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Abstract

We consider repulsive potential energies Eq(Σ), whose integrand measures tangent-point inter-
actions, on a large class of non-smooth m-dimensional sets Σ in Rn. Finiteness of the energy Eq(Σ)
has three sorts of effects for the set Σ: topological effects excluding all kinds of (a priori admissi-
ble) self-intersections, geometric and measure-theoretic effects, providing large projections of Σ

onto suitable m-planes and therefore large m-dimensional Hausdorff measure of Σ within small
balls up to a uniformly controlled scale, and finally, regularizing effects culminating in a geomet-
ric variant of the Morrey-Sobolev embedding theorem: Any admissible set Σ with finite Eq-energy,
for any exponent q > 2m, is, in fact, a C1-manifold whose tangent planes vary in a Hölder contin-
uous manner with the optimal Hölder exponent µ = 1− (2m)/q. Moreover, the patch size of the
local C1,µ -graph representations is uniformly controlled from below only in terms of the energy
value Eq(Σ).
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1 Introduction

This paper grew out of a larger project, devoted to the investigation of so-called geometric curvature
energies which include various types of geometric integrals, measuring the degree of smoothness
and bending for objects that do not, at least a priori, have to be smooth. Here, we study the energy
functional

Eq(Σ) =
∫

Σ

∫
Σ

1
Rq

tp(x,y)
dH m(x)dH m(y) (1.1)
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defined for a class A of admissible, m-dimensional sets in Rn. The precise definition of A is given in
Section 2; we just mention now that for each Σ ∈A a weak counterpart of the classic tangent plane is
defined almost everywhere with respect to the m-dimensional Hausdorff measure H m on Σ. In other
words, for H m-a.e. x ∈ Σ there is an m-plane Hx such that the portion of Σ near the point x is close to
the affine plane x+Hx ⊂ Rn. The quantity

Rtp(x,y) :=
|y− x|2

2dist(y,x+Hx)
(1.2)

in the integrand is referred to as the tangent-point radius and denotes the radius of the smallest sphere
tangent to the affine plane x+Hx and passing through y. (If y happens to be contained in x+Hx, then
we set 1/Rtp(x,y) = 0.) Thus, 1/Rtp(x,y) is defined a.e. on Σ×Σ with respect to the product measure
H m⊗H m. Notice that for any compact embedded manifold of class C1,1 this repulsive potential Eq

is finite. For two-dimensional surfaces in R3, i.e. n = 3, m = 2, Banavar et al. [2] suggested, in fact, the
use of such tangent-point functions to construct self-interaction energies with non-singular integrands
that do not require any sort of ad hoc regularization, in contrast to standard repulsive potentials. The
latter would penalize any two surface points that are close in Euclidean distance, no matter whether
these points are adjacent on the surface (leading to singularities) or belong to different sheets of the
same surface. Our aim here is to show that for the infinite range of exponents q > 2m finiteness of
Eq(Σ) has three sorts of consequences for any admissible set Σ ∈A : measure-theoretic, topological,
and analytical. To see them in a proper perspective, let us give a plain description of the surfaces we
work with.

Our class A consists of m-dimensional sets Σ ∈ Rn with finite measure H m(Σ) < ∞ on which
we impose (1) a certain degree of flatness in the neighbourhood of many (but a priori not all!) points
of Σ, and (2) some degree of connectivity. A priori, we allow for various self–intersections of Σ, and
for singularities along low dimensional subsets. For the purposes of this introduction, however, it is
enough to keep in mind the following examples of admissible surfaces (more general examples are
presented in Section 2.3):

(i) If Σ0 = M1∪ . . .∪MN , where N ∈N is arbitrary and all Mi ⊂Rn are compact, closed, embedded
m-dimensional submanifolds of class C1 such that H m(Mi∩M j) = 0 whenever i 6= j, then Σ0
is admissible;

(ii) If Σ0 is as above, then Σ1 = F(Σ0) is admissible whenever F is a bilipschitz homeomorphism
of Rn.

The dimension m and the codimension n−m of Σ in Rn are fixed throughout the paper but otherwise
arbitrary. The reader may adopt for now the temporary definition

A : = {Σ⊂ Rn : Σ = F(Σ0), Σ0 as in (i) above, F : Rn → Rn bilipschitz}.

It is easy to see that q0 = 2m = dim(Σ×Σ) is a critical exponent here: for q = q0 the energy Eq(Σ)
is scale invariant, and for each q ≥ q0 a surface Σ with a conical singularity at one point must have
Eq = ∞. We prove in this paper that for q > q0 = 2m all kinds of singularities are excluded. In fact,
upper bounds for Eq(Σ) lead to three kinds of effects. Firstly, measure-theoretic effects: the measure of
Σ contained in a ball or radius r is comparable to rm on small scales that depend solely on the energy.
Secondly topological effects: an admissible surface Σ with finite Eq-energy has no self-intersections,
it must be an embedded manifold, and finally, far-reaching analytical consequences: we have precise
C1,µ bounds for the charts in an atlas of Σ.
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Figure 1: An infinite stack of cubes, also an admissible surface (which turns out to have infinite Eq-
energy for all q > 2m = 4).

Let us first state the results precisely and then comment on the proofs and discuss the relations of
this paper to existing research.

Remark 1.1. Keep in mind, though, that all results stated in the introduction will be proved for a
more general class A (δ ) of admissible sets much larger than the preliminary class A defined above;
see Section 2.3. To get a first impression of other admissible sets have a look at Figure 1.

Theorem 1.2 (Uniform Ahlfors regularity). Assume that Σ ∈ A is an admissible m-dimensional
surface in Rn with Eq(Σ) ≤ E, q > 2m. There exists a constant a1 = a1(q,n,m) > 0, depending only
on q,n and m, such that

H m(Σ∩B(x,r))≥ 1
2

ω(m)rm

for all x ∈ Σ and all radii

0 < r < R1 ≡ R1(q,n,m,E) :=
a1

E1/(q−2m) .

(Here, and throughout the paper, B(x,d) denotes the closed ball of radius d centered at x.)

In other words: if Σ ∈ A has finite energy for some q > 2m, then up to the length scale given
by R1 – which depends only on the energy bound E and the parameters m,n,q, but not on Σ itself
– isolated thin fingers, narrow tubes, and the like cannot form on Σ. The measure of the portion of
Σ inside the ball B(x,r) is at least as large as half of the measure of the m-dimensional equatorial
cross-section of B(x,r). A similar lower estimate on the Ahlfors regularity was proven by L. Simon
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for smooth two-dimensional surfaces with finite Willmore energy [30, Corollary 1.3]; see also the
work of P. Topping [38] which even contains sharp lower bounds for the sum of local L2-norm of
the classic mean curvature and the area of the surface in a small ball. Mean curvature at a particular
point x on a smooth surface in R3 may be viewed as the arithmetic mean of minimal and maximal
normal curvature at x. R−1

tp , on the other hand, is a two-point function taking non-local interactions
into account as well, but if one looks at the coalescent limits limy→x R−1

tp (x,y) one obtains absolute
values of intermediate normal curvatures at x depending on the direction of approach as y tends to x
(cf. [2, Section 3.2]). So, the local portion of our energy Eq near x may be regarded as another kind of
averaging normal curvatures at x, leading to density estimates as does the Willmore functional.

The next result gives a quantitative description of flatness of Σ, in terms of the so-called β -numbers
introduced by P. Jones.

Theorem 1.3 (Uniform decay of β -numbers). Let Σ ∈A be an admissible m-dimensional surface
in Rn with Eq(Σ) < E for some q > 2m. There exist two constants a2(q,n,m) > 0 and A2(q,n,m) < ∞,
both depending only on n,m and q, such that whenever the radius

d ≤ R2 ≡ R2(q,n,m,E) :=
a2(q,n,m)
E1/(q−2m) (1.3)

and the bound ε > 0 satisfy the balance condition

ε
4m+qd2m−q ≥ A2(q,n,m)E , (1.4)

then we have

βΣ(x,d) := inf
P∈G(n,m)

(
sup

y∈B(x,d)∩Σ

dist(y,x+P)
d

)
≤ ε , x ∈ Σ , (1.5)

where G(n,m) denotes the Grassmannian of all m-dimensional subspaces of Rn.

Thus, for small d we have

βΣ(x,d) . E1/(4m+q)dκ , κ :=
q−2m
q+4m

> 0 .

It is known that this condition alone does not suffice to conclude that Σ is a topological manifold. D.
Preiss, X. Tolsa and T. Toro [24], extending an earlier work of G. David, C. Kenig and T. Toro [7],
study Reifenberg flat sets Σ whose β -numbers satisfy such estimates, see e.g. [24, Prop. 2.4] where
it is proved that a decay bound for β ’s combined with Reifenberg flatness1 implies that Σ must be a
submanifold of class C1,κ .

Since Σ∈A might, at least a priori, have transversal self–intersections, we do not have Reifenberg
flatness here, and a quick direct use of the results of [7, 24] is impossible. However, we are able to use
the energy estimates and the information given by Theorem 1.3 iteratively. Extending the ideas from
our earlier work [34, Section 5] devoted to surfaces in R3, we prove here that at every point x∈ Σ there
exists the classic tangent plane TxΣ, and that the oscillation of tangent planes along Σ satisfies uniform
Hölder estimates. This implies that each Σ ∈A with Eq(Σ) < ∞ must be an embedded m-dimensional
manifold of class C1,κ . Later on, working with graph patches of Σ, we use slicing techniques and a
bootstrap reasoning to improve and sharpen this information. The following theorem is the main result
of this paper.

1We do not define that condition here since we will not work with it directly; let us just mention that Reifenberg flatness
means that the rescaled Hausdorff distance between Σ∩B(x,d) and an m-plane P in B(x,d) is uniformly controlled, and
small.
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Theorem 1.4 (Geometric Sobolev–Morrey imbedding). Let Σ ∈ A and Eq(Σ) < +∞ for some
q > 2m. Then Σ is an embedded submanifold of class C1,µ , where µ = 1−2m/q.

In fact, there exist constants a3,A3 > 0, depending only on m,n, and q, with the following property:
For each x ∈ Σ and each r≤ R3 = a3Eq(Σ)1/(q−2m) there exists an m-plane P∈G(n,m) and a function
f : P' Rm → P⊥ ' Rn−m of class C1,µ such that

Σ∩B(x,r) = Σ∩graph f ,

where graph f ⊂ P×P⊥ = Rn denotes the graph of f , and

|∇ f (z)−∇ f (w)| ≤ A3E(x,r)1/q|z−w|µ , z,w ∈ P∩B(0,r), (1.6)

where

E(x,r) :=
∫

B(x,r)∩Σ

∫
B(x,r)∩Σ

(
1

Rtp(u,v)

)q

dH m(u)dH m(v) .

We believe that the exponent µ = 1−2m/q, strictly larger than κ = (q−2m)/(q+4m), is optimal
here. It is clear that finiteness of Eq does not lead to C2 regularity: consider a rotational cylinder closed
with two hemispherical caps as an admissible surface Σ of class C1,1 but not in C2. For this particular
surface inequality (1.6) is qualitatively optimal and, due to the factor E(x,r)1/q and boundedness of
1/Rtp, yields in fact Lipschitz estimates for the gradient of local graph representations of Σ.

Please note two more things. First, the exponent µ = 1−2m/q is computed according to the recipe
used in the classic Sobolev–Morrey imbedding theorem in the supercritical case. Here, the dimension
of the domain of integration, i.e. of Σ×Σ, equals 2m. We have µ → 1 as q→ ∞; for two-dimensional
surfaces, the limiting case q = ∞ has been treated earlier in our papers [32] and [33].

Second, what we have learnt about Σ is not limited to embeddedness and purely qualitative C1,µ

estimates. It is clear that the bounds given by Theorem 1.4 are uniform in any class of surfaces with
uniformly bounded energy Eq. In other words, if K = {Σi : i ∈ I} ⊂A satisfies

sup
i∈I

Eq(Σi)≤M < ∞ , (1.7)

then we can find two constants A,δ > 0, depending only on M,m,n and q, such that each Σi∩B(x,δ ),
where i ∈ I and x ∈ Σi, is obtained by a rigid motion of Rn from a graph of a function f : Rm →
(Rm)⊥ ' Rn−m which satisfies the uniform estimate ‖ f‖C1,µ ≤ A, no matter how i ∈ I and x ∈ Σi have
been chosen. Thus, a uniform upper bound on Eq allows us to fix a uniform size of charts for all
Σi ∈K , and forces the equicontinuity of gradients of local graph representations of the surfaces Σi.
In a forthcoming paper [36] we show how to use this idea to obtain finiteness theorems for classes of
C1 embedded manifolds Σi in Rn satisfying a volume constraint and a uniform energy bound (1.7).

We do not know what happens in the critical case q = 2m. Let us mention here one plausible
conjecture that we cannot prove at this stage.

Conjecture 1.5. Every immersed m-dimensional C1-manifold in Σ ⊂ Rn with finite E2m-energy is
embedded.

Another, probably more difficult, question that we cannot handle at present is the following: how
regular are the minimizers of Eq (say, with upper bounds for the total measure, to prevent the decrease
of energy caused by rescaling) in isotopy classes of C1 embedded manifolds? Are they C1,1 (this is
optimal for ideal links [5] – corresponding to the case q = ∞ in dimensions n = 3 and m = 1 – where
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contact phenomena are present)? Or maybe C∞, as minimizers of a Möbius invariant knot energy
in [9], [14]; see also [25], [26]? In addition, S. Blatt [3] characterized all curves with finite Möbius
energy as embeddings in certain Sobolev-Slobodeckiı̆ classes; such a characterization of finite energy
submanifolds for the tangent-point energy Eq is presently not known.

Our interest in this topic has been triggered by several factors. They include manifold applications
of Menger curvature in harmonic analysis and geometric measure theory (see e.g. the survey articles
of P. Mattila [21], [22], G. David [6] and X. Tolsa [37], and the literature cited therein, including
J.C. Léger [18] and the relation between 1-rectifiability and L2-integrability of Menger curvature).
There are also works of different origin, investigating another geometric concept, the so-called global
curvature introduced by Gonzalez and Maddocks [12]. The second author of the present paper took
part in laying out the strict mathematical foundations for global curvature of rectifiable loops and its
variational applications to elastic curves and rods with positive thickness; see [13], [27], [28], [29],
[10], [11]. Part of this work, in turn, has been a starting point for our subsequent joint research devoted
to various energies that, roughly speaking, interpolate between global curvature and Menger curvature.
Finiteness of these energies; see e.g. [31], [34], [35], analogously to the case that we consider here,
leads to an increase of regularity, to compactness effects, and yields a tool to control the amount of
bending of non-smooth objects in purely geometric terms.2 The novelty in the present paper is that we
work in full generality, overcoming the difficulty that both the dimension and the codimension may be
arbitrary. In an ongoing research [16, 17] S. Kolasiński obtains analogues of our results for basically
the same admissible class of surfaces that we consider here, but for a different integral energy, defined
as an (m + 2)-fold integral (with respect to H m) over the set of all simplices with vertices on Σ,
directly extending our results in [34] to surfaces of arbitrary dimension and codimension.

Closely related research includes also G. Lerman and J.T. Whitehouse [19], [20], who investigate
a number of ingenious high-dimensional curvatures of Menger type and obtain rectifiability criteria
for d-dimensional subsets of Hilbert spaces. Last but not least, the deep and classic paper of W.
Allard [1] sets forth a regularity theory for m-dimensional varifolds whose first variation (roughly:
the distributional counterpart of mean curvature) is in Lp for some p > m. Our regularity results bear
some resemblance to his Theorem 8.1. There are many differences, though, that remain to be fully
understood. It is clear that without some extra topological assumptions on Σ finiteness of (1.1) cannot
lead to the conclusion that Σ is locally (on a scale depending only on the energy!) homeomorphic
to a disc; one could punch an arbitrary number of ‘holes’ in a smooth surface and this would just
decrease the energy we work with. In Allard’s case, once we fix a ball where appropriate density
estimates hold and the weight ‖V‖ of the varifold V is close to the Hausdorff measure of a disk, then
the ‘lack of holes’ is built into his assumption on the first variation δV of V . On the other hand, Eq –
as a non-local energy in contrast to the locally defined distributional mean curvature – averages over
all global tangent-point interactions, which leads to self-avoidance and control over topology of the
given surface. Admissible sets with finite Eq-energy are differentiable manifolds, which Allard’s result
cannot guarantee for varifolds with distributional mean curvature in Lp, p > m: there is a remaining
(small) singular set, such that there is no control on the topology of the support of the varifold measure.
To possibly bridge the apparent gap between Allard’s work and our results we should note that versions
of Eq can be defined for general m-dimensional varifolds V , via double integrals: the integrand 1/Rtp
can be treated as a function on points and planes. It is an intriguing question whether finiteness of
such integrals for some q’s lead to rectifiability criteria or to an improved regularity in the case of
varifolds.

2In [35] we treat the toy case m = 1 of the present paper, along with a few knot-theoretic applications of Eq for curves.
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Let us now informally sketch the main thread of our reasoning, and describe the organization of
the paper in more detail. We want to exclude self intersections and to have a quantitative description
of flatness; for this, Theorem 1.3 would be a good starting point. The main idea behind its proof is
pretty straightforward: if the β -numbers were too large, i.e. if x ∈ Σ but Σ∩B(x,d) were not confined
to a narrow tube Bεd(x+P) around some affine m-plane x+P, then, a simple argument shows that we
would have two much smaller balls B1,B2 ⊂ B, say with

diamB1 = diamB2 ≈ ε
2d

such that for all y ∈ Σ∩B2 and a nonzero proportion of z ∈ Σ∩B1 the distance dist(y,z+TzΣ) would
be comparable to εd. This yields 1/Rtp(y,z) & ε/d, and a lower bound for the energy follows easily,
leading to a contradiction, if the B1,B2 and the bound for the β ’s are chosen in a suitable way which
happens to be precisely the balance condition (1.4). There is only one serious catch here: in order to
make the resulting estimate uniform, and to be able to iterate it later on, we must guarantee that

H m(Σ∩Br)≥ c · rm for all r < r0 = r0(energy),

with some absolute constant c. And we want both r0 and c independent of a particular Σ.
For this, we need Theorem 1.2 which serves as the backbone for all the later constructions and es-

timates of the paper. The overall idea here is somewhat similar to an analogous result in our work [34]
on Menger curvature for surfaces in R3. The main difference, however, leading to crucial difficulties,
is that the codimension of Σ may be arbitrary.

The proof of Theorem 1.2 has two stages. First, for a fixed generic point x ∈ Σ and all radii r
below a stopping distance ds(x), we control the size of projections of Σ∩B(x,r) onto some m-plane
H(r) (which may vary as r varies). Here, topology comes into play. To grasp the essence of our idea,
it is convenient to think of Σ = M1∪ . . .∪MN as in Example (i) at the beginning of the introduction.
For x ∈ Mi \

⋃
j 6=i M j and for infinitesimally small radii r we start with the tangent planes P = TxMi,

and note that small (n−m− 1)-spheres that are perpendicular to TxMi are nontrivially linked with
Mi. Then, for a sequence of growing radii ρ , we rotate P if necessary by a controlled angle to a new
position Pρ in order to keep the projections large. At the same time, we construct a growing connected
excluded region Sρ which does not contain any point of Σ in its interior. The size of the projections is
controlled via a topological argument, involving the homotopy invariance of the linking number mod
2 of submanifolds. The construction stops at some stopping distance r = ds(x) , and yields another
point y ∈ Σ with |y− x| ≈ ds(x) and two smaller balls B(x,cds(x)), B(y,cds(x)), where c ∈ (0,1) is an
explicit absolute constant, such that

1
Rtp(z,w)

&
1

ds(x)

for all w ∈ B(y,cds(x)) and a significant proportion of z ∈ B(x,cds(x)). In the second stage we use the
energy bounds to show that d(Σ) := infx∈Σ ds(x) is positive and satisfies d(Σ) ≥ R1, where R1 is the
uniform constant given in Theorem 1.2. The details of that part are given in Section 4; see Lemma 4.2,
Lemma 4.3 and their corollaries.

Sections 2 and 3 contain all the necessary prerequisites and are included for the sake of complete-
ness. In Section 2 we gather elementary estimates of angles between planes spanned by nearby almost
orthogonal bases, and introduce the class of admissible sets whose definition is designed so that the
above sketchy idea can be made precise. In Section 3 we explain how the linking number mod 2 can be
used for elements of A , providing specific statements (and short proofs) for sake of further reference.

Once Theorem 1.2 is proved, we use the Hausdorff convergence of excluded regions defined for
generic points x ∈ Σ to obtain a corollary which, roughly speaking, ascertains that for every x ∈ Σ and
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r ≤ R1 there is some plane H = Hx,r ∈ G(n,m) such that Σ∩B(x,r) has large projection onto H and
is contained either in B(x,r/2) (where, a priori, at this stage of the reasoning, Σ might behave in a
pretty wild way) or in a narrow tubular region Bδ (x+H), for some specific constant δ � 1. A use of
energy bounds yields now Theorem 1.3, and an iterative argument implies that in fact Σ must locally
be a C1,κ graph. All this is done in Section 5. Embeddedness of Σ is established here, too.

Finally, in Section 6, we prove Theorem 1.4 and sharpen the Hölder bounds. To this end, we show
that if Σ∩B is a graph of f ∈C1,κ , then ∇ f satisfies an improved estimate,

|∇ f (a1)−∇ f (a2)| ≤ 2Φ
∗(|a1−a2|/N)+C E1/q |a1−a2|µ , (1.8)

where Φ∗(s) stands for the supremum of oscillations of ∇ f over all possible balls of radius s, and
E is the portion of energy coming from some ball containing a1,a2. The point is that (1.8) holds for
some N = N(q) � 1, so that for f ∈ C1,κ the first term of the right hand side can be viewed as an
unimportant, small scale perturbation. The main idea behind (1.8) is that when the integral average
of (1/Rtp)q is bounded by K, then there are numerous points ui in small balls around the ai, i = 1,2,
where (1/Rtp)q . K. A geometric argument implies that for such points |∇ f (u1)−∇ f (u2)| can be
controlled by the second term in the right hand side of (1.8), and a routine iterative reasoning, with a
certain Morrey–Campanato flavour, allows us to get rid of the 2Φ∗ and finish the whole proof.

Acknowledgement. The authors would like to thank the Deutsche Forschungsgemeinschaft, Polish
Ministry of Science and Higher Education, and the Alexander von Humboldt Foundation, for gener-
ously supporting this research. Substantial parts of this work have been written while the first author
has been staying at RWTH Aachen University in the fall of 2009; he is very grateful to his German
colleagues for their hospitality.

2 Bases, projections, angle estimates, and the class of admissible sets

2.1 Balls, slabs, planes

We write B(x,r) to denote the closed ball in Rn, with center x and radius r > 0. The volume of the
unit ball in Rk is denoted by ω(k).

For a closed set F in Rn we set

Uδ (F) := {x ∈ Rn : dist(x,F) < δ}, δ > 0.

G(n,m) denotes the Grassmannian of all m-dimensional linear subspaces of Rn. If P ∈ G(n,m),
then πP denotes the orthogonal projection of Rn onto P, and QP is the orthogonal projection onto
P⊥ ∈ G(n,n−m).

For two planes P1,P2 ∈ G(n,m) we define their distance (or angle)

<)(P1,P2)≡ d(P1,P2) := ‖πP1 −πP2‖ ,

where the right hand side is the usual norm of the linear map πP1 −πP2 : Rn →Rn. The Grassmannian
G(n,m) equipped with this metric is compact.

Finally, we use the following variant of P. Jones’ beta-numbers (see David’s and Semmes’ mono-
graph [8, Chapter 1, Sec. 1.3] for a discussion):

βΣ(x,r) := inf
L∈G(n,m)

(
sup

y∈Σ∩B(x,r)

dist(y,x+L)
r

)
, x ∈ Σ, r > 0. (2.1)
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2.2 Nearby planes: bases, projections, angle estimates

Throughout most of the paper, we shall work with estimates of various geometric quantities related to
two planes in G(n,m) that form a small angle. For sake of further reference, we gather here several
such estimates. We also fix specific constants (which in all cases are far from being optimal) that
are needed later, in more involved computations in Sections 4–6. All proofs are elementary, but we
provide them to make the exposition complete.

Lemma 2.1. Assume that a,b > 0 and a sequence of nonnegative numbers sk satisfies s1 ≤ 1,

sk+1 ≤ ak +b
k

∑
j=1

s j, k ≥ 1.

Then for each A≥ 1+max(2a,2b) we have sk < Ak, k = 1,2 . . ..

Proof. One proceeds by induction. Clearly, for k = 1 we just need s1 ≤ 1 < A. For each A > 1 the
recursive condition for sk+1 yields, under the inductive hypothesis,

sk+1 < ak +
Ab

A−1
(Ak−1) (2.2)

Now, A ≥ 1 + max(2a,2b) guarantees that 2ak < (1 + 2a)k ≤ Ak ≤ Ak+1 and b
A−1 ≤

1
2 . Thus, (2.2)

yields 2sk+1 < Ak+1 +Ak+1−A < 2Ak+1. 2

Lemma 2.2. If X ,Y ∈ G(n, l) have orthonormal bases (e j)⊂ X and ( f j)⊂ Y such that |e j− f j| ≤ α

for each j = 1, . . . , l, then <)(X ,Y )≤ 2lα .

Proof. Take an arbitrary unit vector v ∈ Rn and estimate |πX(v)−πY (v)|, expressing both projections
in orthonormal bases (e j) and ( f j). 2

Lemma 2.3. Assume that 1 ≤ l ≤ m ≤ n. If e1, . . . ,el is an orthonormal basis of a subspace X ∈
G(n, l) and h1, . . . ,hl ∈ Rn satisfy |hi− ei|< ε < ε1 := 10−1(10m +1)−1, then (hi)i=1,...,l are linearly
independent. Moreover, the Gram-Schmidt orthogonalization process

ui :=
vi

|vi|
, where v1 = h1, vk+1 = hk+1−

k

∑
j=1

〈hk+1,v j〉
|v j|2

v j , k +1≤ l,

yields vectors vi,ui (i = 1, . . . , l) that satisfy

|vk−hk|< 10k
ε,

∣∣|vk|−1
∣∣< (10k +1)ε <

1
10

for all k = 1, . . . , l, (2.3)

|uk− ek|< c1ε <
1
2

for all i = 1, . . . , l, (2.4)

where c1 := 2(10m +1). If Y = span(h1, . . . ,hl), then

<)(X ,Y )≤ c2ε , (2.5)

with c2 := 2mc1 = 4m(10m +1).
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Proof. As |h j − e j| < ε for all j, we have |〈hi,h j〉 − 〈ei,e j〉| < 3ε . Therefore, |〈hk+1,v j〉| < 3ε +
(1 + ε)|h j − v j| for j = 1, . . . ,k and k ≤ l−1. Using this observation, one proves (2.3) by induction;
assuming (2.3) for k and all j < k, we obtain

|vk+1−hk+1| ≤
k

∑
j=1

|〈hk+1,v j〉|
|v j|

<
k

∑
j=1

3ε +(1+ ε)|v j−h j|
|v j|

<
10
9

3kε +
11
9

k

∑
j=1

10 j
ε < 10k+1

ε,

where the last inequality follows from elementary computations (the estimate is not sharp). This yields
the first part of (2.3) for k +1; the second one follows from the triangle inequality.

In particular, we also have dist
(
hk+1,span(h1, . . . ,hk)

)
= |vk+1| > 0, and therefore h1, . . . ,hl are

linearly independent.
Setting ui := vi/|vi|, we easily conclude the proof of the whole lemma. (To check inequality (2.5),

apply Lemma 2.2 and note that l ≤ m.) 2

Lemma 2.4. Let ε1 be the constant defined in Lemma 2.3 above. Assume that

(i) there exist orthonormal e1, . . . ,em ∈ Rn such that hi ∈ Bn(ei,δ ) for i = 1, . . . ,m, and δ < ε1/2;

(ii) wi ∈ Bn(hi,ε) for all i = 1, . . . ,m, and ε < ε1/2.

Then the subspaces H = span(h1, . . . ,hm) and W = span(w1, . . . ,wm) belong to G(n,m), and we have
<)(H,W )≤ c3ε with c3 = 14m ·20m.

Proof. It follows from Lemma 2.3 that dimH = dimW = m. We use again the Gram-Schmidt algo-
rithm and set v1 = h1, u1 = w1,

vk+1 = hk+1−
k

∑
j=1

〈hk+1,v j〉
|v j|2

v j , uk+1 = wk+1−
k

∑
j=1

〈wk+1,u j〉
|u j|2

u j , k +1≤ m.

Then, vi and ui form orthogonal bases of H and W , respectively. Inequality (2.3) yields t−1 < |ui|, |vi|<
t with t = 10/9. We now show that si = ε−1|ui−vi| satisfies the assumptions of Lemma 2.1 with a = 1
and b = 8. For k = 1 we have s1 = ε−1|h1−w1|< 1.

Let φ(x) = |x|−2x. For all x,y in the annulus {t−1 ≤ |z| ≤ t} we have |φ(x)| ≤ t and, for x 6= y,

|φ(x)−φ(y)| ≤ |x− y|
|x|2

+ |y|
∣∣∣∣ 1
|x|2

− 1
|y|2

∣∣∣∣≤ t2|x− y|+ t
∣∣∣∣∫ |y|

|x|

2
τ3 dτ

∣∣∣∣
≤ t2(1+2t2)|x− y| < 5|x− y| , as t = 10/9.

Thus, since w j,u j,v j ∈ {t−1 ≤ |z| ≤ t}, we obtain

|uk+1− vk+1| ≤ |hk+1−wk+1|+
∣∣∣∣ k

∑
j=1
〈h j,φ(v j)〉v j−〈w j,φ(u j)〉u j

∣∣∣∣
≤ ε +

k

∑
j=1

(
ε + t2(|φ(v j)−φ(u j)|+ |v j−u j|

))
≤ ε +

k

∑
j=1

(
ε +6t2|v j−u j|

)
.
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Hence,

sk+1 = ε
−1|uk+1− vk+1| ≤ (k +1)+b

k

∑
j=1

s j

for each b ≥ 6t2, in particular for b = 8. Therefore certainly sk ≤ 20k, k = 1, . . . ,m, by Lemma 2.1.
Keeping in mind that t−1 = 9

10 ≤ |u j|, |v j| ≤ 10
9 = t, we obtain∣∣∣∣ u j

|u j|
−

v j

|v j|

∣∣∣∣= ∣∣|u j|φ(u j)−|v j|φ(v j)
∣∣< 6t|u j− v j|< 7 ·20m

ε .

The inequality <)(H,W )≤ c3ε follows now from Lemma 2.2. 2

The next two lemmata are concerned with the set

S(H1,H2) := {y ∈ Rn : dist(y,Hi)≤ 1 for i = 1,2}, (2.6)

where H1 6= H2 ∈ G(n,m) form a small angle so that πH1 restricted to H2 is bijective. Since {y ∈
Rn : dist(y,Hi) ≤ 1} is convex, closed and centrally symmetric3 for each i = 1,2, we immediately
obtain the following:

Lemma 2.5. S(H1,H2) is a convex, closed and centrally symmetric set in Rn; πH1(S(H1,H2)) is a
convex, closed and centrally symmetric set in H1 ∼= Rm.

The next lemma and its corollary provide a key tool for bootstrap estimates in Section 6.

Lemma 2.6. Let ε1 > 0 and c2 > 0 denote the constants defined in Lemma 2.3. If H1,H2 ∈ G(n,m)
satisfy 0 < <)(H1,H2) = α < ε1, then there exists an (m−1)-dimensional subspace W ⊂H1 such that

πH1

(
S(H1,H2)

)
⊂ {y ∈ H1 : dist(y,W )≤ 5c2/α} .

Proof. Let H := H1 ∩H2; we have k := dimH < m. For i = 1,2 set Xi = {x ∈ Hi : x ⊥ H}. Then,
Hi is the orthogonal sum of H and Xi. Let X := X1 ⊕X2; by construction, X ⊥ H. Finally, let L be
the orthogonal complement of H ⊕X = H1 ⊕H2 in Rn, so that Rn is equal to H ⊕X ⊕ L, and the
spaces H,X ,L are pairwise orthogonal. It is now easy to see, directly by definition, that <)(H1,H2) =
<)(X1,X2).
Step 1. We shall first show that there exists a vector x1 ∈ X1 such that

|x1|= 5c2/α, x1 6∈ πH1(S(H1,H2)) . (2.7)

Fix an orthonormal basis e1, . . . ,em−k of X1. Since <)(X1,X2) = α , we have |e j−πX2(e j)| ≤ α . Apply-
ing Lemma 2.3 with l = m− k to X1 and X2, we check that the πX2(e j), j = 1, . . . ,m− k, form a basis
of X2, and |e j−πX2(e j)| ≥ α/c2 for at least one j ∈ {1,2, . . . ,m− k}. Assume w.l.o.g. that this is the
case for j = 1. Thus, there are no points of X2 in the interior of B := Bn(e1,α/c2), and therefore there
are no points of X2 in the interior of the cone

K := {y ∈ Rn : y = tv, t ∈ R, v ∈ B} .

Set λ := 5c2/α . Then λB = B(λe1,5)⊂ K, so that the closed ball B(λe1,4)⊂ intK. Hence,

B(λe1,3)∩{y ∈ Rn : dist(y,X2)≤ 1}= /0 . (2.8)

3The term central symmetry is used here for central symmetry with respect to 0 in Rn.
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Let I denote the segment {se1 : |s−λ | ≤ 1}; we claim that πH1(S(H1,H2))∩ I = /0. To check this, we
argue by contradiction. If y ∈ S(H1,H2) and πH1(y) ∈ I, then, decomposing y = h+x+ l where h ∈H,
x ∈ X , and l ∈ L = (H⊕X)⊥, we have

πH1(y) = h+πH1(x) = h+πX1(x) = se1

for some s, |s−λ | ≤ 1. As H ⊥ X and e1 ∈ X1 ⊂ X , this yields h = 0 and y = se1 +β for some β ⊥ X1.
Now, (2.8) shows that if y ∈ S(H1,H2), then we must have |β |2 ≥ 32−12 = 8. This, however, yields
dist(y,X1) = |β | > 2, which contradicts the assumption y ∈ S(H1,H2). Thus, x1 := λe1 = (5c2/α)e1
satisfies (2.7).

Now, in order to prove the existence of the desired subspace W ⊂ H1, consider the function

w 7→ g(w) := inf{t > 0 : tw 6∈ πH1(S(H1,H2))} ∈ R+∪{∞}

defined on the unit sphere in H1. If w ∈H, then g(w) = ∞. Since Bn(0,1)⊂ S(H1,H2), we have g≥ 1
everywhere. Note that if g(w) = s then sw ∈ πH1(S(H1,H2)) and tw 6∈ πH1(S(H1,H2)) for every t > s.
(Thus, g(w) is the ‘exit time’ that we need to leave πH1(S(H1,H2)), travelling with unit speed from 0
in the direction given by w.)
Step 2. We shall first show that there exists a vector w0 ∈ H1, |w0|= 1, such that

g(w0) = r = infg <
5c2

α
.

Since, by Step 1, we have g(e1) < λ = 5c2/α , it is of course enough to show that 1 ≤ r = infg is
achieved on the unit sphere of H1. Take a sequence of unit vectors wi ∈ H1 such that g(wi) → infg;
passing to a subsequence, we can assume wi →w0 as i→∞. Suppose now that g(w0) > infg. Then, for
some fixed ε > 0 we have g(w0) > g(wi)+ε > r = infg for all i� 1. Consider the points p0 = g(w0)w0
and pi = g(wi)wi in πH1(S(H1,H2)). Then, pi−p0

|pi−p0| →−w0 as i→ ∞. By definition of r and convexity,

πH1(S(H1,H2)) ⊃ conv
(
{p0}∪ (Bn(0,r)∩H1)

)
.

Thus, for all i such that g(wi) < r +(ε/2) and <)(wi,w0) < arccos(r/(r + ε))− arccos(r/(r + ε

2 )) the
point pi is in the interior of conv

(
{p0}∪(Bn(0,r)∩H1)

)
. Then, however, by definition of g we obtain

g(wi) > |pi|= g(wi), a contradiction which shows that g(w0) = infg.
Step 3. W = {y ∈ H1 : y ⊥ w0} satisfies the desired condition. Note that W is chosen so that the set
F := {y ∈ H1 : dist(y,W )≤ r = infg} is the ‘narrowest strip in H1’ containing πH1(S(H1,H2)).

Indeed, if there was a point y ∈ πH1(S(H1,H2)) \F , then, taking the straight line through y and
y0 = rw0 ∈ ∂F ∩πH1(S(H1,H2)) (with r = infg), one could easily reach a contradiction: take a unit
vector v in span(y,y0), v ⊥ y− y0, and use convexity of πH1(S(H1,H2)) to show that then g(v) <
r = g(w0) = infg (for otherwise the straight segment connecting the points y and g(v)v contained in
πH1(S(H1,H2)) would intersect the ray {y0 + tw0 : t > 0} contradicting the definition of g(w0)).

This completes the proof of Lemma 2.6. 2

The next Lemma is practically obvious.

Lemma 2.7. Suppose that H ∈ G(n,m) and a set S′ ⊂ H is contained in {y ∈ H : dist(y,W )≤ d} for
some d > 0, where W is an (m−1)-dimensional subspace of H. Then

H m(S′∩Bn(a,s)
)
≤ 2msm−1d

for each a ∈ H and each s > 0.
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Proof. Decomposing each y ∈ S′∩Bn(a,s) as y = πW (y)+ (y−πW (y)), one sees that S′∩Bn(a,s) is
contained in a rectangular box with (m− 1) sides parallel to W and of length 2s and the remaining
side perpendicular to W and of length 2d. 2

Lemma 2.8. If two planes H1,H2 ∈ G(n,m) satisfy <)(H1,H2)≤ ε < m−12−m, then

H m(πH1(A))≥ (1−mε2m)H m(A) (2.9)

for every H m-measurable set A⊂ H2.

Proof. It is enough to prove the inequality when A is the m-dimensional unit cube in H2, and H m(A) =
1. Fix an orthonormal basis e1, . . . ,em of H2 and let fi := πH1(ei) for i = 1, . . . ,m. Then, by Hadamard’s
inequality,

H m(πH1(A)) = | f1∧ . . .∧ fm|

≥ |e1∧ . . .∧ em|−
m

∑
j=1
| f j− e j| ∏

j<i≤m
(1+ | fi− ei|)

≥ 1− ε

m

∑
j=1

(1+ ε)m− j ≥ 1−mε2m .

2.3 The class of admissible sets

Let us now give a precise definition of the class of admissible surfaces. Intuitively speaking, the energy
functional Eq can be defined for all Σ ⊂ Rn compact, H m(Σ) < ∞, which are a union of continuous
images of m-dimensional closed manifolds of class C1, satisfying two additional conditions. One of
them ensures that Σ is pretty flat near H m–almost all its points x, so that we have, in a sense, a ‘mock’
tangent plane Hx to Σ at x. A priori, Hx does not even have to coincide with the classic tangent plane.
The second condition guarantees, as we shall see later, that small (n−m− 1)-dimensional spheres
centered at x and parallel to (Hx)⊥ are nontrivially linked with the surface Σ.

As we have already said in the introduction, it might be convenient to think of the following
example. Assume that Σ1, . . . ,ΣN are embedded, compact, closed m-dimensional C1-submanifolds
of Rn. They might intersect each other but only along sets of m-dimensional measure zero, so that
H m(Σi∩Σ j) = 0 whenever i 6= j. Then, for any bilipschitz homeomorphism f : Rn → Rn,

Σ := f (Σ1∪ . . .∪ΣN)

is an admissible surface.

The definition of admissible surfaces involves the notion of degree modulo 2; here are its relevant
properties.

Theorem 2.9 (Degree modulo 2). Let M,N be compact manifolds of class C1 without boundary and
of the same dimension k. Assume that N is connected. There exists a unique map

deg2 : C0(M,N)→ Z2 = {0,1}

such that:

(i) If deg2 g = 1, then g ∈C0(M,N) is surjective;
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(ii) If H : M× [0,1]→ N is continuous, f = H(·,0) and g = H(·,1), then deg2 f = deg2 g;

(iii) If f : M → N is of class C1 and y ∈ N is an arbitrary regular value of f , then

deg2 f = # f−1(y) mod 2 .

For a proof, see e.g. the monograph of M.W. Hirsch [15, Chapter 5], Theorem 1.6 and the sur-
rounding comments. Blatt gives a detailed presentation of degree modulo 2 (even for noncompact
manifolds) in his thesis [4].

Now, let δ ∈ (0,1) and let I be a finite or countable set of indices.

Definition 2.10. We say that a compact set Σ⊂ Rn is an admissible (m-dimensional) surface of class
A (δ ) if the following conditions are satisfied.

(H1) Ahlfors regularity. H m(Σ) < ∞ and there exists a constant K = KΣ such that

H m(Σ∩Bn(x,r))≥ KΣrm for all x ∈ Σ, 0 < r ≤ diamΣ. (2.10)

(H2) Structure. There exist compact, closed m-dimensional manifolds Mi of class C1 and continuous
maps fi : Mi → Rn, i ∈ I, where I is at most countable, such that Σ =

⋃
i∈I fi(Mi)∪ Z, where

H m(Z) = 0.

(H3) Mock tangent planes and δ -flatness. There exists a dense subset Σ∗ ⊂ Σ with the following
property: H m(Σ \ Σ∗) = 0 and for each x ∈ Σ∗ there is an m-dimensional plane H = Hx ∈
G(n,m) and a radius r0 = r0(x) > 0 such that

|y− x−πH(y− x)|< δ |y− x| for each y ∈ Bn(x,r0)∩Σ, y 6= x. (2.11)

(H4) Linking. If x∈ Σ∗ and r0(x) is given by (H3) above, then there exists an i∈ I such that the map4

Φi : Mi×Sn−m−1(x,r0(x);(Hx)⊥) 3 (w,z) 7→ fi(w)− z
| fi(w)− z|

∈ Sn−1

satisfies the condition deg2 Φi = 1. (Here we use the notation Sl(ξ ,ρ;P) := ξ +{v∈P : |v|= ρ}
for ξ ∈ Rn, ρ > 0 and P ∈ G(n, l).)

Example 2.11. If Σ is a compact, connected manifold of class C1 without boundary, embedded in Rn,
then Σ ∈A (δ ) for every δ ∈ (0,1).

We can take Z = /0, I = {1}, f1 = idRn , and Σ∗ = Σ; (H1) and (H2) follow. It is clear that Condition
(H3) is satisfied if we choose Hx = TxΣ for x ∈ Σ. Condition (H4) is then satisfied, too. In this simple
model case (H4) ascertains that small (n−m− 1)-dimensional spheres centered at the points of an
embedded manifold Σ and contained in planes that are normal to Σ are linked with that manifold; see
e.g. [23, pp. 194-195] for the definition of linking coefficient. (We do not assume orientability of Mi;
this is why degree modulo 2 is used.)

Note that if δ > 0 is fixed, then we are not forced to set Hx ≡ TxΣ; conditions (H3) and (H4) in
this example would be satisfied also if Hx were sufficiently close to TxΣ. Thus, for given Σ satisfying
(H1) and (H2) the choice of Hx does not have to be unique.

4Note that Φi is well defined, as fi(w) ∈ Σ, and z 6∈ Σ by virtue of (H3).
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The next two examples show that we can allow Σ to have several C1-pieces that intersect along
sets of m-dimensional measure zero, and are embedded away from those sets.

Example 2.12. If Σ is connected, Σ =
⋃N

i=1 Σi, where Σi are compact, connected manifolds of class
C1 without boundary, embedded in Rn, and moreover

H m(Σi∩Σ j) = 0 for i 6= j,

then Σ ∈A (δ ) for every δ ∈ (0,1).
The set I is now equal to {1, . . . ,N} and we set

Σ
∗ := Σ\S, S :=

⋃
1≤i< j≤N

(Σi∩Σ j) ; (2.12)

for each x ∈ Σ∗ there is a unique i such that x ∈ Σi and we take Hx := TxΣi. Conditions (H1) and (H2)
are clearly satisfied with Z = /0 and fi = idRn for i = 1, . . . ,N, and the verification of (H3) and (H4)
is similar to the previous example; one just has to ensure that for x ∈ Σ∗∩Σi the radius r0 = r0(x) is
chosen so that r0 < dist

(
x,S).

Example 2.13. Let the Mi, i ∈ I = {1, . . . ,N}, be compact, connected m-dimensional C1-manifolds
without boundary. Let fi : Mi →Rn be C1-immersions, and let Σi = fi(Mi) for i = 1, . . . ,N. If Σ =

⋃
Σi

is connected,
H m(Σi∩Σ j) = 0 for i 6= j,

and
H m({y ∈ Σi : # f−1

i (y) > 1}) = 0 for all i = 1, . . . ,N,

then Σ ∈A (δ ) for every δ ∈ (0,1). We leave the verification to the reader.

It is also clear that the condition that all maps fi in the previous example be of class C1 is too
strong. We can allow Σi = fi(Mi) to have large intersections with other Σ j as long as the flatness
condition in (H3) is satisfied, and we need Hx only for a.e. x ∈ Σ. Thus, it is relatively easy to give
more examples of admissible surfaces.

Example 2.14. If h : Rn → Rn is a bilipschitz homeomorphism, and we take Σ as in Example 2.12,
then

Σ̃≡ h(Σ)⊂
⋂

δ∈(0,1)

A (δ ) .

Indeed, we then set fi = h ◦ idΣi . Let S be given by (2.12). To define Σ̃∗, we use compactness and
smoothness of the Σi to fix a radius r > 0 with the following property: for each i = 1,2, . . . ,N and each
point a ∈ Σi there is a function ga : Pa → P⊥a , Pa = TaΣi ∈ G(n,m), such that |Dga| ≤ 1 and

Σi∩Bn(a,r) = graphga∩Bn(a,r).

We also let Ga(ξ ) = (ξ ,ga(ξ )) for ξ ∈ Pa. Now, a point y ∈ h(Σ) is in Σ̃∗ if y 6∈ h(S) (we exclude the
intersections), and moreover there is i ∈ {1, . . . ,N} and an a ∈ Σi such that y = h(ξ ,ga(ξ )) for some
ξ ∈ Pa∩Bn(a,r) which is a point where F := h◦Ga : Pa → Rn is differentiable.

It follows from Rademacher’s theorem that Σ̃∗ has full measure and is dense in Σ̃ = h(Σ).
Condition (H1) is also satisfied, since bilipschitz maps distort the measure H m at most by a

constant factor. To check (H3), one notes that as F = h ◦Ga : Pa → Rn is bilipschitz, its differential
DF must have maximal rank m at all points where it exists; it is then a simple exercise to check that for
y = h(x)∈ Σ̃∗ the plane Hy = DF(x)(Pa) satisfies all requirements of Condition (H3) for all δ ∈ (0,1).
To check (H4), one can use the homotopy invariance of the degree; we leave the details to the reader.

15



We do not have a simple characterization of the class of admissible surfaces. However, it contains
weird countably rectifiable sets, too.

Example 2.15 (Stacks of spheres or cubes). (a) For i = 0,1,2, . . . let pi = (2−i,0,0) ∈ R3, ci = (pi +
pi+1)/2, ri = 2−i−2 > 0, Mi = Σi = S2(ci,ri)⊂R3 (so that the spheres Σi and Σi+1 touch each other at
pi+1), and let fi = idMi . Set Σ =

⋃
∞
i=0 Σi ∪ {0}. Then, Σ is an admissible surface, belonging to A (δ )

for each δ > 0. All points of Σ except 0 and the pi for i≥ 1 belong to Σ∗. For x ∈ Σ∗, one verifies (H3)
and (H4) just as as in Example 2.12. Moreover, (H1) is also valid. To see this, fix x ∈ Σ\{0}. If x ∈ Σi

and r ≤ 2ri, then
H 2(Σ∩B(x,r))≥H 2(Σi∩B(x,r)) = πr2 ,

by the standard formula for the area of a spherical cap. If r > 2ri but r≤ diamΣ = 1, then it is possible
to check that the largest of all Σ j completely contained in B(x,r)∩Σ has r j ∈ [r/6,r/2]. Estimating
H 2(Σ∩B(x,r)) from below by H 2(Σ j∩B(x,r)), we obtain (H1) for x 6= 0; a similar argument works
for x = 0.

(b) A modification of the above example yields the following (see Figure 1): set

Σ =
∞⋃

i=0

( 2i⋃
k=1

Σi,k

)
∪ Z,

where Σi,k is the surface of a cube of side length 2−i, and Z is a segment of length 1. To be more
specific, Σ0,1 = ∂

(
[0,1]3

)
⊂ R3, and we let Σi,k be a translated copy of 2−i ·Σ0,1 = ∂ [0,2−i]3,

Σi,k := ∂
(
[0,2−i]3

)
+(1−2−i)(e1 +2e3)+(k−1)2−ie2,

so that, for fixed i, the Σi,k with k = 1, . . . ,2i form a layer of touching cubes stacked on top of the
union of all the previous Σ j,s, 0 ≤ j < i and 1 ≤ s ≤ 2 j. Finally, set Z = {(1, t,2) : t ∈ [0,1]; we add
this segment to the union of all Σi,k to make Σ closed.

It is possible to check that if Σ∗ is equal to the union of the interiors of all the faces of the cubes
(which is a dense set of full surface measure in Σ), then (H3) and (H4) are satisfied. Ahlfors regularity
of Σ can be checked as in (a) above.

Remark 2.16. The mock tangent planes Hx are not unique in the definition of the class A (δ ) but
a posteriori it follows from Theorem 1.4 that if Σ ∈ A (δ ), then for any x ∈ Σ∗ there is at most one
choice of the Hx (up to a set of zero measure) if one wants Eq(Σ) to be finite. Thus, finiteness of the
energy is a very strong assumption: it forces us to abandon the apparent freedom of choice of the Hx,
and forces Σ to be a single embedded manifold, with a controlled amount of bending at a given length
scale, depending only on the energy.

3 Topological prerequisites

To guarantee the existence of big projections later on, we shall need a topological invariant, which is
a version of the linking number modulo 2.

Definition 3.1 (Linking number modulo 2). Assume that Σ is an admissible surface of class A (δ )
and Nn−m−1 is a compact, closed (n−m−1)-dimensional manifold of class C1, embedded in Rn and
such that Nn−m−1∩Σ = /0.
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For each i ∈ I and for the manifolds Mi which satisfy (H2) and (H4) of Definition 2.10, let

Gi : Mi×Nn−m−1 3 (w,z) 7→ fi(w)− z
| fi(w)− z|

∈ Sn−1. (3.1)

We set

lk2 (Σm,Nn−m−1) :=

{
1 if deg2 Gi = 1 for some i ∈ I,

0 if deg2 Gi = 0 for all i ∈ I.

We shall use this definition mostly in the case where Nn−m−1 is a round sphere (or an ellipsoid
with ratio of axes very close to 1) contained in some (n−m)-affine plane in Rn.

We need the following four properties of this invariant.

Lemma 3.2 (Homotopy invariance). Let Σ ∈ A (δ ) and let N be a compact, closed (n−m− 1)-
dimensional manifold of class C1, and let N j := h j(N) for j = 0,1, where h j is a C1 embedding of N
into Rn such that N j ∩Σ = /0. If there is a homotopy

H : N× [0,1]→ Rn \Σ

such that H(·,0) = h0 and H(·,1) = h1, then

lk2 (Σ,N0) = lk2 (Σ,N1) .

Proof. Note that the mappings

gi, j : Mi×N 3 (w,z) 7−→
fi(w)−h j(z)
| fi(w)−h j(z)|

∈ Sn−1, i ∈ I, j = 0,1,

are such that gi,0 is homotopic to gi,1 for each i ∈ I. Thus, the lemma follows directly from Theo-
rem 2.9 (ii). 2

Lemma 3.3 (Small spheres in ‘mock’ normal planes are linked with Σ). Assume that Σ ∈ A (δ )
and x ∈ Σ∗. Then for all r ∈ (0,r0(x)) and for Vx = (Hx)⊥ we have

lk2 (Σ,Sn−m−1(x,r;Vx)) = 1, (3.2)

where r0(x) is the constant in Condition (H3) of Definition 2.10.

Proof. Due to condition (H3), each sphere Sn−m−1(x,r;Vx) with r ∈ (0,r0(x)) can be deformed homo-
topically to Sn−m−1(x,r0(x);Vx); we simply adjust the radius, changing it linearly. Since the image of
that homotopy is disjoint from Σ, the lemma follows from (H4) and Lemma 3.2. 2

Lemma 3.4 (Distant spheres are not linked). If Σ ∈A (δ ), 0 < ε < r < 2ε and dist(y,Σ) > 3ε , then

lk2 (Σ,Sn−m−1(y,r;V )) = 0

for each plane V ∈ G(n,n−m).

Proof. Fix an arbitrary i∈ I. Set Nn−m−1 ≡ Sn−m−1(y,r;V ) and let Gi : Mi×Nn−m−1 → Sn−1 be defined
by (3.1). We shall prove that deg2 Gi = 0. To this end, consider the homotopy

H : Mi×Nn−m−1× [0,1]→ Sn−1
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given by

H(w,z, t) =
fi(w)−

(
y+(1− t)(z− y)

)∣∣ fi(w)−
(
y+(1− t)(z− y)

)∣∣ , w ∈Mi, z ∈ Nn−m−1, t ∈ [0,1] . (3.3)

It is easy to see that H is well defined and continuous; we have H(w,z,0) = Gi(w,z). Thus, by Theo-
rem 2.9 (ii), deg2 Gi = deg2 H(·, ·, t) for each t ∈ (0,1].

If m < n− 1, then the image of H(·, ·,1) in Sn−1 is the same as image of Σi under the map ξ 7→
(ξ − y)/|ξ − y| which is Lipschitz in a neighbourhood of Σi. Since H m(Σi) < ∞, H(·, ·,1) cannot
be surjective, since the H n−1-measure of its image is zero. Thus, we obtain deg2 H(·, ·,1) = 0 =
deg2 H(·, ·,0) = deg2 Gi.

If m = n− 1, we first approximate fi by a smooth map f̃i : Mi → Rn, so that ‖ fi − f̃i‖∞ < ε/2.
Then,

G̃i(w,z) := ( f̃i(w)− z)/| f̃i(w)− z|, (w,z) ∈Mi×Nn−m−1,

satisfies5 deg2 Gi = deg2 G̃i. Next, we define H̃ by (3.3) with fi’s replaced by f̃i’s. If H̃(·, ·,1) has no
regular points (= points where the differential has rank equal to n−1), then its Jacobian is zero, and
H̃(·, ·,1) is not surjective. If H̃(·, ·,1) has at least one regular point, then since Nn−m−1 consists of
two distinct points z1,z2 and H̃(w,z1,1) = H̃(w,z2,1), we see each regular value of H̃(·, ·,1) has an
even number of preimages in Mi×Nn−m−1. Hence, in either case deg2 H̃(·, ·,1) = 0 = deg2 H̃(·, ·,0) =
deg2 G̃i = deg2 Gi.

Lemma 3.5. If Σ ∈A (δ ) and for some y ∈ Rn, r > 0 and V ∈ G(n,n−m) we have

lk2 (Σ,Sn−m−1(y,r;V )) = 1

then the disk
Dn−m(y,r;V ) := y+{v ∈V : |v| ≤ r}

contains at least one point of Σ.

Proof. Suppose this were not the case. Then dist(Σ,Dn−m(y,r;V )) > 3ε for some ε > 0. We deform
continuously the sphere Sn−m−1(y,r;V ) to Sn−m−1(y,3ε/2;V ), staying all the time in y +V , at the
distance at least 3ε to Σ. This yields

lk2 (Σ,Sn−m−1(y,r, ;V )) = lk2 (Σ,Sn−m−1(y,3ε/2;V )) = 0

by Lemma 3.2 and Lemma 3.4, a contradiction. 2

4 Uniform Ahlfors regularity

4.1 Good couples of points

We introduce here the notion of a good couple. It expresses in a quantitative way the following rough
idea: if there are two points x,y ∈ Σ such that the distance from y to a substantial portion of the affine
planes z + Hz (where z is very close to x) is comparable to |x− y|, then a certain portion of energy
comes only from the neighbourhood of points forming such a configuration. Quantifying this, and
iterating the resulting information in the next section, we eventually are able to pinpoint some of the
local and global properties of the surface.

Recall that QHz stands for the orthogonal projection onto (Hz)⊥.

5Just move fi(w) to f̃i(w) along a segment, which avoids Nn−m−1, as ‖ fi− f̃i‖∞ < ε/2 and dist( f̃i(w),N) > ε/2.
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Definition 4.1 (Good couples). We say that (x,y) ∈ Σ×Σ is a (λ ,α,d)–good couple if and only if the
following two conditions are satisfied:

(i) d/2≤ |x− y| ≤ 2d;

(ii) The set
S(x,y;α,d) := {z ∈ Bn(x,α2d)∩Σ

∗ : |QHz(y− z)| ≥ αd}

satisfies
H m(S(x,y;α,d))≥ λH m(Bm(0,α2d)) = λω(m)α2mdm .

We shall be using this definition for fixed 0 < α,λ � 1 depending only on n and m. Intuitively,
good couples force the energy to be large. Once we have a (λ ,α,d)–good couple, then 1/Rtp must be
& αd−1 on a set in Σ×Σ of H m⊗H m-measure roughly d2m. Thus, for q > 2m, one cannot have d
small and Eq(Σ) small simultaneously. We quantify that in Lemma 4.4.

Lemma 4.2. If (x,y) ∈ Σ×Σ is a (λ ,α,d)–good couple with α < 1
2 and an arbitrary λ ∈ (0,1], then

1
Rtp(z,w)

>
1
9

α

d
(4.1)

for all z ∈ S(x,y;α,d) and w ∈ Bn(y,α2d).

Proof. For z,w as above we have

|QHz(w− z)| = |QHz(y− z)+QHz(w− y)|
≥ αd−|w− y| by Def. 4.1 (ii)

>
αd
2

as α < 1/2.

Moreover, |w− z| ≤ |x− y|+ |x− z|+ |w− y| ≤ 2d +2α2d < 3d. Thus, by (1.2),

1
Rtp(z,w)

=
2dist(w,z+Hz)

|w− z|2
=

2|QHz(w− z)|
|w− z|2

>
αd

(3d)2 =
1
9

α

d
.

4.2 Finding good couples and large projections

To prove uniform Ahlfors regularity, we shall demonstrate that each Σ with finite energy cannot
penetrate certain conical regions of Rn. The construction of those regions will guarantee that in
a neighbourhood of each point x ∈ Σ∗ the projections of Σ onto suitably chosen m-planes passing
through x are large, and a bound on the energy will allow us to prove that such neighbourhoods have
to be uniformly large, independent of the particular point x ∈ Σ∗ we have chosen.

For a plane H ∈ G(n,m) and δ ∈ (0,1) we set

C(δ ,H) := {z ∈ Rn : |QH(z)| ≥ δ |z|} , (4.2)

Cr(δ ,H) := C(δ ,H)∩Bn(0,r) . (4.3)

(These are closed ‘double cones’ with ‘axis’ equal to H⊥. Note that if n > m+1, then the interior of
C(δ ,H) and of Cr(δ ,H) is connected.) We shall also use the intersections of cones with annuli,

AR,r(x,δ ,W ) := x+ int
(

CR(δ ,W )\Bn(0,r)
)

. (4.4)
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Lemma 4.3 (Stopping distances, good couples and large projections).
There exist constants η = η(m),δ = δ (m),λ = λ (n,m) ∈ (0, 1

9) which depend only on n,m, and
have the following property.

For every Σ ∈A (δ ) and every x ∈ Σ∗ there exist d ≡ ds(x) > 0 and y ∈ Σ such that

(i) (x,y) is a (λ ,η ,d)–good couple;

(ii) for each r ∈ (0,d] there exists a plane H(r) ∈ G(n,m) such that

πH(r)(Σ∩Bn(x,r)) ⊃ H(r)∩Bn(
πH(r)(x),r

√
1−δ 2

)
,

and therefore H m(Σ∩Bn(x,r))≥ (1−δ 2)m/2ω(m)rm for all 0 < r ≤ ds(x);

(iii) the plane W = H(d) ∈ G(n,m) is such that Σ∩Ad,d/2(x,δ ,W ) = /0.

(iv) Each disk Dn−m(z,r;W⊥) = z + {v ∈W⊥ : |v| ≤ r} with z ∈ x +W, |z− x| ≤ d
√

1−δ 2, and
radius r such that

Sn−m−1(z,r;W⊥) := z+{v ∈W⊥ : |v|= r} ⊂ Ad,d/2(x,δ ,W ) (4.5)

contains at least one point of Σ.

The number ds(x) is referred to as the stopping distance. It can be checked that the condition (4.5)
for the radii of disks containing points of Σ is equivalent to

δ 2

1−δ 2 |z− x|2 ≤ r2 ≤ d2−|z− x|2 if
d
2

√
1−δ 2 < |z− x| ≤ d

√
1−δ 2, (4.6)(

d
2

)2

−|z− x|2 ≤ r2 ≤ d2−|z− x|2 if |z− x| ≤ d
2

√
1−δ 2 . (4.7)

Lemma 4.4. Let δ (m) be the constant of Lemma 4.3. If Σ∈A (δ ) for some δ ∈ (0,δ (m)] and Eq(Σ) <
∞ for some q > 2m, then the numbers ds(x) satisfy

d(Σ) := inf
x∈Σ∗

ds(x) > 0 . (4.8)

Moreover, we have

d(Σ)≥
(

c
Eq(Σ)

)1/(q−2m)

=: R1 (4.9)

where
c = (2 ·9q)−1

ω(m)2
λη

4m+q (4.10)

for λ = λ (n,m) and η = η(m) as in Lemma 4.3.

The rest of this Section is organized as follows. We prove Lemma 4.3 in the next subsection. Then,
in subsection 4.4, we derive Lemma 4.4 from Lemma 4.3, and prove Theorem 1.2.
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4.3 The proof of Lemma 4.3

The proof of Lemma 4.3 is similar to the proof of Theorem 3.3 in our paper [34]. It has algorithmic
nature. Proceeding iteratively, we construct an increasingly complicated set S which is centrally sym-
metric with respect to x and its intersection with each sphere ∂Bn(x,r) is equal to the union of two or
four spherical caps. The size of these caps is proportional to r but their position may change as r grows
from 0 to the desired stopping distance ds(x). The interior of S contains no points of Σ but it contains
numerous (n−m−1)-dimensional spheres which are nontrivially linked with Σ. Eventually, this en-
sures parts (ii)–(iv) of the lemma. To find a good couple (x,y), we construct S so that ∂S∩ (Σ\{x}) is
nonempty, and one of the points in this intersection, or one of nearby points of Σ will be good enough
for our purposes.

The rest of this subsection is organized as follows. We first list the conditions that have to be
satisfied by η , δ , and λ . Then, we set up the plan of the whole inductive construction and describe
the first step in detail. Next, we give the stopping criteria. Analyzing them, we demonstrate that when
the iteration stops, then (i)–(iv) of the lemma are satisfied. If the stopping criteria do not hold, then
we perform the iterative step. Due to the nature of stopping criteria the total number of steps in the
iteration must be finite, since Σ is compact.

We fix a sufficiently small δ > 0 (to be specified soon) and assume that Σ belongs to the class
A (δ ) of all admissible surfaces defined in Section 2. For the sake of simplicity, we assume throughout
the whole proof that 0 = x ∈ Σ∗.

The constants. We fix the three constants η = η(m),δ = δ (m),λ = λ (n,m) in (0, 1
9) so that several

conditions are satisfied. We first pick η and δ so small that

6c2(δ +η) < 6c3(δ +η) < ε1, (4.11)

where ε1, c2 and c3 denote the constants (depending only on m) introduced in Lemma 2.3 and
Lemma 2.4 in Section 2.2.6 Without loss of generality we can also assume that

(1−δ
2)m/2 >

1
2

and
9
10

(1−δ
2)1/2 >

2
3
, (4.12)

and
δ ≥ 5η . (4.13)

Next, we let J be the minimal number such that there exist J balls

Bk := BG(n,m)(Pk,η
2) = {H ∈ G(n,m) : <)(H,Pk)≤ η

2}, k = 1, . . . ,J, Pk ∈ G(n,m),

that form a covering of the whole Grassmannian G(n,m). Since η depends only on m, this number J
depends in fact only on n,m. Finally, once J is fixed, we let

λ =
1
3J

. (4.14)

The construction. Proceeding iteratively, we shall construct three finite sequences:

• of compact, connected, centrally symmetric sets S0 ⊂ T1 ⊂ S1 ⊂ T2 ⊂ S2 ⊂ ·· · ⊂ SN−1 ⊂ TN ⊂
SN ⊂ Rn,

6The stronger inequality, involving c3, is needed later, in applications in Section 5. Here, in this proof, just the condition
6c2(δ +η) < ε1 would be sufficient.
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• of m-planes H0, . . . ,HN and H∗
0 , . . . ,H∗

N−1 ∈G(n,m) such that the angle <)(Hi,H∗
i ) < ε1 for each

i = 0, . . . ,N−1, where ε1 is the small constant of Lemma 2.3,
• and of radii ρ0 < ρ1 < · · · < ρN , where ρN =: ds(x), so ρN will provide the desired stopping

distance for x as claimed in the statement of Lemma 4.3.

Everywhere below in this subsection, we write Vi := H⊥
i and V ∗

i := (H∗
i )⊥.

These sequences will be shown to satisfy the following properties:

(A) (Diameter of Si grows geometrically). We have Si ⊂ Bn
ρi
≡Bn(0,ρi) and diamSi = 2ρi

for i = 0, . . . ,N. Moreover

ρi > 2ρi−1 for i = 1, . . . ,N. (4.15)

(B) (Large ‘conical caps’ in Si and Ti).

Si \Bρi−1 = Cρi(δ ,Hi)\Bρi−1 for i = 1, . . . ,N, (4.16)

and

Ti+1 ⊂ Bρi , Ti+1 = Si ∪ Aρi,ρi/2(0,δ ,H∗
i ) for i = 0, . . . ,N−1. (4.17)

(C) (Σ does not enter the interior of Si or Ti+1).

Σ∩ intSi = /0 for i = 0, . . . ,N, (4.18)

Σ∩ intTi+1 = /0 for i = 0, . . . ,N−1. (4.19)

Moreover, we have

Σ∩∂Br ∩C(δ ,H∗
i ) = /0 for ρi ≤ r ≤ 2ρi, i = 0, . . . ,N−1. (4.20)

(D) (Points of Σ \ {x} on ∂Si). The intersection Σ∩ ∂Bρi ∩ ∂Si is nonempty for each i =
1, . . . ,N.

(E) (Linking). If z ∈ Hi satisfies |z| < ρi
√

1−δ 2 and the radius r > 0 is chosen such that
the (n−m−1)-dimensional sphere

Sn−m−1(z,r;Vi) = z+{v : v ∈Vi, |v|= r}

is contained in the interior of Si∩
(
Bn

ρi
\Bn

ρi/2

)
, then

lk2 (Σm,Sn−m−1(z,r;Vi)) = 1 (4.21)

for i = 1, . . . ,N.

(F) (Big projections of Bn
ρi
∩Σ onto Hi). For t ∈ [ρi−1,ρi], i = 1, . . . ,N, we have

πHi(Σ∩Bn
t ) ⊃ Hi∩Bn

t
√

1−δ 2 . (4.22)
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Start of the iteration. We set S0 := /0, T1 := /0, ρ0 := 0 and H0 = H∗
0 = H1 := Hx ∈G(n,m), where Hx

stands for the mock tangent plane at x = 0 ∈ Σ∗, satisfying (H3) of Definition 2.10.
Moreover, we use the convention that our closed balls are defined as

Bn
r = Bn(0,r) := {y ∈ Rn : |y|< r}

so that the closed ball B0 of radius zero is the empty set.
Notice that for a complete iteration start we need to define ρ1 and S1 in order to check Conditions

(4.15) in (A), (4.16) in (B), (4.18) for i = 1, and (4.21)–(4.22) constituting Conditions (E) and (F). All
the other conditions within the whole list are immediate for i = 0.

We set
K1

t := Ct(δ ,H1) . (4.23)

With growing radii t the sets K1
t describe larger and larger double cones with ‘axis’ perpendicular to

H1 and fixed opening angle which is very close to π when δ is small. Now we define

ρ1 := inf{t > ρ0 = 0 : Σ∩K1
t ∩∂Bt 6= /0}, (4.24)

and notice that since Σ∗ satisfies (2.11) of condition (H3) by definition, one has ρ1 > r0(x) > 0 = 2ρ0.
This yields (4.15) in (A) for i = 1. Set S1 := K1

ρ1
; in other words we have S1 = Cρ1(δ ,H1)⊂ Bn

ρ1
with

diamS1 = 2ρ1, so that all properties mentioned in (A) are satisfied for i = 1. Moreover, since we have
adopted the convention that B0 is an empty set and ρ0 = 0, condition (4.16) in (B) does hold for i = 1.
The definition of ρ1 guarantees that there are no points of Σ in intS1, implying (4.18) in (C) for i = 1.
Condition (D) for i = 1 follows from the definition of ρ1, as Σ is a closed subset of Rn.

Let us now take care of (E) and (F) for i = 1. To check (E), note that by Lemma 3.3 we have

lk2 (Σm,Sn−m−1(0,r1;V1)) = 1

for every r1 > 0, r1 < r0(x) = r0(0). Any sphere Sn−m−1(z,r;V1) with z and r specified in (E) for
i = 1 which is contained in intS1 can be homotopically deformed to, say, Sn−m−1(0,r1;V1) with r1 =
r0(x)/2; to this end, we just first move the base point z to 0 along the segment {tz : t ∈ [0,1]} in H1,
and then adjust the radius. Notice that all (n−m− 1)-spheres used to define such a homotopy are
contained in intS1 and therefore stay away from Σ by (4.18) in (C) for i = 1.

Thus, by Lemma 3.2, (E) follows for i = 1. (Note that in this first step we have even proved more.
In fact, every sphere Sn−m−1(z,r;V1) with z ∈ H1, |z|< ρ1

√
1−δ 2 and radius r such that

Sn−m−1(z,r;V1)⊂ intS1

is nontrivially linked with Σ; for i = 1 we do not have to restrict ourselves to spheres in intS1 inter-
sected with the annulus. This restriction, however, will be necessary at later steps.)

Invoking Lemma 3.5, we conclude that each (n−m)-dimensional disk Dn−m(z,r;V1), with z and
r as in (E) for i = 1, must contain at least one point of Σ. Therefore,

πH1

(
Σ∩Dn−m(z,r;V1)

)
= {z} for all z ∈ H1 with |z|< ρ1

√
1−δ 2.

Since all disks Dn−m(z,r;V1) are contained in Bn
ρ1

we conclude

H1∩Bn
ρ1
√

1−δ 2 ⊂ πH1(B
n
ρ1
∩Σ).

This is the big projection property (F) for i = 1.
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To summarize this first step, we have defined the sets S0 ⊂ T1 ⊂ S1 ⊂ Rn, and the planes H0, H∗
0

and H1 which, up to now, are all identical, so that the desired estimate for the angle <)(Hi,H∗
i ) holds

trivially for i = 0. We also have defined ρ1 > 2ρ0 = 0, postponing the decision whether N > 1 or
N = 1. Note that we have not defined H∗

1 yet. However, (E)–(F) do hold for i = 1, and all those items
in the list (A)–(D) for i = 1 which do not involve statements about T2 or H∗

1 also do hold.
We shall now discuss the stopping criteria and show how to pass to the next step of the iteration

when it is necessary.

Stopping criteria and the iteration step. For the decision whether to stop the iteration or to continue
it with step number j +1 for j ≥ 1, we may now assume that the sets

S0 ⊂ T1 ⊂ S1 ⊂ T2 ⊂ S2 ⊂ ·· · ⊂ Tj ⊂ S j ⊂ Rn,

and the m-planes H0, . . . ,H j, H∗
0 , . . . ,H∗

j−1 with <)(Hi,H∗
i ) < ε1 for i = 0, . . . , j−1, have already been

defined. We also have at this point a sequence of radii ρ0 = 0 < ρ1 < · · · < ρ j satisfying the growth
condition (4.15) for i = 1, . . . , j.

The first two conditions in (A) may be assumed to hold for i = 0, . . . , j. In (B) we may suppose
(4.16) for i = 1, . . . , j, in contrast to (4.17) which holds only for i = 0, . . . , j− 1. Similarly, we may
now work with (4.19) in (C) and (4.20) in (D) for all i = 0, . . . , j− 1, whereas (4.18) in (D) can be
assumed for i = 0, . . . , j. The statements in (E) and (F) can be used for i = 1, . . . , j.

We are going to study the geometric situations that allow us to stop the iteration right away; if
this is the case, then we set N := j and ds(x) := ρ j = ρN . Basically, there are two cases when we
can stop the construction because then there is a point y ∈

(
Bρ j \ intBρ j/2

)
∩Σ such that (x,y) form

a (λ ,η ,ρ j)–good couple. In the third case it turns out that Σ∩Bρ j \ intBρ j/2 is contained in a thin
tubular neighbourhood of some plane H∗

j , which is close to H j and very close to many of the mock
tangent planes Hz for points z in Bn(x,η2ρ j)∩Σ∗ — a priori, possibly even to all of these tangent
planes. When this happens, then we set H j+1 := H∗

j , define a new radius ρ j+1, new sets Tj+1 ⊂ S j+1
containing S j, and finally check all the properties listed in (A)–(F).

The different geometric situations depend on the position of the point where the surface hits the
current centrally symmetric set S j.

Case 1. (First hit immediately gives a good couple.) This occurs if there exists at least one point
y ∈ ∂Bρ j ∩C(δ ,H j)∩Σ such that the set S(x,y;η ,ρ j), cf. Definition 4.1 (ii), satisfies

H m(S(x,y;η ,ρ j))≥ λω(m)η2m
ρ

m
j . (4.25)

If Case 1 holds, then, directly by definition, (x,y) is a (λ ,η ,ρ j)–good couple. We then set N := j,
ds(x) = ρN , and stop the construction. It is easy to see that all conditions of Lemma 4.3 are satisfied.

If Case 1 fails, then we define the new plane H∗
j which, roughly speaking, gives a very good

approximation of a significant portion of the mock tangent planes Hz for z close to x, and examine the
portion of Σ contained in the closed set

Fj := Bn(0,2ρ j)\ intBn(0,ρ j/2) (4.26)

to distinguish two more cases. In one of them the iteration can be stopped in a similar way. In the
second one, the whole intersection Σ∩Fj might be very close to all mock tangent planes Hz so that
there is no chance of finding a good couple; we have to continue the iteration then.
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We begin with the definition of H∗
j . The choice of λ in (4.14) comes into play here. In one of the

two remaining cases H∗
j will become the new H j+1. In the other case we can stop the iteration, setting

j = N.
Fix y ∈ ∂Bρ j(x)∩Σ∩C(δ ,H j). Cover the Grassmannian G(n,m) by finitely many balls

Bk = {H ∈ G(n,m) : <)(H,Pk)≤ η
2}, k = 1,2, . . . ,J(n,m), Pk ∈ G(n,m).

Let
Yj := Bn

η2ρ j
∩Σ

∗ .

Since we already can use the big projection property(4.22) of Condition (F) for all i ≤ j, it follows
that

H m(Σ∩Bn
r )≥ ω(m)(1−δ

2)m/2rm for all r ≤ ρ j. (4.27)

Thus, we can estimate

H m(Yj) = H m(Bn
η2ρ j

∩Σ
∗)

≥ ω(m)(1−δ
2)m/2

η
2m

ρ
m
j

>
1
2

ω(m)η2m
ρ

m
j by (4.12).

Now, let
Gk := {z ∈ Yj : <)(Hz,Pk)≤ η

2}, k = 1,2, . . . ,J .

Since the Gk cover Yj, there exists at least one k0 ∈ {1,2, . . . ,J} such that

H m(Gk0) ≥ 1
J

H m(Yj) (4.28)

>
1
2J

ω(m)η2m
ρ

m
j

> λω(m)η2m
ρ

m
j by (4.14).

We set H∗
j := Pk0 , and distinguish two more cases.

Case 2. (Some points of Σ∩Fj are far from H∗
j .) By this we mean that there exists a point y ∈ Σ∩

Fj such that
|y−πH∗

j
(y)| ≡ |QH∗

j
(y− x)| ≥ 2ηρ j . (4.29)

If (4.29) holds, then, as in Case 1, we set N := j, ds(x) = ρN , and stop the iteration. It remains to check
that (x,y) is a (λ ,η ,ρ j)–good couple. Condition (i) of Definition 4.1 is clearly satisfied. To check (ii)
of that definition we estimate for each z ∈ Gk0 ⊂ Bη2ρ j

∩Σ∗, using the triangle inequality,

|QHz(y− z)| = |y− z−πHz(y− z)|
= |y−πH∗

j
(y)+πH∗

j
(y)−πHz(y)− z+πHz(z)|

≥ 2ηρ j−<)(H∗
j ,Hz)|y|−2|z| by definition of the angle between m-planes

≥ 2ηρ j−η
2|y|−2η

2
ρ j by choice of Gk0 and H∗

j

> ηρ j .

(For the last inequality we just use |y| ≤ 2ρ j and η < 1/4.) Therefore, Gk0 ⊂ S(x,y,η ,ρ j). Moreover,
(4.28) guarantees that H m(Gk0) is large enough. It follows that (x,y) is a (λ ,η ,ρ j)–good couple. As
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before in Case 1, it is easy to see now that all conditions of Lemma 4.3 are satisfied with H(r) = Hi

for all r ∈ (ρi−1,ρi].
If neither Case 1 nor Case 2 occurs, then we have to deal with

Case 3. (Flat position; the whole Σ∩Fj is very close to H∗
j .) This happens if and only if for each

point y ∈ Σ∩Fj we have

|y−πH∗
j
(y)| ≡ |QH∗

j
(y− x)|< 2ηρ j . (4.30)

Intuitively, Case 3 corresponds to the following situation: most points of Σ∩Bρ j are close to some
fixed m-plane which is a very good approximation of Hz for many (possibly all!) points z ∈ Σ close to
x. We then set H j+1 := H∗

j and have to continue the iteration.

Flat position and the passage to the next step. We shall first check that if Case 3 has occurred, then

<)(Vj,Vj+1)≡<)(H j,H j+1)≡<)(H j,H∗
j )≤ 3c2(δ +η) < ε1 . (4.31)

In order to prove that this is indeed the case, we shall check that

Bn(w,3(δ +η))∩H∗
j 6= /0 whenever w ∈ H j and |w|= 1. (4.32)

Indeed, assume (4.32) were false. Fix a unit vector w ∈ H j such that Bn(w,3(δ + η))∩H∗
j is empty.

Let z = sw for

s :=
9

10
(1−δ

2)1/2
ρ j

(4.12)
>

2
3

ρ j . (4.33)

Pick

r :=
10
9

δ

(1−δ 2)1/2 |z|= δρ j <
1
9

ρ j. (4.34)

Then, by (4.6), the sphere Sn−m−1(z,r;Vj) is contained in the interior of the intersection of C(δ ,H j)
and the annulus Fj. Thus, we may use Condition (E), (4.21) for i = j, and Lemma 3.5 to conclude that
the disk Dn−m(z,r;Vj) contains at least one point y1 ∈ Σ. We also have y1 ∈ Fj; this follows from the
choice of z and r. Invoking (4.34) and (4.33) above, we have

|y1− z| ≤ r = δρ j < 2sδ .

Since Bn(w,3(δ +η))∩H∗
j = /0 and z = sw, by scaling we have also

Bn(z,3s(δ +η))∩H∗
j = /0, (4.35)

so that the triangle inequality gives, by (4.33),

|y1−πH∗
j
(y1)|> 3s(δ +η)−2sδ > 3sη > 2ηρ j .

This, however, is a contradiction to condition (4.30) which holds in Case 3. Hence, (4.32) holds too,
and for every orthonormal basis (ei) ⊂ H j the vectors fi := πH j+1(ei) form a basis of H j+1 which
satisfies |ei− fi| ≤ 3(δ +η) < ε1. Lemma 2.3 implies that

<)(H j,H j+1)≡<)(H j,H∗
j ) < c2 ·3(δ +η)

(4.11)
< ε1 ,

which is (4.31).
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As the angle <)(H j,H j+1) = <)(Vj,Vj+1) is small, the cones C(δ ,H j) and C(δ ,H j+1) have a large
intersection. Indeed, for any unit vector v∈Rn with |πH j+1(v)| ≤ θ we have |πH j(v)|< θ +3c2(δ +η)
by definition of <)(H j,H j+1). Thus,

|QH j(v)| ≥ |v|− |πH j(v)|> 1−θ −3c2(δ +η) > δ

whenever θ < 1− δ − 3c2(δ + η) < 1− ε1. In particular, every unit vector v ∈ Vj+1 belongs to the
interior of C(δ ,H j).

We now define
Tj+1 := S j ∪

(
Cρ j(δ ,H j+1)\ intBn

ρ j/2

)
. (4.36)

According to (4.30), this immediately gives the missing conditions (4.17) in (B) and (4.19) in (C) for
i = j. To check (4.20) in (C) for i = j, note that in Case 3 we have

|QH∗
j
(y)|< 2ηρ j ≤ 4η |y|

for each point of Σ in the annulus Fj. However, when y ∈C(δ ,H∗
j )∩∂Br for some ρ j ≤ r ≤ 2ρ j, then

|QH∗
j
(y)|

(4.2)
≥ δ |y|

(4.13)
≥ 5η |y|,

so that y cannot be a point of Σ. This gives (4.20) for i = j.
Now the crucial thing is to define the next radius ρ j+1 and take care of the linking condition (4.21)

for i = j +1.

The next radius and homotopies from large spheres to smaller tilted ones. Set

K j+1
t := Ct(δ ,H j+1), (4.37)

and define
ρ j+1 := inf{t > ρ j : Σ∩K j+1

t ∩∂Bt 6= /0}. (4.38)

Notice that condition (4.20) guarantees that ρ j+1 > 2ρ j. This verifies (4.15) in Condition (A) for
i = j +1. Now we define

S j+1 := Tj+1∪ (K j+1
ρ j+1 \ intBρ j), (4.39)

and check that Conditions (A)–(F) are satisfied.
Indeed, S j+1 ⊂ S j ∪K j+1

ρ j+1 ⊂ Bρ j ∪Bρ j+1 by Condition (A) for i = j, which implies that (A) holds
for i = j +1 as well. Next,

S j+1 \Bρ j = K j+1
ρ j+1 \Bρ j = Cρ j+1(δ ,H j+1)\Bρ j ,

since S j ⊂ Bρ j by Condition (A) for i = j. Hence (4.16) holds for i = j + 1. The inclusion Tj+1 ⊂
S j ∪Bρ j ⊂ Bρ j and other conditions involving Tj+1 have already been checked; they follow directly
from the definition of Tj+1; see (4.36). Using (4.18) for i = j and the definition of ρ j+1 > 2ρ j in (4.38)
we infer that (4.18) holds for i = j +1, and (4.19) for i = j. We also have

Σ∩∂Br ∩C(δ ,H j+1) = /0 for each r ∈ [ρ j,ρ j+1). (4.40)

Also Condition (D) follows directly from the definition of ρ j+1.
Now we turn to the proof of the linking condition, (4.21), for i = j +1.

27



The definition (4.38) of ρ j+1 implies that each sphere Sn−m−1(z,r0,Vj+1) where z ∈ H j+1, |z| <
ρ j+1

√
1−δ 2 and the radius r0 is such that

M0 := Sn−m−1(z,r0,Vj+1)⊂ intS j+1∩{y ∈ Rn : ρ j+1/2 < |y|< ρ j+1}

can be homotopically deformed to

M1 := Sn−m−1(0,r1;Vj+1)⊂ intS j+1∩{y ∈ Rn : ρ j+1/2 < |y|< ρ j+1}, r2
1 := |z|2 + r2

0,

without meeting any points of Σ, so that the linking invariant used in (4.21) is preserved. One of the
possible homotopies is to move the base point z to 0 along the segment z(t) = (1− t)z, t ∈ [0,1], at the
same time increasing the radius from r0 = r(0) to r1 = r(1) so that

ρ
2 := |z(t)|2 + r(t)2

remains constant for all t ∈ [0,1]; in this way, we simply slide the (n−m− 1)-dimensional spheres
along the surface of a fixed (n−1)-sphere, staying all the time in the interior of S j+1 intersected with
the annulus {y ∈ Rn : ρ j+1/2 < |y|< ρ j+1}. By Lemma 3.2 we have

lk2 (Σ,M0) = lk2 (Σ,M1) . (4.41)

Next, we may homotopically deform the sphere M1 to another sphere of radius r2,

M2 := Sn−m−1(0,r2;Vj+1), r2 =
8
9

ρ j ∈ (ρ j/2,ρ j) .

We just shrink the radius linearly, staying all the time in the (n−m)-dimensional subspace Vj+1. It is
clear that all the flat spheres realizing this homotopy M1 ∼ M2 stay in the interior of S j+1 (by (4.18)
for i = j +1 and the definition of Tj+1 in (4.36)) and do not contain any points of Σ, so that, again by
Lemma 3.2,

lk2 (Σ,M1) = lk2 (Σ,M2) . (4.42)

But M2 can be homotopied — still in the interior of S j+1 — to another sphere,

M3 := Sn−m−1(0,r2;Vj),

which has the same radius r2 but is slightly tilted; therefore,

lk2 (Σ,M2) = lk2 (Σ,M3) . (4.43)

To check this, we perform two steps. First we move each point y of M2 ⊂Vj+1 along the segment that
joins y to its projection πVj(y). This gives an ellipsoid which is nearly spherical and has all axes at least
(1− ε1)r2 because of the condition (4.31) for the angle between Vj and Vj+1. Next, we continuously
blow up this ellipsoid, moving each of its points along the rays that emanate from 0 to points of M3.
Because of the smallness condition (4.11) for the constants that we use, each segment Iy with one
endpoint at y ∈ M2, |y| = 8

9 ρ j, and the other at πVj(y) is certainly contained in the interior of S j (i.e.
far away from Σ), as

|y−πVj(y)| ≤<)(Vj,Vj+1)|y| ≤ 3c2(δ +η)r2 < 3c2(δ +η)ρ j <
1
3

ρ j ,

28



so that |πVj(y)|> 8
9 ρ j− 1

3 ρ j > 1
2 ρ j > 2ρ j−1. Thus, invoking Lemma 3.2 one more time, and applying

the inductive assumption, i.e. the linking condition (4.21) for i = j, we finally obtain

lk2 (Σ,M0) = lk2 (Σ,M3) = 1

This gives (4.21) of (E) for i = j +1.
It is now easy to establish the big projection property of (F) for i = j + 1. We do this as in the

first step of the proof: invoking Lemma 3.5, we conclude that each flat (n−m)-dimensional disk
Dn−m(z,r;Vj+1), with z and r as in (E) for i = j +1, must contain at least one point of Σ. Therefore,

πH j+1(Σ∩Dn−m(z,r;Vj+1)) = {z} for all z ∈ H j+1 with |z|< ρ j+1

√
1−δ 2.

All disks Dn−m(z,r;Vj+1) are contained in Bn
ρ j+1

so that

H j+1∩Bn
ρ j+1

√
1−δ 2 ⊂ πH j+1(B

n
ρ j+1

∩Σ).

This gives (4.22) in (F) for i = j +1, and finishes the proof of all conditions in the list (A)–(F) in the
iteration step.

Since we have established Condition (E) in the iteration step and (4.15) holds, too, we can deduce
that Case 3 can happen only finitely many times, depending on the position x on Σ and on the shape
and size of Σ:

diamΣ≥ ρi > 2ρi−1 > · · ·> 2i−1
ρ1 > 2i−1r0(x),

whence the maximal number of iteration steps is bounded by

1+ log(diamΣ/r0(x))/ log2 .

This concludes the consideration of Case 3, and the whole proof of Lemma 4.3 . 2

4.4 Bounds for the stopping distances and uniform Ahlfors regularity

We shall now derive Lemma 4.4 and Theorem 1.2 from Lemma 4.3. This is a relatively easy task at
this stage. We shall just relay on estimates for the Eq-energy in the neighbourhooud of a good couple
(x,y) ∈ Σ×Σ.

Proof of Lemma 4.4. Since A (δ )⊂A (δ ′) for δ ≤ δ ′, we assume from now on that δ = δ (m) is the
constant of Lemma 4.3.

Fix ε > 0 small (to be specified later on). Assume that d(Σ) = infΣ∗ ds < ε and select a point x∈ Σ∗

such that ds(x) < ε . Use Lemma 4.3 to select a (λ ,η ,d)–good couple (x,y) ∈ Σ×Σ. Let

S := S(x,y;η ,ds(x))

be as in Definition 4.1 (ii), and let B := B(y,η2ds(x)). Applying Lemma 4.2 we estimate

Eq(Σ) ≥
∫

S

∫
Σ∩B

(
1

Rtp(z,w)

)q

dH m(w)dH m(z)

> H m(S)H m(Σ∩B)
(

η

9ds(x)

)q

by Lemma 4.2

≥ λω(m)η2mds(x)m ·KΣη
2mds(x)m

(
η

9ds(x)

)q

by Definitions 4.1 and 2.10

= KΣ9−q
λη

4m+qds(x)2m−q,
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which implies

ε
q−2m > ds(x)q−2m

> KΣλη
4m+q9−qEq(Σ)−1,

a contradiction for

ε :=
(

1
2

KΣ λ η
4m+q9−qEq(Σ)−1

)1/(q−2m)

.

This proves the first part of the lemma.
Now, for an arbitrarily small σ ∈ (0,1) pick x0 ∈ Σ∗ such that d(Σ)≤ d0 = ds(x0) < (1+σ)d(Σ).

Select y0 ∈ Σ so that (x0,y0) is a (λ ,η ,d0)–good couple. We have ds(y0)≥ d(Σ) > d0/(1+σ), so that
by Lemma 4.3 (ii)

H m(
Σ∩Bn(y,r)

)
≥ (1−δ

2)m/2
ω(m)rm ≥ 1

2
ω(m)rm

certainly holds for r = η2d0 < d0/(1 + σ) since η � 1 by (4.11). Estimating the energy one more
time, as before, we obtain

Eq(Σ) ≥
∫

S(x0,y0;η ,d0)

∫
Σ∩B(y0,η2d0)

(
1

Rtp(z,w)

)q

dH m(w)dH m(z)

>
λ

2 ·9q ω(m)2
η

4m+q d2m−q
0 by Lemma 4.2.

Thus,
(1+σ)q−2md(Σ)q−2m > dq−2m

0 > cEq(Σ)−1 ,

where c = (2 · 9q)−1ω(m)2λη4m+q, as in (4.10). Letting σ → 0, we obtain (4.9) and conclude the
whole proof. 2

Proof of Theorem 1.2. By the lower bound (4.9) for stopping distances, the inequality

H m(Σ∩B(x,r))≥ (1−δ
2)m/2

ω(m)rm ≥ 1
2

ω(m)rm

holds for each x ∈ Σ∗ and each r ≤ d(Σ)≤ ds(x). By density of Σ∗ in Σ, we obtain

H m(Σ∩B(x,r))≥ 1
2

ω(m)rm

for all x ∈ Σ and r ≤ d(Σ). This implies Theorem 1.2 with

a1 :=
(

λ ω(m)2 η4m+q

2 ·9q

)1/(q−2m)

,

where λ = λ (n,m) and η = η(m) are the constants introduced in Lemma 4.3.

Remark 4.5. As we have already mentioned in the introduction, the proof above yields a result which
is stronger than the formal statement of Theorem 1.2. In fact, the result holds also for all Σ ∈ A (δ )
with 0 < δ ≤ δ (m), where δ (m) is the positive constant of Lemma 4.3, and this is a wider class of
sets than the one we used in the introduction.
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5 Existence of tangent planes

In this section we prove that for each point x∈Σ there exists a plane TxΣ∈G(n,m) such that dist(x′,x+
TxΣ) = o(|x′−x|) for x′ ∈ Σ, x′→ x. Moreover, the mapping x 7→ TxΣ is of class Cκ , κ = (q−2m)/(q+
4m) > 0. A posteriori it turns out that if δ > 0 is small enough and Σ ∈A (δ ) is an admissible surface
with Eq(Σ) < ∞ for some q > 2m, then the mock tangent planes Hx defined a.e. on Σ must coincide
with the classically understood TxΣ.

The idea is to combine the results of the previous section with energy bounds and show that the
P. Jones’ β -numbers of Σ satisfy a decay estimate of the form βΣ(x,r) . E1/(q+4m)rκ . This alone
would not be enough, but we already know that Σ has big projections. Adding this ingredient, we
are able to prove that Σ is in fact a C1,κ -manifold. Moreover, in each ball of radius ≈ Eq(Σ)−1/(q−2m)

centered at x ∈ Σ the surface Σ is a graph of a C1,κ function f : P→ P⊥ over P = TxΣ ∈ G(n,m).
The core of this section is formed by an iterative construction, presented in Section 5.3, which

yields the existence of tangent planes and estimates for their oscillation. At each iteration step, we
need to check that the β -numbers decrease sufficiently fast as the length scale shrinks to zero. At
the same time, we have to guarantee that the linking conditions which imply the existence of big
projections are also satisfied. To make the presentation of that proof easier to digest, we introduce an
ad-hoc notion of trapping boxes (Section 5.1) and prove an auxiliary lemma which is then used in the
iteration.

5.1 Trapping boxes

Everywhere in this section R1 denotes the radius specified in Theorem 1.2 ascertaining the uniform
Ahlfors regularity of surfaces with bounded energy.

For the rest of the whole section, we fix δ ,η > 0 small so that (4.11) is satisfied and all claims of
Lemma 4.3 are fulfilled.

Definition 5.1. Assume that Σ ∈A (δ ), x ∈ Σ, 0 < r < R1, θ ∈ (0,δ ] and H ∈ G(n,m). We say that a
closed set F ⊂ Bn(x,r) is a (θ ,H)-trapping box for Σ in Bn(x,r) if and only if the following conditions
are satisfied:

(i) Σ∩Bn(x,r) ⊂ F;

(ii) {y ∈ Bn(x,r) : dist(y,x+H)≤ θr} ⊂ F;

(iii) if z ∈ x+H satisfies |z− x|< (1−θ 2)1/2r, then there exists a t > 0 such that t2 + |z− x|2 < r2,
the sphere Sn−m−1(z, t;H⊥) is contained in the interior of Bn(x,r)\F and

lk2 (Σ,Sn−m−1(z, t;H⊥)) = 1 .

Thus, informally, a trapping box is a subset of B = Bn(x,r) which is at least as large as a cylindrical
neighbourhood of x +H in B (of size specified by the parameter θ ), and gives us some control of the
location of Σ∩B and of its projections onto H.

If Σ ∈A (δ ), x ∈ Σ∗ and H = Hx is given by Condition (H3) of Definition 2.10, then — for radii
r < r0(x) — a simple example of a trapping box is provided by the cylinder

{y ∈ Bn(x,r) : dist(y,x+H)≤ δ r}.

It satisfies all conditions of Definition 5.1 for θ = δ ; in particular, Lemma 3.3 guarantees Condition
(iii).

Another example is given by the following.

31



Proposition 5.2. Let δ (m) be the small constant of Lemma 4.3. Assume that Σ∈A (δ ), δ ∈ (0,δ (m)],
Eq(Σ) ≤ E, and R1 denotes the radius specified in Theorem 1.2. Then, for each x ∈ Σ and each r ∈
(0,R1) there exists a plane H ∈ G(n,m) such that

F := {y ∈ Bn(x,r) : dist(y,x+H)≤ δ r}∪Bn(x,r/2) (5.1)

is a (δ ,H)-trapping box for Σ in Bn(x,r).

Proof. One can check that conditions (A)–(F) stated at the beginning of the proof of Lemma 4.3
combined with the lower bound for stopping distances obtained in Lemma 4.4 imply the statement of
Proposition 5.2 for all points x ∈ Σ∗. (To see this, look at condition (4.30) of Case 3, which is the only
case when the iterative construction is continued. It has been designed in such a way that the union of
{y ∈ Bn(x,r) : dist(y,x+H∗

j )≤ 2ηρ j} and Bn(x,ρ j/2) be a trapping box for Σ in B(x,2ρ j); condition
(E), cf. (4.21), implies the existence of many spheres linked with Σ so that (iii) of Definition 5.1 is
also satisfied. Since η ≤ δ/5 by (4.13), the claim of the proposition holds for all r ∈ [ρ j,ρ j+1] with
H = H∗

j , and we can certainly increase r up to the infimum d(Σ) of all stopping distances, which
satisfies d(Σ)≥ R1 by Lemma 4.4.)

Assume now that x 6∈ Σ∗. Fix r ∈ (0,R1) and select a sequence xl ∈ Σ∗, xl → x as l → ∞. For
each l = 1,2, . . ., let Hl whose existence is given by the statement of the proposition at points xl ∈ Σ∗.
Passing to a further subsequence, we may assume that Hl → H ∈ G(n,m) as l → ∞. The trapping
boxes Fl corresponding to xl and Hl via (5.1) converge then in Hausdorff distance to a closed set F
given by (5.1) for x and H. Since Σ is closed, Σ∩Bn(x,r) must be contained in F . Condition (ii) of
Definition 5.1 is trivially satisfied, and condition (iii) is easily verified by using homotopical invariance
of the linking number as we already did before (one has to slightly tilt the spheres in Bn(x,r) \F to
obtain spheres in Bn(xl,r)\Fl). 2

The main idea of this section is to show that once we have a trapping box of the form (5.1),
possibly with δ replaced by some smaller number θ > 0, then, under a certain balance condition for
ϕ , r and the energy of Σ, we can perturb the plane H slightly to a new position H1 and find a smaller,
cylindrical (ϕ,H1)-trapping box. We make this precise in the next subsection.

5.2 Energy bounds and trapping boxes in small scales

We introduce two new constants

c4 := 3(c3 +1), c5 :=
16m ·9q

ω(m)2 . (5.2)

Recall from Lemma 2.4 that the constant c3 = 14m ·20m depends on m only.

Lemma 5.3. Assume that H ∈ G(n,m), x ∈ Σ, 0 < r < R1, 0 < θ ≤ δ , q > 2m. Let Σ ∈ A (δ ),
δ ∈ (0,δ (m)] be an admissible surface with Eq(Σ)≤ E. Suppose that

Fθ ,r(H) := {y ∈ Bn(x,r) : dist(y,x+H)≤ θr}∪Bn(x,r/2)

is a (θ ,H)-trapping box for Σ in Bn(x,r). If 0 < ϕ < 1/(6c4) satisfies the balance condition

ϕ
4m+qr2m−q ≥ c5E , (5.3)

then there exists a plane H1 ∈ G(n,m) such that
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(i) <)(H,H1)≤ 2c2θ ;

(ii) The cylinder
F := {y ∈ Bn

2r : dist(y,x+H1)≤ c4ϕ ·2r} (5.4)

is a (c4ϕ,H1)-trapping box for Σ in Bn(x,2r).

The main point is that once we fix a finite energy level E, and r sufficiently small, then the condi-
tion q > 2m guarantees that there are numbers ϕ > 0 which satisfy the balance condition (5.3) and are
such that c4ϕ is (much) smaller than θ . Since the angle <)(H,H1) is controlled due to (i), the lemma
can be applied iteratively. This will be done in the next subsection.

Remark 5.4. If we fix an arbitrary point y ∈ (Bn(x,r)∩Σ) ⊂ Fθ ,r(H) such that 9
10(1− θ 2)1/2r ≤

|y− x|< r, then the plane H1 in Lemma 5.3 can be chosen so that y− x ∈ H1, as can be seen from the
first step of the following proof.

Proof of Lemma 5.3. Fix an arbitrary orthonormal basis (e1, . . . ,em) of H and let

d :=
9

10
(1−θ

2)1/2r .

Since θ ≤ δ , we have d > 2
3 r by (4.12). Set zi = dei, i = 1, . . . ,m.

Step 1. Choice of H1. Using Condition (iii) of Definition 5.1, Lemma 3.2 and Lemma 3.5, we conclude
that each disk

Di := Dn−m(zi,θr;H⊥), i = 1, . . . ,m,

contains7 a point yi ∈ Σ. Set H1 = span(y1, . . . ,ym). Letting hi = d−1yi, we use θ ≤ δ and (4.11) to
estimate

|hi− ei|= d−1|yi− zi| ≤
θr
d

< 2θ <
ε1

2
,

and invoke Lemma 2.3 to obtain <)(H,H1) < 2c2θ . (This initial step of the proof shows why Re-
mark 5.4 is satisfied. We can work with an orthonormal basis ei such that e1 = πH(y)/|πH(y)|.)

Now, set Λ = 1/4m.
Step 2. For z near 0, most of the Hz are close to H1. We shall establish the following: for each
i = 1, . . . ,m, the couple of points x = 0 and yi is not a (Λ,ϕ,r)–good couple.

Assume that the opposite were true and for some i = 1, . . . ,m we had a (Λ,ϕ,r)–good couple
(x,yi). Then, using the two estimates

H m(S(0,yi;ϕ,r)) ≥ Λω(m)ϕ2mrm, (5.5)

H m(Σ∩Bn(yi,ϕ
2r)) ≥ 1

2
ω(m)ϕ2mrm, (5.6)

where (5.6) comes from Theorem 1.2, and the inequality of Lemma 4.2 to estimate 1/Rtp, we would
obtain a lower bound for the energy,

E ≥
∫

S(0,yi;ϕ,r)

∫
Σ∩Bn(yi,ϕ2r)

1
Rtpq(z,w)

dH m(w)⊗dH m(z)

≥ Λ

2
ω(m)2

ϕ
4mr2m

(
1
9

ϕ

r

)q

(5.7)

=
ω(m)2

8m ·9q ϕ
4m+qr2m−q ≥ 2E

7There are points of Σ in all disks with slightly larger radii, and Σ is closed.
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by (5.2) and the balance condition (5.3); this contradiction proves that the claim of Step 2 does hold.
In particular, since the condition r/2 < |yi|< 2r is satisfied for each i, we have

H m
( m⋃

i=1

S(0,yi;ϕ,r)
)

≤
m

∑
i=1

H m(S(0,yi;ϕ,r)
)

(5.8)

< mΛω(m)ϕ2mrm =
1
4

ω(m)ϕ2mrm .

Step 3. The new box contains Σ∩ Bn(x,2r). We shall show that the cylinder F defined by (5.4)
contains Σ∩Bn

2r.
Again, we argue by contradiction. Suppose that there exists ζ ∈ Σ∩Bn

2r such that ζ 6∈ F . Set

G :=
(
Σ
∗∩Bn(0,ϕ2r)

)
\

m⋃
i=1

S(0,yi;ϕ,r) .

By Theorem 1.2 and (5.8), we have

H m(G)≥ 1
4

ω(m)ϕ2mrm , (5.9)

and due to the definition of S(0,yi;ϕ,r) we know that

|QHz(yi− z)|< ϕr, z ∈ G, i = 1, . . . ,m. (5.10)

Fix z ∈ G. (5.10) yields |QHz(yi)|< ϕr + |z| ≤ 2ϕr. Thus, the basis v1, . . . ,vm of W := Hz given by

vi = yi−QHz(yi), i = 1, . . . ,m,

satisfies |vi− yi| ≤ 2ϕr for each i. Letting wi := d−1vi, we check that

|wi−hi|= d−1|vi− yi| ≤
2ϕr

d
< 3ϕ � ε1

2
,

as 6ϕ < (c4)−1 � 10−1(1+10m)−1 = ε1. Invoking Lemma 2.4 for H = H1 and W = Hz, we conclude
that

<)(H1,W )≡<)(H1,Hz)≤ 3c3ϕ .

Now, since ζ 6∈ F , we have |QH1(ζ )|> 2c4ϕr, and

|QH1(ζ )−QW (ζ )| ≤<)(H1,W ) |ζ | ≤ 6c3ϕr .

Thus, for w ∈ Bn(ζ ,ϕ2r) and z ∈ G⊂ B(0,ϕ2r)

|QHz(w− z)| ≡ |QW (w− z)| = |QW (ζ − z)−QW (ζ −w)|
≥ |QW (ζ )|− |z|−ϕ

2r

≥ |QH1(ζ )|− |QH1(ζ )−QW (ζ )|−2ϕ
2r

> 2c4ϕr−6c3ϕr−2ϕ
2r ≥ 5ϕr,

since c4 satisfies (5.2) and 2ϕ2 ≤ ϕ . On the other hand, we certainly have |w− z| ≤ 3r for every point
w ∈ Bn(ζ ,ϕ2r). This yields

1
Rtp(z,w)

=
2|QHz(w− z)|
|w− z|2

>
2 ·5ϕr
(3r)2 >

ϕ

r
, for z ∈ G, w ∈ Bn(ζ ,ϕ2r).
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We may now estimate the energy analogously to (5.7) and obtain would obtain a lower bound for the
energy,

E ≥
∫

G

∫
Σ∩Bn(ζ ,ϕ2r)

1
Rtpq (z,w)dH m(w)dH m(z)

>
1

4 ·2
ω(m)2

ϕ
4mr2m

(
ϕ

r

)q
(5.11)

>
2
c5

ϕ
4m+qr2m−q ≥ 2E.

This is again a contradiction, proving that Σ∩Bn
2r ⊂ F .

Step 4. The linking condition. Since we have established <)(H,H1) ≤ 2c2θ ≤ 2c2δ
(4.11)
< ε1 in the

first step of the proof, the sphere
M1 := Sn−m−1(0, 8

9 r;H⊥
1 )

is contained in the interior of Bn
r \F and we have dist(M1,Σ) ≥ 8

9 r− 2c4ϕr > 5
9 r, since all points of

Σ∩Bn
2r are in the cylinder F defined in (5.4), and ϕ < 1/6c4. Thus, we may deform M1 homotopically

to
M0 := Sn−m−1(0, 8

9 r;H⊥),

so that the whole family of spheres realizing the homotopy stays in Bn
r \F , i.e. far away from Σ. (This

can be done precisely as in the verification of (4.43) at the end of the proof of Lemma 4.3: we move
the points of M1 to their projections onto H⊥, and then deform the resulting ellipsoid to obtain the
round sphere M0.)

Thus,
lk2 (M1,Σ) = 1

by Lemma 3.2. Now, every other sphere Sn−m−1(z, t;H⊥
1 ), with z ∈ H1, |z| < (1− (c4ϕ)2)1/2 ·2r and

c4ϕ ·2r < t < (2r)2−|z|2, i.e. every (n−m−1)-sphere parallel to H⊥
1 and contained in the interior of

Bn
2r \F , can obviously be deformed homotopically to M1 without hitting points of Σ, since Σ∩Bn ⊂ F .

Thus, again by Lemma 3.2, we conclude that Condition (iii) of Definition 5.1 is satisfied for F in Bn
2r.

This completes the whole proof of the lemma. 2

5.3 The tangent planes arise: an iterative construction

In this subsection, we apply Lemma 5.3 iteratively and prove the following.

Theorem 5.5. Let δ (m) be the constant of Lemma 4.3. Assume that Σ∈A (δ ) for some δ ∈ (0,δ (m)],
Eq(Σ) ≤ E, q > 2m. Then Σ is an embedded m-dimensional submanifold of class C1,κ , κ = (q−
2m)/(q+4m).

In fact, Theorem 5.5 will be just a corollary of another result, which gives a lot of more precise,
quantitative information.

Theorem 5.6. Let δ (m) be the constant of Lemma 4.3. Assume that Σ∈A (δ ) for some δ ∈ (0,δ (m)],
Eq(Σ)≤ E, q > 2m. Then for each x ∈ Σ there exists a unique plane TxΣ ∈ G(n,m) (which we refer to
as tangent plane of Σ at x) such that

dist(x′,x+TxΣ)≤C(n,m,q,E)|x′− x|1+κ for all x′ ∈ Σ, x′→ x, (5.12)

Moreover, there exists a constant a2 = a2(n,m,q) > 0 with the following property.
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Whenever x,y ∈ Σ are such that

0 < d := |x− y|< R2 := a2E−1/(q−2m), (5.13)

then
<)(TxΣ,TyΣ) < c6E1/(q+4m)|x− y|κ , κ =

q−2m
q+4m

(5.14)

for some constant c6 depending only on n,m and q. Moreover, U := Σ∩ intBn(x,R2) is an open m-
dimensional topological disk, the orthogonal projection πTxΣ onto TxΣ restricted to U is injective, and
each cylinder

KN := {w ∈ Bn(x,2dN) : dist(w,x+TxΣ)≤ βN ·2dN}, N = 1,2, . . . (5.15)

with
dN :=

d
5N−1 , βN = c6E1/(q+4m)dκ

N <
1

20
(5.16)

is a (βN ,TxΣ)-trapping box for Σ in Bn(x,2dN).

Proof. A rough plan of the proof is the following. We shall first show, using Lemma 5.3 iteratively,
that for each x ∈ Σ there exists a plane H∗

x ∈ G(n,m) such that for x,y sufficiently close we have
<)(H∗

x ,H∗
y ) . |x− y|κ . As a byproduct, we shall obtain a sequence of trapping boxes around each H∗

x ,
allowing us to show that H∗

x is in fact unique. Finally, we set TxΣ = H∗
x and verify the statements

concerning πTxΣ.
Step 1. Fix x,y ∈ Σ and assume that (5.13) does hold for a sufficiently small positive constant a2 that
shall be specified later on. Fix r1 > 0 such that

2
3

r1 <
9

10
(1−δ

2)1/2r1 ≤ |x− y|= d < r1 < R2. (5.17)

Invoking Proposition 5.2 for x and r = r1, we obtain a plane H ∈ G(n,m) such that

F := {w ∈ Bn(x,r1) : dist(w,x+H)≤ δ r1}∪Bn(x,r1/2)

is a (δ ,H)-trapping box for Σ in Bn(x,r1).
Now, for N = 1,2, . . . we set

rN :=
r1

5N−1 , (5.18)

ϕN := c1/(q+4m)
5 E1/(q+4m)rκ

N , κ =
q−2m
q+4m

, (5.19)

θN := 10c4ϕN . (5.20)

We have ϕN . rκ
N → 0 as N →∞; the constant a2 will be chosen later, in (5.31) below, so small that δ

and r1 shall satisfy the assumptions of Lemma 5.3. The choice of r1 guarantees that

rκ
N ≤

(
3
2

)κ

dκ
N <

3
2

dκ
N for all N = 1,2, . . .. (5.21)

Apply Lemma 5.3 and Remark 5.4 with θ = δ , r = r1 and ϕ = ϕ1 to choose H1 ∈ G(n,m) such
that y− x in H1 and the cylinder

F1 := {w ∈ Bn(x,2r1) : dist(w,x+H1)≤ 2c4ϕ1r1}
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is a (c4ϕ1,H1)-trapping box for Σ in Bn(x,2r1). (The plane H1 will serve, roughly speaking, as a sort
of average position for all tangent planes to Σ in Bn(x,r1).)
Step 2. The choice of H∗

x . Since r2 = r1/5, we have 2c4ϕ1r1 = θ1r2, and the intersection F1∩Bn(x,r2)
provides a (θ1,H1)-trapping box for Σ in Bn(x,r2). Invoking Lemma 5.3 again, we find a plane H2 ∈
G(n,m) such that

<)(H2,H1)≤ 2c2θ1

and the cylinder F2 := {w ∈ Bn(x,2r2) : dist(w,x+H2)≤ 2c4ϕ2r2} is a (c4ϕ2,H2)-trapping box for Σ

in Bn(x,2r2). Proceeding inductively, we find a sequence of planes HN ∈ G(n,m) such that for each
N = 1,2, . . . the cylinder

FN := {w ∈ Bn(x,2rN) : dist(w,x+HN)≤ 2c4ϕNrN} (5.22)

is a (c4ϕN ,HN)-trapping box for Σ in Bn(x,2rN) and we have the estimate

<)(HN+1,HN)≤ 2c2θN for all N = 1,2, . . . (5.23)

Since ∑θN < ∞, the planes HN converge to some plane H∗
x ∈ G(n,m) such that

<)(H∗
x ,HN) ≤

∞

∑
j=N

<)(H j+1,H j)

≤ 20c2c4

∞

∑
j=N

ϕ j by (5.23) and (5.20)

= 20c2c4c1/(q+4m)
5 E1/(q+4m) rκ

N

∞

∑
i=0

5−iκ by (5.18) and (5.19)

≤ Arκ
N , N = 1,2, . . . , (5.24)

with

A :=
40c2c4c1/(q+4m)

5 E1/(q+4m)

κ
. (5.25)

For the last inequality above, we have used an elementary estimate 5κ/(5κ − 1) ≤ 2/κ which holds
for each κ ∈ (0,1)8.

Now, note that since y−x∈H1 the initial cylinder F1 is such that F1∩Bn(y,r2) provides a (θ1,H1)-
trapping box for Σ in Bn(y,r2). Thus, replacing the roles of x and y from the second step on, we may
run a similar iteration and obtain a plane H∗

y such that

<)(H∗
y ,H1)≤ Arκ

1 , (5.26)

together with a sequence of planes PN →H∗
y (with P1 = H1) and appropriate trapping boxes determined

by those planes. By the triangle inequality, (5.24) for N = 1 and (5.26) yield

<)(H∗
x ,H∗

y )≤ 2Arκ
1 . (5.27)

Once the uniqueness of H∗
x is established, we identify H∗

x with TxΣ . The estimate (5.27) combined
with (5.25) will yield the desired (5.14) (note that r1 ≈ |x− y| up to a constant factor which is less
than 2).

8Indeed, f (κ) = κaκ ≤ 2(aκ −1) = g(κ) for all κ ∈ (0,1) and a > e, as f (0) = g(0) and f ′ < g′ on (0,1).
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Step 3. Trapping boxes around H∗
x . It is now easy to check that tilting the cylinders FN and enlarging

them slightly, we can obtain new trapping boxes KN for Σ in Bn(x,2rN).
Fix w∈ FN . For sake of brevity, let Q∗ and QN denote the orthogonal projections of Rn onto (H∗

x )⊥

and H⊥
N . We have

|Q∗(w− x)| =
∣∣QN(w− x)+(Q∗(w− x)−QN(w− x))

∣∣
≤ 2c4ϕNrN +<)(H∗

x ,HN)|w− x| (5.28)

≤ 2Arκ
N ·2rN ,

as c4ϕN ≤ Arκ
N . Hence, by (5.21),

|Q∗(w− x)|< 9Adκ
N ·dN .

Therefore, if βN is defined by (5.16) with

c6 := 10AE−1/(q+4m) = 400κ
−1c2c4c1/(q+4m)

5 , (5.29)

then we have |Q∗(w− x)|< βNdN for each w ∈ FN .
Thus the cylinder

KN := {w ∈ Bn(x,2dN) : dist(w,x+H∗
x )≤ βN ·2dN}, N = 1,2, . . . (5.30)

contains FN ∩Bn(x,2dN). It follows that Σ∩Bn(x,2dN) ⊂ KN , as FN was a trapping box for Σ in a
larger ball Bn(x,2rN). It is easy to see that the linking condition of Definition 5.1 is also satisfied (we
just take a smaller set of spheres that are slightly tilted) so that KN indeed is a (βN ,H∗

x )-trapping box
for Σ in Bn(x,2dN).

Let us now specify a2. We choose this constant so that

c6aκ
2 <

1
20

and 0 < a2 < a1, (5.31)

where a1 is the constant of Theorem 1.2. Then, by (5.13),

β1 = c6E1/(q+4m)|x− y|κ

< c6E1/(q+4m)Rκ
2 (5.32)

= c6E1/(q+4m)aκ
2 E−1/(q+4m) = c6aκ

2 <
1
20

.

For these choices of c6 and a2 all applications of Lemma 5.3 were justified. Now, returning to (5.27),
we obtain

<)(H∗
x ,H∗

y ) ≤ 2Arκ
1

(5.29)=
c6

5
E1/(q+4m)rκ

1

(5.17)
<

c6

5
E1/(q+4m)

(3
2
|x− y|

)κ

(5.33)

< c6E1/(q+4m)|x− y|κ .

In particular, as |x− y|< R2, we also have

<)(H∗
x ,H∗

y ) < c6E1/(q+4m)Rκ
2 . (5.34)
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To finish the whole proof, it remains to demonstrate that H∗
x is indeed unique and that Σ ∩

intBn(x,R2) = U is an open m-dimensional disk such that the projection πH∗
x

∣∣
U is injective.

Step 4. Uniqueness of H∗
x . Since formally Lemma 5.3 alone does not guarantee that the choice of

each new plane HN is unique, we must now show that H∗
x = limHN is unique.

Suppose that this were not the case, and that choosing LN 6= HN in some steps of the iteration we
could obtain a different limiting plane L, with <)(L,H∗

x ) > 0.
Select w ∈ H∗

x with |w| = 1 such that |w−πL(w)| > ϑ > 0. Set V := (H∗
x )⊥ and without loss of

generality suppose that x = 0. The spheres

MN := Sn−m−1(dNw,3βNdN ;V )

are contained in intBn(0,2dN), away from Σ since βN ≤ β1 < 1/20, and by Lemma 3.2 , are nontriv-
ially linked with Σ since KN is a (βN ,H∗

x )-trapping box for Σ in Bn(0,2dN). Since L has been obtained
by an analogous iteration process, the cylinders

K̃N := {w ∈ Bn(0,2dN) : dist(w,L)≤ βN ·2dN}

should also provide (βN ,L)-trapping boxes for Σ in Bn(0,2dN). However, taking N so large that 6βN <
ϑ , we obtain dist(dNw,L) = dN |w−πL(w)|> dNϑ > 6βNdN . Thus, the sphere MN is contained in the
interior of Bn(x,2dN)\ K̃N and satisfies the assumptions of Lemma 3.4 with ε = 2βNdN and therefore
is not linked with Σ, a contradiction which proves that H∗

x has to be unique.
Moreover, since KN is a (βN ,H∗

x )-trapping box for Σ in Bn(x,2dN) and βN ≈ dκ
N) one easily con-

cludes that for y ∈ Σ we have

dist(y,x+H∗
x ) = O(|x− y|1+κ) as y→ x,

which justifies the definition TxΣ := H∗
x .

Step 5. Injectivity of the projection. Again, we argue by contradiction. Suppose that there exist
y 6= y1 ∈U ≡ Σ∩ intBn(x,R2) such that πTxΣ(y) = πTxΣ(y1). Without loss of generality suppose that

|x− y1| ≤ |x− y|= d < R2 ;

and let dN ,βN be defined by (5.16). Set v = y1 − y and let QTxΣ, QTyΣ denote the projections onto
(T Σ

x )⊥ = (H∗
x )⊥, (TyΣ)⊥ = (H∗

y )⊥, respectively. As v⊥ TxΣ, we have QTxΣ(v) = v and

|QTyΣ(v)| = |QTxΣ(v)+(QTyΣ(v)−QTxΣ(v))|
≥ |v|

(
1−‖QTxΣ−QTyΣ‖

)
= |v|

(
1−<)(H∗

x ,H∗
y )
)

≥ |v|(1− c6E1/(q+4m)Rκ
2 ) by (5.34)

= |v|(1− c6aκ
2 ) >

19
20
|v|

by (5.31). However, fixing N so that dN+1 < |v| = |y− y1| ≤ dN , we could use the trapping boxes
constructed along with H∗

y , i.e. the cylinders

{w ∈ Bn(y,2dN) : dist(w,y+H∗
y )≤ βN ·2dN}

which contain Σ∩Bn(y,2dN), to estimate by virtue of (5.32)

|QTyΣ(v)| ≤ 2βNdN = 10βNdN+1 ≤ 10β1dN+1 <
1
2
|v|,
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a contradiction.
Since for each d1 < R2 the cylinder

K1 = {w ∈ Bn(x,2d1) : dist(w,x+H∗
x )≤ 2β1d1} (5.35)

is a (β1,H∗
x )-trapping box for Σ in Bn(x,2d1), and β1 < 1/20, we know by now – as d1 can be taken

very close to R2 – that the image of πTxΣ restricted to, say, Σ∩Bn(x,3R2/2), certainly contains the disk
with center at πTxΣ(x) and radius R2. It follows that U = intBn(x,R2)∩Σ is a topological disk, since
πTxΣ was also shown to be injective. 2

Proof of Theorem 1.3. As β1 = c6E1/(q+4m)dκ
1 , it can be checked that Theorem 1.3 stated in the

introduction follows from (5.35) and the definition of a trapping box. One can use the plane H∗
x ∈

G(n,m) to estimate the infimum in the definition (1.5) of β -numbers. 2

5.4 Local graph representations of Σ

We shall now use Theorem 5.6 to construct the graph representations of an admissible surface Σ with
Eq(Σ) < ∞ for some q > 2m. In Section 6, this will be used to show that Σ is in fact a manifold of class
C1,µ for µ = 1−2m/q > κ .

Corollary 5.7. Suppose that Σ ∈A (δ ) for some δ ∈ (0,δ (m)], Eq(Σ) ≤ E, q > 2m. Let a2 > 0 and
R2 = a2E−1/(q−2m) denote the constants introduced in Theorem 5.6. Set R3 = 1

2 R2. Then, for each
x ∈ Σ, the following is true.

There exists a function
f : TxΣ =: P' Rm → P⊥ ' Rn−m

of class C1,κ , κ = q−2m
q+4m , such that f (0) = 0 and ∇ f (0) = 0, and

Σ∩Bn(x,R3) = x+
(

graph f ∩Bn(0,R3)
)

,

where graph f ⊂ P×P⊥ = Rn denotes the graph of f , and

|∇ f (z)−∇ f (w)| ≤ c7E1/(q+4m)|z−w|κ ≤ c7E1/(q+4m) (2R3)κ , z,w ∈ P∩Bn(x,R3), (5.36)

for some constant c7 depending only on n,m,q.

Proof. Without loss of generality suppose that x = 0 ∈ Rn and TxΣ = P = span(e1, . . . ,em), where e j,
j = 1, . . . ,n, form the standard orthonormal basis of Rn. By Theorem 5.6 we know that

πP
∣∣
U : Σ∩Bn(x,R2)→ π(U)⊂ P , U := Σ∩ intBn(x,R2) ,

is invertible. By (5.15) and (5.16) for N = 1, the image of this map contains an m-dimensional disk of
radius R′2 = R2

2− (R2/10)2 > 9
10 R2.

Step 1. We now let

f : = QP ◦
(

πP
∣∣
U

)−1∣∣∣
D

: D→ P⊥, D = int Dm(0,R′2)⊂ P,

so that
D 3 z 7−→ F(z) := (z, f (z)) ∈ P×P⊥ = Rn
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is a natural parametrization of Σ. Note that F(D) contains Σ∩Bn(x,R3) and that f (0) = 0. Both f and
F are continuous.

Step 2. To prove that ∇ f (0) exists and equals 0, use now the definition of f to see that (5.13), (5.15)
and (5.16) of Theorem 5.6 yield

| f (z)|
(5.15)
≤ 2βNdN

(5.16)
≤ C(n,m,q,E)d1+κ

N for all N ∈ N,

whenever F(z) = (z, f (z)) ∈ Bn(0,2dN). (Recall that dN = d1 · 51−N ; we are free to use any d1 < R2
here.) Set ρN := dN(1−β 2

N)1/2; by (5.16), 19
20 dN < ρN ≤ dN . Thus, we also have | f (z)| ≤ const ·ρ1+κ

N
whenever z ∈ Dm(0,2ρN) ⊂ P. As ρN ≈ dN = d151−N for N = 1,2, . . ., this gives | f (z)| = O(|z|1+κ)
near 0 and consequently ∇ f (0) = 0.

We shall now show that F (and hence f ) is differentiable at each z ∈ D. Fix z ∈ D and h ∈ P with
|h| small. Set

L :=
(

πP

∣∣∣
TF(z)Σ

)−1
: P→ TF(z)Σ ↪→ Rn .

We have F(z+h)−F(z) = L(h)+e, where the error e = F(z+h)−F(z)−L(h) satisfies, by definition
of L and F , πP(e) = 0. Thus, e = QP(e), so that

|e| ≤
∣∣∣(QP−QTF(z)Σ

)
(e)
∣∣∣+ ∣∣∣QTF(z)Σ(e)

∣∣∣≤ 1
20
|e|+

∣∣∣QTF(z)Σ(e)
∣∣∣ by (5.14) and (5.16) for N = 1.

Absorbing the first term and using now Theorem 5.6 at x = F(z), we obtain

|e| ≤ 20
19

∣∣∣QTF(z)Σ(e)
∣∣∣= 20

19
dist
(
F(z+h),F(z)+TF(z)Σ

)
= O(|F(z+h)−F(z)|1+κ) . (5.37)

To finish the estimates, note that

|L(h)−h|= |πTF(z)Σ(L(h))−πP(L(h))|
(5.14)
≤ 1

20
|L(h)| ;

therefore, 19
20 |L(h)| ≤ |h| ≤ 21

20 |L(h)|. Using this and (5.37), we now write

|F(z+h)−F(z)| ≤ |L(h)|+ |e| ≤ 20
19

(
|h|+

∣∣∣QTF(z)Σ(e)
∣∣∣)≤ 20

19
(
|h|+ const · |F(z+h)−F(z)|1+κ

)
.

Now, for all |h| sufficiently small we have 20
19 const · |F(z+h)−F(z)|1+κ < 1

2 |F(z+h)−F(z)|, as F is
continuous at z. Thus, the second term can be absorbed, yielding |F(z+h)−F(h)|= O(|h|) as h→ 0.
Plugging this into the right hand side of (5.37), we obtain the desired error estimate |e|= O(|h|1+κ) =
o(|h|) as h→ 0. Therefore, F is differentiable at z with DF(z) = L.

The uniform Hölder bound for ∇ f results now from one more application of the oscillation esti-
mate (5.14) for tangent planes:

Step 3. With

|∂i f (w)−∂i f (z)|=
∣∣∣∣[ ei

∂i f (w)

]
−
[ ei

∂i f (z)

]∣∣∣∣= ∣∣∣∣πTF(w)Σ

([ ei

∂i f (w)

])
−πTF(z)Σ

([ ei

∂i f (z)

])∣∣∣∣
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we can estimate

|∂i f (w)−∂i f (z)| ≤
∣∣∣∣πTF(w)Σ

([ ei

∂i f (w)

])
−πTF(z)Σ

([ ei

∂i f (w)

])∣∣∣∣
+
∣∣∣∣πTF(z)Σ

([ ei

∂i f (w)

])
−πTF(z)Σ

([ ei

∂i f (z)

])∣∣∣∣
≤<)(TF(w)Σ,TF(z)Σ)(1+ |∇ f (w)|2)1/2 +

∣∣∣∣(πTF(z)Σ−πT0Σ)
([ 0

∂i f (w)−∂i f (z)

])∣∣∣∣
(5.14)
< c6E1/(q+4m)|w− z|κ +<)(TF(z)Σ,T0Σ)|∂i f (w)−∂i f (z)|.

Since <)(TF(z)Σ,T0Σ) < 1/2 by (5.14) and our choice of constants, we can absorb the right term on
the left-hand side to conclude.

Now, using a standard cutoff technique, we leave f unchanged on Dm(0,2R2/3), and extend it to
the whole plane P, so that the extension vanishes off Dm(0,3R2/4). The corollary follows. 2

6 Slicing and bootstrap to optimal Hölder exponent

In this section we assume that Σ is a flat m-dimensional graph of class C1,κ having finite tangent-point
energy Eq(Σ). The goal is to show how to bootstrap the Hölder exponent κ to µ = 1−2m/q.

Relying on Corollary 5.7, without loss of generality we can assume that

Σ∩Bn(0,5R) = Graph f ∩Bn(0,5R)

for a fixed number R > 0, where
f : P∼= Rm → P⊥ ∼= Rn−m

is of class C1,κ and satisfies ∇ f (0) = 0, f (0) = 0,

|∇ f | ≤ ε0 :=
ε1

800mc2
= 2−510−3m−2(10m +1)−2 on P. (6.1)

To achieve (6.1), we use (5.36) of Corollary 5.7 and shrink R3 by a constant factor if necessary. The
number ε0 is chosen so that ε0 < ε1/(400mc2) for the constants ε1 and c2 used in Lemma 2.3 and other
auxiliary estimates in Section 2.2. We let F : P → Rn be the natural parametrization of Σ∩B(0,5R),
given by F(x) = (x, f (x)) for x ∈ P; outside Bn(0,5R) the image of F does not have to coincide with
Σ. The choice of ε0 guarantees that, due to Lemma 2.3 (ii),

<)(TF(x)Σ,TF(0)Σ)≤ c2ε0 <
ε1

400m
(6.2)

whenever x ∈ Bn(0,5R)∩P. Thus,

<)(TF(x1)Σ,TF(x2)Σ) <
ε1

200m
<

1
m4m+1 for all x1,x2 ∈ Bn(0,5R)∩P. (6.3)

As in our paper [34, Section 6], we introduce the maximal functions controlling the oscillation of
∇ f at various places and scales,

Φ
∗(ρ,A) = sup

Bρ⊂A

(
osc
Bρ

∇ f
)

(6.4)
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where the supremum is taken over all possible closed m-dimensional balls Bρ of radius ρ that are
contained in a subset A⊂ Bn(0,5R)∩P, with ρ ≤ 5R. Since f ∈C1,κ , we have a priori

Φ
∗(ρ,A)≤Cρ

κ (6.5)

for some constant C which does not depend on ρ,A.
To show that f ∈C1,µ for µ = 1− 2m/q, we check that locally, on each scale, the oscillation of

∇ f is controlled by a main term which involves the local energy and resembles the right hand side of
(1.6), up to a small error, which itself is controlled by the oscillation of ∇ f on a much smaller scale.

Lemma 6.1. Let f , F, Σ, R > 0 and P be as above. If z1,z2 ∈ Bn(0,2R)∩P with |z1− z2|= t > 0, then
for any N > 2 we have

|∇ f (z1)−∇ f (z2)| ≤ 2Φ
∗(t/N,B)+C(N,m,q)E1/q

B tµ (6.6)

where B := Bm( z1+z2
2 , t) is an m-dimensional disc in P, µ := 1−2m/q, and

EB =
∫ ∫

F(B)×F(B)
R−q

tp dH m⊗dH m (6.7)

is the local energy of Σ over B.

Remark. Once this lemma is proved, one can fix an m-dimensional disk Bm(b,s)⊂ Bn(0,R)∩P and
use (6.6) to obtain for t ≤ s

Φ
∗(t,Bm(b,s))≤ 2Φ

∗(2t/N,Bm(b,s+2t)
)
+C(N,m,q)Mq(b,s+2t) tµ (6.8)

where

Mq(b,r) :=
(∫ ∫

F(B(b,r))×F(B(b,r))
R−q

tp dH m⊗dH m
)1/q

.

Fixing N > 2 such that 2κ/Nκ < 1
2 we obtain 2 j · (2/N) jκ → 0 as j → ∞. Using this, one can iterate

(6.8) and show that
osc

Bm(b,s)
∇ f ≤C′(m,q)Mq(b,5s)sµ .

Combining this estimate with Corollary 5.7, we obtain Theorem 1.4 stated in the introduction. Note
that in fact the result holds for all surfaces Σ ∈A (δ ) for δ ∈ (0,δ (m)], where δ (m) is the constant of
Lemma 4.3.

The remaining part of this section is devoted to the

Proof of Lemma 6.1. Fix z1,z2 and the disk B as in the statement of the lemma; we have H m(B) =
ω(m)tm. Pick N > 2 and let EB be the local energy of Σ over B, defined by (6.7). Assume that ∇ f 6≡
const on B, for otherwise there is nothing to prove.

Step 1. Take
K0 :=

(
EB ·N2m

ω(m)−2)1/q
> 0 (6.9)

and set

Y1 := {x1 ∈ B : H 1(Y2(x1))≥ N−mH m(B)} , (6.10)

Y2(x1) :=
{

x2 ∈ B :
1

Rtp(F(x1),F(x2))
> K0 t−2m/q

}
. (6.11)
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We now estimate the local energy to obtain a bound for H m(Y1), shrinking the domain of inte-
gration, as follows:

EB =
∫ ∫

F(B)×F(B)
R−q

tp dH m⊗dH m

≥
∫ ∫

B×B

(
1

Rtp(F(x1),F(x2))

)q

dx1 dx2

≥
∫

Y1

(∫
Y2(x1)

(
1

Rtp(F(x1),F(x2))

)q

dx2

)
dx1

(6.10), (6.11)
> H m(Y1)N−mH m(B)Kq

0 t−2m = EBH m(Y1)Nm(H m(B)
)−1

.

The last equality follows from (6.9). Thus, we obtain

H m(Y1) <
1

Nm H m(B),

and since the radius of B equals t, we obtain

Bm(ai, t/N)\Y1 6= /0 for i = 1,2. (6.12)

Now, select two points ui ∈ Bm(ai, t/N)\Y1 (i = 1,2). By the triangle inequality,

|∇ f (z1)−∇ f (z2)| ≤ |∇ f (z1)−∇ f (u1)|+ |∇ f (u2)−∇ f (z2)|+ |∇ f (u1)−∇ f (u2)|
≤ 2Φ

∗(t/N,B)+ |∇ f (u1)−∇ f (u2)| .

Thus, it remains to show that the last term, |∇ f (u1)−∇ f (u2)|, does not exceed a constant multiple
of E1/q

B tµ . To achieve this goal, we assume that ∇ f (u1) 6= ∇ f (u2) and work with the portion of the
surface parametrized by the points in

G := B\
(
Y2(u1)∪Y2(u2)

)
. (6.13)

By (6.10), G satisfies
H m(G) > (1−2N−m)H m(B) =: C1(q,m) tm . (6.14)

To conclude the whole proof, we shall derive an upper estimate for the measure of G,

H m(G)≤C2(q,m)K0
tm+µ

α
, (6.15)

where α := <)(H1,H2) 6= 0 and Hi := TF(ui)Σ denotes the tangent plane to Σ at F(ui) ∈ Σ for i = 1,2.
Combining (6.15) and (6.14), we will then obtain

α < (C1)−1C2K0tµ =: C3E1/q
B tµ .

(By a reasoning analogous to the proof of Corollary 5.7, this also yields an estimate for the oscillation
of ∇ f .)

Step 2. Proof of (6.15). By (6.3), we have α = <)(H1,H2) < m−14−m−1. By Lemma 2.8 applied to
ε = m−14−m−1, we obtain

H m(G)≤H m(F(G)) < 2H m(
πH1(F(G))

)
,
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so that (6.15) would follow from

H m(
πH1(F(G))

)
≤C4 K0

tm+µ

α
. (6.16)

Now, for ζ ∈ G and i = 1,2 we have by (6.11)

1
Rtp(F(ui),F(ζ ))

=
2
∣∣QHi(F(ζ )−F(ui))

∣∣
|F(ζ )−F(ui)|2

≤ K0t−1+µ .

Let Pi = F(ui)+Hi be the affine tangent plane to Σ at F(ui). Since F is Lipschitz with constant (1+ε0)
and |z−ui| ≤ 2t,

dist(F(ζ ),Pi) = dist(F(ζ )−F(ui),Hi) (6.17)

=
∣∣QHi(F(ζ )−F(ui))

∣∣ ≤ 8K0t1+µ =: h0

for ζ ∈G, i = 1,2. Select the points pi ∈ Pi, i = 1,2, so that |p1− p2|= dist(P1,P2). The vector p2− p1
is then orthogonal to H1 and to H2, and since G is nonempty by (6.14), we have |p1− p2| ≤ 2h0 by
(6.17).

Set p = (p1 + p2)/2, pick a parameter ζ ∈ G and consider y = F(ζ )− p. We have

y = (F(ζ )−F(u1))+(F(u1)− p1)+(p1− p),

so that πH1(y) = πH1(F(ζ )−F(u1))+(F(u1)− p1), and

|y−πH1(y)| = |(p1− p)+F(ζ )−F(u1)−πH1(F(ζ )−F(u1))|
= |(p1− p)+QH1(F(ζ )−F(u1))| .

Therefore, since |p− p1| ≤ h0 and by (6.17), |y−πH1(y)| ≤ h0 +h0 = 2h0. In the same way, we obtain
|y−πH2(y)| ≤ 2h0. Thus,

y
2h0

=
F(ζ )− p

2h0
∈ S(H1,H2),

where S(H1,H2) = {x ∈ Rn : dist(x,Hi) ≤ 1 for i = 1,2} is the intersection of two slabs considered
in Section 2.2. Applying Lemma 2.6 which is possible due to the estimate (6.3) for <)(H1,H2), we
conclude that there exists an (m−1)-dimensional subspace W ⊂ H1 such that

πH1(F(G)− p)⊂ {x ∈ H1 : dist(x,W )≤ 2h0 ·5c2/α} . (6.18)

On the other hand, since F is Lipschitz, we certainly have F(G)⊂ Bn(F(a1+a2
2 ),2t) and therefore

πH1(F(G)− p)⊂ Bn(a,2t), a := πH1(F(
a1 +a2

2
)− p). (6.19)

Combining (6.18) and (6.19), we invoke Lemma 2.7 to H := H1, S′ := πH1(F(G)− p), and d :=
2h05c2/α , to obtain

H m(
πH1(F(G))

)
≤ 4m−1tm−1 ·20h0c2/α =: C2(m)K0

tm+µ

α
,

which is (6.16), implying (6.15) and thus completing the proof.
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[19] Strzelecki P., Szumańska M. and von der Mosel H.: A geometric curvature double integral of Menger type for
space curves, S 20, September 2007

[20] Bandle C. and Wagner A.: Optimization problems for an energy functional with mass constraint revisited,
S 20, März 2008

[21] Reiter P., Felix D., von der Mosel H. and Alt W.: Energetics and dynamics of global integrals modeling
interaction between stiff filaments, S 38, April 2008

[22] Belloni M. and Wagner A.: The ∞ Eigenvalue Problem from a Variational Point of View, S 18, Mai 2008

[23] Galdi P. Giovanni and Kyed M.: Steady Flow of a Navier-Stokes Liquid Past an Elastic Body, S 28, Mai 2008

[24] Hildebrandt S. and von der Mosel H.: Conformal mapping of multiply connected Riemann domains by a
variational approach, S 50, Juli 2008

[25] Blatt S.: On the Blow-Up Limit for the Radially Symmetric Willmore Flow, S 23, Juli 2008



[26] Müller F. and Schikorra A.: Boundary regularity via Uhlenbeck-Rivière decomposition, S 20, Juli 2008

[27] Blatt S.: A Lower Bound for the Gromov Distortion of Knotted Submanifolds, S 26, August 2008

[28] Blatt S.: Chord-Arc Constants for Submanifolds of Arbitrary Codimension, S 35, November 2008
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