ð
Qd

½hk
~GGqðz;Y ;‘Y Þ� � h2‘hkY dze J1 þ J2;ð5:2Þ

where

J1 :¼ �
Ð
Qd

½hk
~GGqðz;Y ;‘Y Þ� � 2h‘hhkY dz;

J2 :¼ �
Ð
Qd

½hk
~GGyðz;Y ;‘Y Þ� � h2hkY dz:

Copying the reasoning used in Section 4 of [8], we can estimate J1 and J2 by

jJ1je c1
Ð
Qd

2hj‘hjð1þ jhkY jÞjhkY j dzþ c2
Ð
Qd

2hj‘hj j‘hkY j jhkY j dz;

jJ2je c0
Ð
Qd

h2j‘Ykj2ð1þ jhkY jÞjhkY j dzþ c1
Ð
Qd

h2j‘hkY jðj‘Y j þ j‘YkjÞjhkY j dz;

and the left-hand side of (5.2) can be bounded from below by

Ð
Qd

½hk
~GGqðz;Y ;‘YÞ� � h2‘hkY dz

f l ~GGðR0Þ
Ð
Qd

h2j‘hkY j2 dz� c1
Ð
Qd

h2ðj‘Ykj þ j‘Ykj jhkY jÞj‘hkY j dz:
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Here we have employed the estimates (3.18) and (3.19) as well as Proposition 3.3,
and R0 A ð0;yÞ is chosen so large that VðG; dÞHBR0

ð0ÞHRn (and in particular
khðY Þk

C 0ðQd;R
nÞ eR0). Since j‘hj ¼ jhrje 2=r, inequality (5.2) implies that, for every

� > 0,

l ~GGðR0Þ
Ð
Qd

h2j‘hkY j2 dze �
Ð
Qd

h2j‘hkY j2 dzþ c�ð�Þ
h Ð
Qd

h2j‘Ykj2½1þ jhkY j2� dz

þ r�2
Ð
Qd

ð1þ jhkY j2Þ dzþ
Ð
Qd

h2j‘Y j2jhkY j2 dz
i
;

where the number c�ð�Þ merely depends on the value of �. With the choice � :¼ l ~GGðR0Þ=2
we can absorb the first term of the right-hand side by the left-hand side. Furthermore,

Ð
Qd

jhkY j2 dze
Ð
Qd

jYyj2 dz

and
Ð
Qd

j‘Ykj2 dz ¼
Ð
Qd

j‘Y j2 dz

since ‘Yðr; yÞ is 2p-periodic in y, and (3.8), (3.9) imply

Ð
Qd

j‘Y j2 dze constDðX Þ;

where we have used the notation

DðXÞ :¼ 1

2

Ð
B

j‘X j2 du dv:

It follows that

Ð
Qd

h2j‘hkY j2 dzð5:3Þ

e cðR0Þ
Ð
Qd

h2ðj‘Y j2 þ j‘Ykj2ÞjhkY j2 dzþ c 0ðr;R0Þ½1þDðXÞ�;

where cðR0Þ does not depend on r.

To estimate the first term on the right-hand side of (5.3) we cover the strip
S3r :¼ ½1� 3r; 1þ 3r� � R of width 6r about the center line L :¼ fð1; yÞ : y A Rg by the
rectangles Rj :¼ fðr; yÞ : jr� 1je 3r; jy� yjje 2rg centered at pj :¼ ð1; yjÞ with r :¼ p=l
and yj :¼ 2rj, j A Z, where l denotes a positive integer which will be fixed later on. Pres-
ently we require r < d=6 in accordance with Section 4. Denote by Wj the cubes

Wj :¼ ½1� 3r; 1þ 3r� � ðyj � 3r; yj þ 3rÞ

centered at pj. Each point z A S3r is contained in at least two of the rectangles Rj and in at
most three of the cubes Wj.
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Let x : S3r ! R be a function of class Cy, depending only on y and not on r such that
xðyÞ ¼ 1 for jyje 2r, xðyÞ ¼ 0 for jyjf 3r, 0e xe 1, and jxyje 2=r. Define xj A CyðS3rÞ
by xjðzÞ :¼ xðz� pjÞ, i.e. xjðyÞ ¼ xðy� yjÞ. Then we have xj ¼ 1 on Rj, xj ¼ 0 on S3r �Wj,

0e xj e 1, and j‘xjje 2=r. The function t :¼
Py

i¼�y
x2i is of class CyðS3rÞ and satisfies

2e te 3. Thus bj :¼ xj=
ffiffiffi
t

p
, j A Z, defines functions of class CyðS3rÞ with 0e bj e 1,

bj ¼ 0 on S3r �Wj, bjðzÞ ¼ b0ðz� pjÞ and
Py

j¼�y
b2
j ¼ 1 on S3r, in particular

Plþ1

j¼�1

b2
j ðzÞ ¼ 1 for z A QdXS3r:

Since

‘bj ¼
‘xjffiffiffi
t

p � 1

2t3=2
xj

Py
i¼�y

2xi‘xi

we obtain

j‘bjje
1ffiffiffi
2

p j‘xjj þ
1

23=2
Py

i¼�y
j‘xij <

1ffiffiffi
2

p 2

r
þ 3

23=2
2

r

whence j‘bjj < 5=r.

Now we define hj A Cy
0

�
B4rðpjÞ

�
by hj :¼ bjh, where h is the cut-o¤ function

introduced in Section 4. It follows that 0e hj e 1, j‘hjje hj‘bjj þ bjj‘hj < 7=r, andPy
j¼�y

h2j ¼ h2 on S3r. Since h ¼ 0 and hj ¼ 0 on Qd � S2r we have

Plþ1

j¼�1

h2j ðzÞ ¼ h2ðzÞ for z A Qd:ð5:4Þ

Set

cðzÞ :¼ j‘Y ðzÞj2 þ j‘YkðzÞj2 for z A Sd;

0 otherwise.

�
(5.5)

From (5.3) and (5.4) we then infer

Ð
Qd

h2j‘hkY j2 dzð5:6Þ

e cðR0Þ
Plþ1

j¼�1

Ð
QdXB4rð pjÞ

cjhjhkY j2 dzþ c 0ðr;R0Þ½1þDðXÞ�:

Next we extend Y by reflection across the line L to a function Y � : Sd ! Rn on
Sd :¼ ½1� d; 1þ d� � R:

Y �ðr; yÞ :¼ Y ðr; yÞ for 1� de re 1; y A R;

Y ð2� r; yÞ for 1e re 1þ d; y A R:

�
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We note that Y � is of class H 1;2 on every rectangle ½1� d; 1þ d� � ½a; b�,
�y < a < b < y, and so hjhkY

� A H
�
1;2

�
B4rðpjÞ;Rn

�
.

By (5.5) and (3.11) the function c A L1
locðR2Þ satisfies the Morrey condition

Ð
Wtðz0Þ

jcj dr dye 2M0t
2s

for all z0 A Sd and all t > 0 where Wtðz0Þ :¼ WXBtðz0Þ and W :¼ B4rðpjÞ. Consequently, we
may apply Morrey’s Lemma as formulated in [8] (cf. Section 4, Propositions 4.1 and 4.2),
and we obtain

Ð
Wtðz0Þ

cjhjhkY
�j2 dr dye 2M0M2k‘ðhjhkY

�Þk2L2ðWÞð4rÞ
n=2t2s�n=2

for all z0 A R2, t > 0, n A ð0; 2sÞ, and some constant M2ðs; nÞ. Particularly, for z0 ¼ pj and
t ¼ 4r we have Wtðz0Þ ¼ B4rðpjÞ and therefore with a suitable constant ~ccðsÞ:

Ð
B4rð pjÞ

cjhjhkY
�j2 dr dye ~ccðsÞM0r

2s
Ð

B4rð pjÞ
j‘ðhjhkY

�Þj2 dr dy:ð5:7Þ

From ‘ðhjhkY
�Þ ¼ hj‘hkY

� þ ð‘hjÞhkY
� and j‘hjj < 7=r we infer

j‘ðhjhkY
�Þj2 e 2h2j j‘hkY

�j2 þ 2 � 72 � r�2jhkY
�j2:

Furthermore, hj and Y � are symmetric with respect to the line L; therefore also jhkY
�j2

and j‘hkY
�j2 are symmetric. Consequently, (5.7) implies

Ð
QdXB4rð pjÞ

cjhjhkY j2 dze
Ð

B4rð pjÞ
cjhjhkY

�j2 dz

e
ð5:7Þ

2 � 2~ccðsÞM0r
2s

Ð
SdXB4rð pjÞ

h2j j‘hkY j2 dz

þ 2 � 2 � 72M0r
2s�2

Ð
SdXB4rð pjÞ

jhkY j2 dz:

We can assume that r ¼ p=l satisfies also r < p=4 taking l A N su‰ciently large; then the
periodicity of hkY with respect to y yields

Ð
SdXB4rð pjÞ

jhkY j2 dze
Ð
Qd

jhkY j2 dze constDðX Þ:

We therefore arrive at the following estimate :

Ð
QdXB4rð pjÞ

cjhjhkY j2 dzð5:8Þ

e 4~ccðsÞM0r
2s

Ð
SdXB4rð pjÞ

h2j j‘hkY j2 dzþ const r2s�2DðX Þ:

In conjunction with (5.6) it follows that

Hildebrandt and von der Mosel, Plateau’s problem II: Boundary regularity222



Ð
Qd

h2j‘hkY j2 dze 4cðR0Þ~ccðsÞM0r
2s Plþ1

j¼�1

Ð
SdXB4rð pjÞ

h2j j‘hkY j2 dz

þ c 00ðr;R0Þ½1þDðXÞ�

because of l ¼ p=r. If we recall the construction of pj; hj; r and take the periodicity of
‘hkY into account we obtain

Pl�2

j¼2

Ð
SdXB4rð pjÞ

h2j j‘hkY j2 dze
Plþ1

j¼�1

Ð
Qd

h2j j‘hkY j2 dz

and

Ð
SdXB4rð piÞ

h2i j‘hkY j2 dze
Plþ1

j¼�1

Ð
Qd

h2j j‘hkY j2 dz

for i ¼ �1; 0; 1; l � 1; l; l þ 1. Thus, because of h ¼ 0, hi ¼ 0 outside of S2r and r < d=6,

Plþ1

j¼�1

Ð
SdXB4rð pjÞ

h2j j‘hkY j2 dze 7
Ð
Qd

� Plþ1

j¼�1

h2j

�
j‘hkY j2 dzð5:9Þ

¼
ð5:4Þ

7
Ð
Qd

h2j‘hkY j2 dz;

whence

Ð
Qd

h2j‘hkY j2 dze 28 � cðR0Þ~ccðsÞM0r
2s

Ð
Qd

h2j‘hkY j2 dzþ c 00ðr;R0Þ½1þDðXÞ�:

Now we can absorb the first term on the right-hand side by the left-hand side if we choose
l A N so large that besides r ¼ p=l < minfd=6; p=4g we also have

28 � cðR0Þ~ccðsÞM0r
2s < 1=2:

It follows that Ð
Qd

h2j‘hkY j2 dze const½1þDðX Þ�

for any k3 0. As k ! 0 we arrive at

Ð
Qd

h2j‘DyY j2 dze const½1þDðXÞ�;ð5:10Þ

where Dy :¼
q

qy
. Since r ¼ p=l is fixed by now, (5.8) implies also

Plþ1

j¼�1

Ð
Qd

h2j j‘Y j2jhkY j2 dze const

	 Plþ1

j¼�1

Ð
SdXB4rð pjÞ

h2j j‘hkY j2 dzþDðXÞ



e
ð5:9Þ

const
h Ð
Qd

h2j‘hkY j2 dzþDðXÞ
i
;
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and therefore, by (5.4),

Ð
Qd

h2j‘Y j2jhkY j2 dze const
h Ð
Qd

h2j‘hkY j2 dzþDðXÞ
i

ð5:11Þ

e
ð5:10Þ

const½1þDðXÞ�:

With k ! 0 we obtain

Ð
Qd

h2j‘Y j2jDyY j2 dz e
ð5:11Þ

const½1þDðXÞ�;

in particular, Ð
Qd

h2jDyY j4 dze const½1þDðX Þ�:

From (3.8) and (3.10) we derive

jDrY j4 e ð1� dÞ�2ðl2=l1Þ2jDyY j4;

where Dr :¼
q

qr
, and so we arrive at

Ð
Qd

h2j‘Y j4 dze const½1þDðX Þ�:ð5:12Þ

To estimate
Ð
Qd

h2jDrDrY j2 dz we proceed similarly as in [9], Section 4, Step 3: Using the

interior regularity of X proved in [8] we obtain Y A H 2;2
loc ðS

�
d;R

nÞXC1;aðS
�
d;R

nÞ for the
transformed surface Y . This allows us to write down the Euler-Lagrange equations

�Db½ ~GGq
j

b

ðz;Y ;‘YÞ� þ ~GGy jðz;Y ;‘YÞ ¼ 0ð5:13Þ

for j ¼ 1; . . . ; n, which is satisfied a.e. on the open set Qþ
d :¼ fz A Qd : j‘Y ðzÞj > 0g. (This

is possible since all variations f A H
�
1;2ðQd;R

nÞXC0ðSd;R
nÞ, which are 2p-periodic, are

admissible according to Definition 3.1, and one can replace (3.20) by the corresponding
di¤erential equation and integrate by parts since ~GGq

�
: ;Yð:Þ;‘Yð:Þ

�
A H

1;2
loc ðS

�
d;R

2nÞ.)

Now (5.13) implies

~GGqqðz;Y ;‘YÞ‘2Y ¼ � ~GGqyðz;Y ;‘Y Þ‘Y � ~GGqzðz;Y ;‘Y Þ‘z

þ ~GGyðz;Y ;‘Y Þ a:e: on Qþ
d

and by (3.18) it follows that

j ~GGqqðz;Y ;‘Y Þ‘2Y je constð1þ j‘Y j2Þ a:e: on Qþ
d

and (3.19) yields j ~GGqqðz;Y ;‘YÞje c2. Moreover, if r ¼ z1, y ¼ z2, then

~GGq1q1ðz;Y ;‘YÞDrDrY ¼ ~GGqqðz;Y ;‘YÞ‘2Y �
P

ða;bÞ3ð1;1Þ
~GGqaqbðz;Y ;‘YÞDaDbY
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on Qþ
d . By (3.21) the ðn� nÞ-matrix ~GGq1q1

�
: ;Y ð:Þ;‘Yð:Þ

�
is invertible on Qþ

d , and its inverse
is uniformly bounded in norm on Qþ

d . It follows that

jDrDrY j2 e constð1þ j‘DyY j2 þ j‘Y j4Þ a:e: on Qþ
d ;ð5:14Þ

and a.e. on fz A Qd : ‘Y ðzÞ ¼ 0g we have ‘2Y ¼ 0 since Y A H 2;2
loc ðS

�
d;R

nÞ, so that (5.14) is
trivially satisfied. Therefore,

Ð
Qd

h2jDrDrY j2 dze const
h
1þ

Ð
Qd

h2j‘DyY j2 dzþ
Ð
Qd

h2j‘Y j4 dz
i
;

and now, by (5.10) and (5.12),

Ð
Qd

h2jDrDrY j2 dze const½1þDðX Þ�:ð5:15Þ

Since h ¼ 1 on Qr :¼ ð1� r; 1Þ � ð0; 2pÞ we finally infer from (5.10), (5.12), and (5.15) that

Ð
Qr

ðj‘2Y j2 þ j‘Y j4Þ dze const½1þDðX Þ�:

Since Z ¼ hðY Þ we get ‘Z ¼ h 0ðYÞ‘Y and

‘2Z ¼ h 0ðY Þ‘2Y þ h 00ðY Þ‘Y‘Y :

It follows that

Ð
Qr

j‘2Zj2r dr dye const
Ð
Qr

ðj‘2Y j2 þ j‘Y j4Þ dr dy

e const½1þDðX Þ�;

and therefore
Ð
Ar

j‘2X j2 du dve const½1þDðX Þ�:

Together with the results on interior regularity we obtain X A H 2;2ðB;RnÞ and
Ð
B

j‘2X j2 du dve const½1þDðXÞ�;

which leads to the estimate (5.1). r

6. Local straightening of the boundary

In order to show C1;a-regularity of conformally parametrizedF-minimizers X A CðGÞ
near a point x0 A G it is convenient to assume that, by a suitable conformal mapping, the
parameter domain is brought into the form

B :¼ fw ¼ ðu; vÞ A R2 : u2 þ v2 < 1; v > 0g:
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The boundary qB of B consists of the open interval

I :¼ fðu; 0Þ A R2 : juj < 1g

on the u-axis, and the closed semicircle

C :¼ fðu; vÞ A R2 : u2 þ v2 ¼ 1; vf 0g:

Moreover, we assume:

(i) Xð0Þ ¼ x0 with 0 ¼ ð0; 0Þ;

(ii) X ðI ÞHU, where UHHRn is an open neighbourhood of x0 in Rn;

(iii) there is a C4-di¤eomorphism g of Rn onto itself such that gðx0Þ ¼ 0,
gðUÞ ¼ K :¼ fy A Rn : jyj < 1g, and

gðGXUÞ ¼ fy A K : y2 ¼ 0; . . . ; yn ¼ 0g:

Set W0 :¼ BXBrð0Þ. Then, for any r A ð0; 1Þ su‰ciently small, we have XðW0ÞHU, so that
Y :¼ g � X satisfies Y ðW0ÞHK. Furthermore, we have Y A H 1;2ðB;RnÞXC0;sðB;RnÞ and
Y jW0

A H 2;2ðW0;R
nÞ. Since X maps qB continuously and monotonically onto G we find

(after fixing a suitable orientation):

(iv) Yð: ; 0Þ A C0ðqB;RnÞXH 1;2ðI 0;RnÞ where I 0 :¼ I XW0, i.e.

I 0 :¼ fðu; 0Þ A R2 : juje rg

and Yð0; 0Þ ¼ 0;

(v) Y 1ðu; 0Þ is monotonically increasing for u A I 0;

(vi) Y jðu; 0Þ ¼ 0 for u A I 0 and j ¼ 2; . . . ; n; therefore Y j
u ðu; 0Þ ¼ 0 a.e. on I 0 for

j ¼ 2; . . . ; n.

Let h :¼ g�1 be the inverse of g and H :¼ h 0 be the Jacobian matrix of h. Then we can
write

X ¼ hðY Þ :¼ h � Y ;ð6:1Þ

Xu ¼ HðY ÞYu; Xv ¼ HðYÞYv:

Let X : Rn ! Rn�n be the symmetric, positive definite matrix function of class C3 defined
by

X :¼ HT �H:ð6:2Þ

We may assume that hðyÞ ¼ y for jyjg 1. Then XðyÞ is the identity matrix for jyjg 1, and
so there are numbers l1 and l2 with 0 < l1 e l2 such that
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l1jxj2 e x � XðyÞxe l2jxj2 for all y; x A Rn:

The conformality relations jXuj2 ¼ jXvj2, Xu � Xv ¼ 0 are transformed similarly as in Sec-
tion 3, and so we obtain:

(vii) the transformed conformality relations:

Yu � XðY ÞYu ¼ Yv � XðY ÞYv; Yu � XðY ÞYv ¼ 0 on B:

Next we introduce the new Lagrangians ~ff and ~GG by

~ff ðy; q1; q2Þ :¼ f
�
hðyÞ;HðyÞq1;HðyÞq2

�
;ð6:3Þ

~GGðy; q1; q2Þ :¼ G
�
hðyÞ;HðyÞq1;HðyÞq2

�
;

y A Rn, q ¼ ðq1; q2Þ A Rn � Rn, where f ðx; p1; p2Þ is the associate Lagrangian of Fðx; zÞ,
i.e. f ðx; p1; p2Þ ¼ Fðx; p15p2Þ and Gðx; p1; p2Þ is a perfect dominance function for F , as
assumed in Section 1. It follows that

~ff A C0ðRn � R2nÞXC2
�
Rn � ðR2n �PÞ

�
;

~GG A C0ðRn � R2nÞXC2
�
Rn � ðR2n � f0gÞ

�
:

Recall that

P0 ¼ fp ¼ ðp1; p2Þ A Rn � Rn : jp1j2 ¼ jp2j2; p1 � p2 ¼ 0g:

Definition 6.1. For y A Rn we introduce ~PP0ðyÞHRn � Rn by

~PP0ðyÞ :¼
�
q ¼ ðq1; q2Þ A Rn � Rn : HðyÞq ¼

�
HðyÞq1;HðyÞq2

�
A P0

�
:ð6:4Þ

By (6.2) we can write ~PP0ðyÞ as

~PP0ðyÞ :¼ fq ¼ ðq1; q2Þ A Rn � Rn : q1 � XðyÞq1 ¼ q2 � XðyÞq2; q1 � XðyÞq2 ¼ 0g:

From the fact that G is a perfect dominance function for F one immediately obtains the
following result, taking (6.1)–(6.4) into account:

Proposition 6.2. The Lagrangians ~ff and ~GG satisfy

(D̃1) ~ff ðy; qÞe ~GGðy; qÞ for any ðy; qÞ A Rn � R2n;

(D̃2) ~ff ðy; qÞ ¼ ~GGðy; qÞ if and only if q A ~PP0ðyÞ for all y A Rn;

(D̃3) ~GGðy; tqÞ ¼ t2 ~GGðy; qÞ for all t > 0, ðy; qÞ A Rn � R2n;

(D̃4) there are numbers ~mm1; ~mm2 with 0 < ~mm1e ~mm2 such that

~mm1jqj
2
e ~GGðy; qÞe ~mm2jqj

2
for any ðy; qÞ A Rn � R2n;
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(Ẽ) for any R0 > 0 there is a constant l ~GGðR0Þ > 0 such that

x � ~GGqqðy; qÞxf l ~GGðR0Þjxj2 for y A BR0
ð0Þ; q; x A R2n; q3 0:

For f A H 1;2ðB;RnÞXLyðB;RnÞ we consider the first variation

d ~GGðY ; fÞ ¼
Ð
B

½ ~GGqi
a
ðY ;‘YÞDaf

i þ ~GGyiðY ;‘YÞf i� du dvð6:5Þ

of the functional ~GG at ~YY in direction of f where ~GG is defined by

~GGðZÞ :¼
Ð
B

~GGðZ;‘ZÞ du dv for any Z A H 1;2ðB;RnÞ:

Then Gðh � ZÞ ¼ ~GGðZÞ and in particular GðXÞ ¼ ~GGðYÞ, so that

~GGðYÞe ~GGðZÞ for all Z A H 1;2ðB;RnÞ with hðZÞ A CðGÞ:ð6:6Þ

If f A H
�
1;2ðB;RnÞXLyðB;RnÞ it follows that hðY þ tfÞ A CðGÞ for any t A R su‰ciently

small; therefore,

~GGðY Þe ~GGðY þ tfÞ for jtjf 1;

and consequently,

d

dt
~GGðY þ tfÞjt¼0 ¼ 0:

Thus we obtain

d ~GGðY ; fÞ ¼ 0 for all f A H
�
1;2ðB;RnÞXLyðB;RnÞ:ð6:7Þ

Let us introduce the class of test functions, T0ðW0Þ, by

T0ðW0Þ :¼ ff A H 1;2ðB;RnÞXLyðB;RnÞ : fðwÞ ¼ 0 for w A B�W0;ð6:8Þ

and f2ðu; 0Þ ¼ 0; . . . ; fnðu; 0Þ ¼ 0 for a:e: u A I 0g:

Since Y jW0
A H 2;2ðW0;R

nÞ and Y ð: ; 0ÞjI 0 A H 1;2ðI 0;RnÞ, an integration by parts yields

d ~GGðY ; fÞ ¼
Ð
W0

f�Da½ ~GGqi
a
ðY ;‘Y Þ� þ ~GGyiðY ;‘YÞgf i du dvð6:9Þ

�
Ð
I 0

~GGqi
2
ðY ;‘YÞf i du for all f A T0ðW0Þ:

The boundary integral vanishes if fjI 0 ¼ 0, in particular for f A Cy
0 ðW0;R

nÞHT0ðW0Þ, and
so (6.7), (6.9), and the fundamental lemma of the calculus of variations imply

�Da½ ~GGqi
a
ðY ;‘YÞ� þ ~GGyiðY ;‘YÞ ¼ 0 on W0; 1e ie n:

This together with (6.8) and (6.9) leads to
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Proposition 6.3. For any f A T0ðW0Þ we have

d ~GGðY ; fÞ ¼ �
Ð
I 0

~GGq1
2
ðY ;‘YÞf1 du:

Now we want to show that d ~GGðY ; fÞ ¼ 0 for all f A T0ðW0Þ. Unfortunately this does
not immediately follow from (6.6) since it is not a priori clear that, for f A T0ðW0Þ, Y þ tf
satisfies hðY þ tfÞ A CðGÞ for jtjf 1. (Note that T0ðW0ÞKj H

�
1;2ðB;RnÞXLyðB;RnÞ so

that (6.7) does not apply.) This di‰culty forces us to make a detour via an algebraic lemma
which will be formulated in the next section.

7. Algebraic identities

Lemma 7.1. Let F be a parametric Lagrangian of class C1
�
Rn � ðRN � f0gÞ

�
with

the associated Lagrangian f A C1
�
Rn � ðR2n �PÞ

�
. Then

fp1ðx; pÞ � p2 ¼ 0; fp2ðx; pÞ � p1 ¼ 0ð7:1Þ

for any ðx; pÞ A Rn � ½ðR2n �PÞW f0g� and

Gp1ðx; pÞ � p2 ¼ 0; Gp2ðx; pÞ � p1 ¼ 0ð7:2Þ

for any ðx; pÞ A Rn �P0, if G A C1
�
Rn � ðR2n � f0gÞ

�
is a dominance function for F.

Proof. For p ¼ 0 the assertions are trivial because fp and Gp can be continuously
extended to Rn � ½ðR2n �PÞW f0g� and Rn � R2n respectively by setting fpðx; 0Þ :¼ 0 and
Gpðx; 0Þ :¼ 0 (cf. [10], Section 2).

Suppose now that p B P. As in [10] (cf. Section 2, Lemma 2) we use the notation

ðp15p2Þð j;kÞ ¼ e
ð j;kÞ
st ps

1p
t
2

for the ð j; kÞ-th component of the bivector p15p2 A RN , where ð j; kÞ denotes the double
index with entries j; k A f1; . . . ; ng ordered by j < k. Moreover, e is the permutation tensor

e
ð j;kÞ
st :¼

1 if j ¼ s; k ¼ t; j < k;

�1 if j ¼ t; k ¼ s; j < k;

0 otherwise,

8<
:

and repeated indices s; t are to be summed from 1 to n. A straight-forward computation
yields

fp1ðx; pÞ � p2 ¼ fpi
1
ðx; pÞpi

2 ¼
P
ð j;kÞ

Fzð j; kÞ ðx; p15p2Þeð j;kÞit pt
2p

i
2

¼ �Fzðx; p15p2Þ � ðp25p2Þ ¼ 0:

Similarly one obtains

fp2ðx; pÞ � p1 ¼ 0;
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and so (7.1) is proved. Identity (7.2) follows from (7.1) and the fact that

fpðx; pÞ ¼ Gpðx; pÞ for ðx; pÞ A Rn �P0

(cf. [10], Lemma 1, or [8], Lemma 3.5). r

From Lemma 7.1 we infer

Corollary 7.2. Let ~ff and ~GG be defined by (6.3). Then

~ffq1ðy; qÞ � q2 ¼ 0; ~ffq2ðy; qÞ � q1 ¼ 0

for any ðy; qÞ A Rn � ½ðR2n �PÞW f0g� and

~GGq1ðy; qÞ � q2 ¼ 0; ~GGq2ðy; qÞ � q1 ¼ 0ð7:3Þ

for any y A Rn and q A ~PP0ðyÞ.

Proof. We obtain

~ffq1ðy; qÞ � q2 ¼ ~ffqi
1
ðy; qÞqi

2 ¼ fpt
1

�
hðyÞ;HðyÞq1;HðyÞq2

�
Ht

i q
i
2

¼ fpt
1
ðx; p1; p2Þpt

2 ¼ fp1ðx; p1; p2Þ � p2 ¼
ð7:1Þ

0;

and similarly ~ffq2ðy; qÞ � q1 ¼ 0: Analogously (7.2) implies (7.3). r

Remark. Note that our definition of the bivector as an exterior product di¤ers
slightly from that of the standard cross product in R3, i.e. in the case n ¼ N ¼ 3:

8. The local variational equation

Now we can derive the basic local variational equation.

Proposition 8.1. Let X be a conformally parametrized minimizer of F in CðGÞ, and Y

be its local transform as defined in Section 6. Then

d ~GGðY ; fÞ ¼ 0 for all f A T0ðW0Þð8:1Þ

where d ~GGðY ; fÞ is given by (6.5) and T0ðW0Þ is defined by (6.8).

Proof. On account of Proposition 6.3 it su‰ces to prove

~GGq1
2

�
Yðu; 0Þ;‘Yðu; 0Þ

�
¼ 0 for a:e: u A I 0:ð8:2Þ

To verify this equation, we first note that the properties (vi) and (vii) of Section 6 imply

X11

�
Yðu; 0Þ

�
Y 1

u ðu; 0ÞY 1
u ðu; 0Þ ¼ Yvðu; 0Þ � X

�
Yðu; 0Þ

�
Yvðu; 0Þð8:3Þ

for a.e. u A I 0, if X ¼ ðX jkÞ.
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Case 1. If Y 1
u ðu; 0Þ ¼ 0 then (8.3) implies Yvðu; 0Þ ¼ 0, and therefore ‘Yðu; 0Þ ¼ 0.

By (D̃3) we have ~GGqðy; 0Þ ¼ 0 (cf. [8], Lemma 3.1); hence

~GGq

�
Yð: ; 0Þ;‘Y ð: ; 0Þ

�
¼ 0 a:e: on fu A I 0 : Y 1

u ðu; 0Þ ¼ 0g:ð8:4Þ

Case 2. Let Y 1
u ðu; 0Þ30. Then, by (7.3) and Property (vi) of Section 6, it follows that

0 ¼ ~GGq2

�
Yðu; 0Þ;‘Yðu; 0Þ

�
� Yuðu; 0Þ ¼ ~GGq1

2

�
Yðu; 0Þ;‘Yðu; 0Þ

�
Y 1

u ðu; 0Þ;

and so we obtain

~GGq1
2

�
Y ð: ; 0Þ;‘Yð: ; 0Þ

�
¼ 0 a:e: on fu A I 0 : Y 1

u ðu; 0Þ3 0g:ð8:5Þ

Now (8.4) and (8.5) imply the desired relation (8.2). r

9. C 1, a- estimates at the boundary

Let r A ð0; 1Þ be chosen as in Section 6, and recall that W0 ¼ BXBrð0Þ. We also
introduce W :¼ BXBr=2ð0Þ.

Proposition 9.1. Let X be a conformally parametrized minimizer of F in CðGÞ, and
Y be its local transform as defined in Section 6. Then there is some a A ð0; 1Þ such that

Y A C1;aðW;RnÞ, and we have

j‘Y ðwÞ � ‘Yðw 0Þje cðrÞjw� w 0ja for w;w 0 A Wð9:1Þ

where cðrÞ is a number that depends only on r.

Proof. Fix some z0 ¼ ðu0; 0Þ with ju0je r=2 and some r0 A ð0; r=4Þ: Let 0 < re r0
and choose some cut-o¤ function h A Cy

0

�
B2rðz0Þ

�
with h ¼ 1 on Brðz0Þ, 0e he 1, and

j‘hje 2=r. Then by

fðwÞ :¼ �½h2h�khkY �ðwÞ; w A B;

we obtain a function of class H 1;2ðB;RnÞXLyðB;RnÞ with fðwÞ ¼ 0 for w A B�W0 and
f jðu; 0Þ ¼ 0 for u A I 0 ¼ ½�r; r� and j ¼ 2; . . . ; n, provided that jkj < 2 �

�
ðr=4Þ � r0

�
¼: k0.

Thus we have f A T0ðW0Þ if jkj < k0, and so f is admissible in (8.1). By the same manipu-
lations that led to (4.25) in [8], by the estimate

jDvDvY j2 e constðj‘DuY j2 þ j‘Y j4Þ a:e: on B;

proved in a similar way as (5.14) (cf. also [9], Step 3), and after k ! 0 we arrive at

Ð
Wrðz0Þ

j‘2Y j2 du dve const
h Ð
W2rðz0Þ

j‘Y j4 du dvþ r�2
Ð
T2r

jDuY � Cj2 du dv
i
;ð9:2Þ

where Wtðz0Þ and T2r denote the semidisk Wtðz0Þ :¼ BXBtðz0Þ and the ‘‘half-annulus’’

T2r :¼ W2rðz0Þ �Wrðz0Þ ¼ ½B2rðz0Þ � Brðz0Þ�XB:
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The constant C in (9.2) can be an arbitrary vector in Rn; we choose C as the mean value

C :¼
Ð
T2r

DuY du dv

of DuY over T2r: By Poincaré’s inequality there is a constant KP such that

Ð
T2r

jDuY � Cj2 du dveKPr
2
Ð
T2r

j‘DuY j2 du dv;

and so we infer from (9.2) that

Ð
Wrðz0Þ

j‘2Y j2 du dve const
h Ð
T2r

j‘2Y j2 du dvþ
Ð

W2rðz0Þ
j‘Y j4 du dv

i
:

As in [8], Section 4, hole filling and Sobolev’s inequality lead to

Ð
Wrðz0Þ

j‘2Y j2 du dve y0

h Ð
W2rðz0Þ

j‘2Y j2 du dvþ kðbÞr2�2b
i

for 0 < re r0, b A ð0; 1=2Þ, and some constants y0 A ð0; 1Þ and kðbÞ > 0. Here we can take
r0 ¼ r=4 as we have passed with k to 0. A standard iteration procedure (cf. e.g. [8], Section
4) yields

Ð
Wrðz0Þ

j‘2Y j2 du dve constðr=r1Þ
2a for 0 < re r1ð9:3Þ

where

z0 A I 00 :¼ fðu0; 0Þ : ju0je r=2g; a :¼ �ðlog yÞ=ð2 log 2Þ;

y :¼ maxfy0; 2�2þ2tg A ð0; 1Þ; t A ð2b; 1Þ; r1 :¼ minfr0; r�g;

r� :¼ ½y�1kðbÞ�1ð2t � 1Þ�1=ðt�2bÞ:

The interior estimates of [8] imply for w0 A W0 that

Ð
Brðw0Þ

j‘2Y j2 du dve constðr=r2Þ
2a for 0 < re r2;ð9:4Þ

where r2 :¼ minfr=2; r�gf r1. Combining the estimates (9.3) with (9.4), an interpolation
reasoning as in the proof of Theorem 1.5 of [9] yields

Ð
Brðw0ÞXWr1

ðz0Þ
j‘2Y j2 du dve cðrÞr2a for all r > 0ð9:5Þ

provided that z0 A I 00 and w0 A Wr1ðz0Þ. By Morrey’s Dirichlet growth theorem we infer
from (9.5) that ‘Y is of class C0;a on Wr1ðz0Þ. A covering argument and the C1;a-regularity
of Y in the interior yields the assertions of Proposition 9.1. r

Proof of Theorem 1.1. With ‘X ¼ h 0ðY Þ‘Y , where Y satisfies (9.1) of Proposi-
tion 9.1, we obtain for X in the situation described in the beginning of Section 6 that
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X A C1;aðI WB;RnÞ. Since the point x0 ¼ X ðz0Þ was chosen arbitrarily on G we have, after
a conformal transformation back to the original parameter domain

B ¼ fðu; vÞ A R2 : u2 þ v2 < 1g

and after another covering argument, that X A C1;aðB;RnÞXH 2;2ðB;RnÞ if we take Pro-
position 5.1 into account as well. r
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