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396 pp

Heiko von der Mosel, Aachen
heiko@instmath.rwth-aachen.de

What is analytic capacity? What does that have to do with the classic question, which
subset E of the complex plane C is removable for a bounded analytic function on C \ E?
Why is it helpful in view of analytic capacity to develop a Calderón-Zygmund theory
for measures that fail to have the doubling condition? And what is the magical relation
between the boundedness of the Cauchy transform and the purely geometric concept of
Menger curvature? These and many other fascinating questions are treated in the excellent
monograph “Analytic capacity, the Cauchy transform, and non-homogeneous Calderón-
Zygmund theory” by Xavier Tolsa, who is one of the leading experts in this subarea of
harmonic analysis.

After an inspiring introduction Tolsa starts out with basic properties of Ahlfors’s analytic
capacity for compact sets E ⊂ C,

γ(E) := sup{|f ′(∞)| : f : C \ E → C analytic, ‖f‖∞ ≤ 1},

where f ′(∞) := limz→∞ z(f(z)−f(∞)). Ahlfors showed in 1947 that γ(E) = 0 if and only
if E is removable for bounded analytic functions f : C\E → C, that is, f can be extended
onto all of C. This is proved here in Chapter 1 with classic tools of complex analysis, and
later improved using Vitushkin’s localization operator. But Ahlfors’s result left open the
problem of characterizing removable sets in terms of their metric or geometric properties.
After relating analytic capacity to Hausdorff measure Tolsa states at the end of the first
chapter David’s solution of 1998 to the famous Vitushkin conjecture for compact subsets
E ⊂ C with one-dimensional Hausdorff measure H 1(E) <∞: γ(E) = 0 if and only if E is
purely unrectifiable, that is, if and only if H 1(E ∩ Γ) = 0 for any rectifiable curve Γ ⊂ C.
In contrast to that, a set E ⊂ C is called (countably) 1-rectifiable if it can be covered –
up to a set of H 1-measure zero – by a countable union of rectifiable curves. David’s proof
of the very deep “only if” part uses sophisticated tools from geometric measure theory
and harmonic analysis. An alternative proof based on a powerful Tb-theorem obtained by
Nazarov, Treil, and Volberg in 2002, is presented in Tolsa’s book; the necessary machinery
is developed later in Chapters 5–7, probably the most demanding chapters of this book.
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The second chapter contains the very useful Calderón-Zygmund theory for non-doubling
measures with all the necessary covering lemmas, the various maximal operators, and some
standard estimates for singular integral operators. The actual Calderón-Zygmund decom-
position is applied to prove the weak (1, 1)-boundedness of Calderón-Zygmund operators,
and one learns about Cotlar’s inequality for non-doubling measures proven by Nazarov,
Treil, and Volberg in 1998. Here, as in many other places, Tolsa provides elegant alternative
arguments taken from his own original papers. Based on a Whitney decomposition of open
sets, Tolsa presents a version of the “good-lambda-method” for non-doubling measures,
which is a powerful tool to prove the Lp-boundedness of singular integral operators.

The Menger curvature c(x, y, z) defined as the inverse of the circumcircle radius of pairwise
disjoint points x, y, z ∈ C is discussed in the third chapter, and after a few simple estimates
and illuminating explicit calculations for three example sets, Tolsa establishes in an efficient
way the magic relation between the Cauchy transform C(µ)(x) :=

∫
(y − x)−1 dµ(y) and

(integrated) Menger curvature

c2(µ) :=

∫ ∫ ∫
c2(x, y, z) dµ(x)dµ(y)dµ(z)

of a finite Radon measure µ on C with linear growth:

‖Cε(µ)‖2L2(µ) =
1

6
c2
ε (µ) +O(µ(C)),

where the index ε indicates suitable truncations to cut out the singularities on the re-
spective diagonals. This connection, originally discovered by Melnikov and exploited by
Melnikov and Verdera in 1995, is used later in the book several times; here, in the third
chapter, e.g., to present a new proof of the T1-theorem for the Cauchy singular operator
giving three equivalent conditions for the mapping f 7→ Cµ(f) := C(fµ) to be bounded on
L2, one of them in terms of Menger curvature on squares. By means of additional basic
estimates for pointwise Menger curvature Tolsa proceeds to prove the L2-boundedness of
the Cauchy transform CH 1

¬
Γ on Lipschitz graphs Γ ⊂ C, and also on so-called AD-regular

curves Γ ⊂ C characterized by the upper Ahlfors regularity condition

H 1(Γ ∩Br(x)) ≤ c0r for all x ∈ C and all r > 0.

Peter Jones’s famous traveling salesman theorem of 1990 is only mentioned, but Jones’s
β-numbers, as a scale invariant measure on how well one-dimensional sets can be approxi-
mated by straight lines, are discussed in more detail; in particular, how to bound Menger
curvature in terms of β-numbers – again with a tricky but quite elementary proof. This
can be used to sharpen the L2-estimates for the Cauchy transform on Lipschitz graphs
following ideas of Murai (1986).
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The fourth chapter is devoted to the detailed study of an alternative notion of capacity,
γ+(E) of compact subsets E ⊂ C, defined as

γ+(E) := sup{µ(E) : supp(µ) ⊂ E, ‖C(µ)‖L∞ ≤ 1}.

Although this concept appears already in Murai’s book [2] in 1988, it is Tolsa’s great
achievement to turn this capacity into a central and mighty tool in harmonic analysis.
Tolsa could show in 2003 that analytic capacity γ(E) and γ+(E) are, in fact, comparable
quantities, the proof of which is deferred to Chapter 6, since it uses the deep Tb-theorem
of Nazarov, Treil, and Volberg (2002) discussed in detail in Chapter 5. But already the
fourth chapter contains a lot of very nice results. To start with, after preliminaries about
convolutions, Tolsa uses a kind of representation inequality for Borel sets of Davie and
Øksendal (1982) in the rather abstract setting of Radon measures on Hausdorff spaces, to
obtain specifically for Radon measures with linear growth on C a dual form of the weak
(1, 1)-inequality for the Cauchy transform. As a now relatively straightforward application
Tolsa proves the Denjoy conjecture saying that a compact subset of a rectifiable curve in
C has positive analytic capacity if and only if it has positive one-dimensional Hausdorff
measure. It also follows quickly that any set E ⊂ C with H 1(E) < ∞ and γ+(E) = 0
is purely unrectifiable. Of central importance are several different characterizations of the
alternative capacity γ+(E) in terms of suprema of the total variations of Radon measures
under different constraints on either their truncated Cauchy transforms or their Menger
curvatures, one of which immediately implies the countably semiadditivity of γ+. By means
of Verdera’s potential, the sum of the radial maximal function and pointwise Menger
curvature, even a few more useful characterizations of γ+(E) are established, again based
on elementary estimates for Menger curvature.
Tolsa’s very elegant style throughout the whole book may be exemplarily described in
his proof of the dual characterization of γ+ as the infimum of total variations of positive
Radon measures whose Verdera potential is pointwise above 1. For this, Tolsa considers
first elementary length measures on coordinate grids of squares, with internal concentric
segments parallel to the coordinate axes, and he proves estimates for their Menger cur-
vature at different points. Then he uses a nice variational argument to find maximizers
of the quotient ‖µ‖2/(‖µ‖ + c2(µ)), where ‖µ‖ denotes the total variation and c2(µ) the
(integrated) Menger curvature of a Radon measure µ supported on a finite collection of
such segments. This maximizing measure satisfies particularly simple estimates on Men-
ger curvature from above, and on Verdera’s potential from below, which is proven by
an elementary variational inequality. And it is these estimates that qualify this maximi-
zing measure as a useful comparison measure to prove the dual characterization. Towards
the end of Chapter 4 Tolsa reproves Denjoy’s conjecture with a better quantitative lower
bound on γ+(E) that is derived by a clever combination of Frostman’s lemma with Jones’s
traveling salesman theorem and the relation between β-numbers and Menger curvature.
Computing γ+ for an explicit Cantor set shows that this lower bound is indeed sharp. The
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fourth chapter concludes with a brief discussion on how Verdera’s potential is related to
Riesz capacity which itself turns out to serve as a lower bound for γ+ on compact subsets
of the complex plane.

In Chapter 5 Tolsa gives a fully detailed proof of the deep Tb theorem of Nazarov, Treil,
and Volberg, that he needs later to establish the comparability of the two capacities γ and
γ+. Although restricted to the Cauchy transform instead of more general singular integral
operators that are treated, e.g., in Volberg’s book [3] of 2003, the arguments presented
here do not build on the relations between the Cauchy transform and Menger curvature
and may be adapted to treat the more general case. It would go way beyond the scope of
this review to describe this very deep result and its long proof, but let me point out that
Nazarov, Treil, and Volberg used an ingenious decomposition of dyadic lattices to bound
the so-called Θ-suppressed singular integral operator (in Tolsa’s case the Θ-suppressed
Cauchy transform), where the usual kernel is regularized by a Lipschitz function in the
denominator. For particular such Lipschitz regularizations bounded from below by the
distance to two dyadic lattices, Tolsa shows in every detail, how to obtain L2-bounds on
the Θ-suppressed Cauchy transform on “good” functions, a notion which in turn is defined
by a subtle Martingale decomposition. This proof alone takes more than 20 pages, and
belongs, as mentioned before, to the most technical parts of the book.

Before proving the comparability of the two capacities γ and γ+ in Chapter 6, Tolsa points
out two immediate consequences. A compact set E ⊂ C is not removable for bounded ana-
lytic functions if and only if E supports a non-vanishing Radon measure with linear growth
and finite Menger curvature. Secondly, since γ+ is countably subadditive, so is γ. Tolsa
also proves first a weaker version of his comparability estimate due to David, saying that
a compact subset of the complex plane with finite one-dimensional Hausdorff measure and
positive analytic capacity γ must have also positive capacity γ+. This simpler form (be-
cause of finite length of the set E) reveals clearly how to use the deep Theorem of Nazarov,
Treil, and Volberg, and in this situation, it is indeed easier to verify all assumptions of
that theorem by means of the results of Chapter 4. This model case is accompanied by a
very instructive sketch of proof for Tolsa’s full comparability result, before actually going
into all the technical details needed to verify all assumptions of the Tb theorem. Chapter
6 closes with two nice applications in complex analysis. First he proves a general estimate
for the Cauchy integral, ∣∣∣ ∫

∂G
f(z) dz

∣∣∣ ≤ c(G)‖f‖∞γ(E)

for bounded and holomorphic functions on (G \ E) ⊂ C, for a compact subset E of G,
under fairly mild conditions on the boundary ∂G, and secondly, he presents an alternative
proof of the L2-boundedness of the Cauchy transform on AD-regular curves.

The central issue of Chapter 7 is the deep rectifiability theorem of David and Léger of 1999:
An H 1-measurable subset E ⊂ C with H 1(E) < ∞ and with finite Menger curvature is
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1-rectifiable. Before proving this, Tolsa explains why this in connection with his compara-
bility result for γ and γ+ implies immediately David’s solution of the Vitushkin conjecture,
that is, why the analytic capacity γ(E) vanishes exactly on those one-dimensional compact
subsets E ⊂ C of finite length that are purely unrectifiable. In addition, since γ+ and hence
γ is countably semiadditive David’s result immediately extends to compact subsets E ⊂ C
of only σ-finite length, i.e., to sets that can be written as a countable union of sets of
finite length. What follows now in Chapter 7 is probably the best presentation of the very
technical proof of this deep theorem, even better in my taste than in Dudziak’s very nice
book [1]. The general strategy of Léger’s proof is to decompose E into its rectifiable and
purely unrectifiable part, and to show that this unrectifiable part has zero H 1-measure.
Assuming to the contrary positive measure of the purely unrectifiable part, one constructs
a Lipschitz graph that covers a “good” subset of that part. In order to show that this good
subset actually has positive measure (to obtain the contradiction), one needs to carry out
very intricate estimates on the “bad” subset of the purely unrectifiable part. And here co-
mes the relation between Menger curvature and β-numbers into effect, since one restricts
to a subset with very small Menger curvature, thus controlling also the β-numbers which
roughly shows that the set in question is fairly well approximated by lines on different
scales. This general strategy sounds appealing, the technical details comprise a lot of pre-
cise and subtle estimates. Tolsa adds at the end of this chapter three nice applications:
a characterization of 1-rectifiable sets in terms of pointwise Menger curvature, an upper
bound on analytic capacity of a Borel subset E ⊂ C in terms of the H 1-measure of its
rectifiable part, and a new characterization of the analytic capacity for compact subsets
E ⊂ C as the supremum of µ(E) over those Radon measures µ whose Menger curvature
is bounded by µ(E) and whose upper density is bounded by one. For one-dimensional
sets that are, in addition, AD-regular, Tolsa concludes with a rectifiability proof based on
Jones’s traveling salesman theorem.
The L2-boundedness of singular integral operators does not necessarily imply the existence
of the pointwise Cauchy principal values – not even almost everywhere, but for Radon
measures µ on C with linear growth and with L2(µ)-boundedness of the Cauchy transform
Cµ, Tolsa proves in Chapter 8 that the Cauchy principal value

p.v.Cµf(x) = lim
ε→0
Cµ,εf(x) = lim

ε→0

∫
|x−y|>ε

f(y)

y − x
dµ(y)

exists for every f ∈ Lp(µ), p ∈ [1,∞) and for µ-a.e. x ∈ C. As an immediate consequence
of this in combination with the T1-theorem for the Cauchy transform one can replace
µ by some finite Radon measure with finite Verdera potential almost everywhere. Tolsa
establishes first the existence of principal values for µ = H 1 ¬Γ, where Γ is a Lipschitz
graph, and also for general complex finite measures for H 1-a.e. point on a rectifiable sub-
set of the complex plane. Then he studies Radon measures on Rd with growth of degree n
and vanishing n-dimensional density a.e., following the approach of Mattila and Verdera

5



(2009), before proving the main existence result for principal values. The two ingredients,
rectifiable sets and measures of zero density, appear naturally through a simple decom-
position of the support of fµ, where it suffices to work on the dense set of C1-functions
f . Here, it is worth mentioning that the assumed L2-boundedness of the Cauchy trans-
form implies finite Menger curvature of the subsets where the upper density is positive,
so that the David-Léger theorem of Chapter 7 can be applied to deduce rectifiability. The
second part of Chapter 8 discusses the converse: when does the existence of the Cauchy
principal value imply the L2-boundedness of the Cauchy transform – at least on a subset
of positive measure? One particular conclusion for one-dimensional subsets E ⊂ C with
H 1(E) < ∞ is the equivalence of rectifiability, finite Menger curvature, existence of the
Cauchy principal value of H 1 ¬E, and the boundedness of the maximal Cauchy transform

C∗(H 1 ¬E)(x) = sup
ε>0
|Cεµ(x)| = sup

ε>0

∣∣∣ ∫
|x−y|>ε

1

y − x
dµ(y)

∣∣∣
for H 1-a.e. x ∈ E. The main ingredient for this and some related results combining the
maximal Cauchy transform with the radial maximal function, or with the upper density
of a Radon measure, is again the Tb-theorem of Nazarov, Treil, and Volberg of Chapter
5, albeit not in its full generality this time.

In the final Chapter 9, Tolsa continues the Calderón-Zygmund theory for non-homogeneous
spaces by discussing his variant of the space of bounded mean oscillation introduced in
2001 that is adapted to non-doubling measures µ on Rd, so that, e.g., a John-Nirenberg
inequality holds, and such that L2(µ)-bounded singular integral operators are also bounded
from L∞(µ) to this new BMO-type space, denoted by RBMO(µ), which stands for regular
bounded mean oscillation. The additional regularity requirement distinguishing this new
space is some explicit control of the difference of two “means” fQ and fR for different
cubes Q ⊂ R of non-zero measure, which is, indeed, satisfied for functions f = Tµ(g),
if Tµ is an L2(µ)-bounded singular integral operator and g ∈ L∞(µ). It turns out that
RBMO(µ) is a Banach space (modulo additive constants) containing L∞(µ), and that
there are various characterizations of this new space. The central boundedness of (e.g.
L2-bounded) singular integral operators as mappings from L∞(µ) to RBMO(µ) follows
from a uniform bound on suitable truncations. Three examples of measures on C with
linear growth are studied to get a better feeling for RBMO: if E ⊂ C is AD-regular, and
µ := H 1 ¬E then RBMO(µ) coincides with the usual BMO-space; if µ is the planar
Lebesgue measure restricted to the unit square then RBMO(µ) turns out to be L∞(µ)
modulo additive constants. And finally, by means of a more complicated measure on C,
Tolsa shows that the more traditional weighted BMO-norms for non-doubling measures
heavily depend on the respective weights in this situation, whereas the RBMO-norm does
not. The proof of a version of the classic John-Nirenberg inequality adapted to RBMO
concludes that first part of Chapter 9. In the second part Tolsa introduces an atomic space
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as a Hardy space that turns out to be the predual of RBMO thus completing his BMO-
theory for non-doubling measures. The central boundedness theorem on singular integral
operators specifically asserts that L2-bounded singular integral operators are also bounded
from this new Hardy space into L1, but there is actually a list of three equivalent conditions
of that boundedness. By means of an interpolation result (interpolating between “Hardy
→ L1” and “L∞ → RBMO”) in combination with the magic relation between the Cauchy
transform and Menger curvature from the third chapter, Tolsa presents an alternative
proof of the T1-theorem for the Cauchy transform. This is complemented by a general T1-
theorem for Radon measures µ on Rd with growth of degree n and n-dimensional singular
integral operators Tµ, giving equivalent conditions of the L2(µ)-boundedness in terms of
uniform bounds on the truncated operators in RBMO(µ), and in weighted BMO-spaces,
respectively, together with additional weak bounds.

This is a great book, I studied large portions of it with great benefit and pleasure. It covers
a lot of material in this field – much more than I could mention here – with illuminating
views from different perspectives. The arguments are presented with just the right amount
of details so that the reader can go through the proofs without consulting the original
papers. Most chapters could be read by students with a solid background in analysis,
and certain parts of the book could serve as the basis for an advanced student seminar
on, say, graduate level. Every chapter starts out with a short introduction so that the
stage is set from the outset. In addition, at the beginning of almost every section Tolsa
reminds the reader what is to be done next; whenever necessary he recalls definitions
or central statements from previous chapters. Moreover, every chapter concludes with
brief and very informative sections on history and references, containing additional hints
towards generalizations, connections to other fields, and to open problems. These sections
are treasures for experts and non-experts alike, since it allows you to either dive into some
more specific topic, or to veer off to other related directions with the help of the extensive
bibliography, which reflects the latest state of the art. To summarize, this outstanding
book belongs in every mathematical library.
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