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Abstract

We introduce an agent–based model for stock prices that reacts on investors’
market sentiment. This is a further development of a model of Cross, Grinfeld,
Lamba and Seaman [7]. The original model of Cross et al. was already good
in showing phenomena like herding of the investors or long periods of bullish as
well as bearish sentiment with relatively short transition periods in between. Our
newly developed models are furthermore capable to show trend patterns in which
sharp movements and prolonged corrections can alternate but move in the same
direction. In particular the investors’ sentiment is no longer bistable as in Cross
et al. . Furthermore price overreactions are not a priori fixed and bounded as in
the predecessor model. Other stylized facts of real market data, such as fat tails
or clustered volatility can also be reproduced.

Keywords: investor psychology, herding, trend pattern, volatility clustering

1 Introduction

Models which generate realistic data of stock price evolution are extremely helpful e.g.

for testing mechanical trading systems, because the data pool thus generated is far richer

as the one at hand while backtesting real market data. Usually models of financial

markets are based on standard assumptions called efficient market hypotheses (EMH,

∗Funded by the Excellence Initiative of the German federal and state governments
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cf. [9]). Although models with EMH are good for mathematical calculation and even

option pricing, they do not reproduce typical stylized facts of real market data. In fact,

the universality of non–Gaussian statistics in various financial markets seems to suggest

that human psychology is the driving force for violating the EMH.

To obtain more realistic market behavior, therefore agent–based market models have

been introduced (see e.g. [2], [4], [11], [12], [13], [14], [16], [17], [18], [23], [24] ). We

particularly want to emphasize the model for discrete time stock price evolution by Cross

et al. [7] (see also [5], [8], [6]).

In this agent based model agents react to certain tension thresholds. The first tension

is ”cowardice”, which is stress caused by remaining in a minority position with respect

to overall market sentiment. This feature leads to herding–type behavior. The second is

”inaction”, which is the increasing desire to act or reevaluate one’s investment position

every now and then. The later tension is modeled by two thresholds where either profits

or losses are realized.

Numerical simulations of the original model of Cross et al. [7] suggest, that the influ-

ence of investors’ sentiment on the price building is responsible for several phenomena

observed in stock markets. For instance

• herding of the investors,

• long periods of bullish as well as bearish sentiment,

• relatively short transition periods between bullish and bearish sentiment with sharp

price adjustments.

In Figure 1 we see a typical price evolution in Cross’s model: The evolution of a ”market

price process” is printed in dark (blue) and the corresponding ”fair market price process”

evolution is printed in light (black). Whereas the light curve is solely news driven

(geometric brownian motion), the dark curve also reacts on investors’ behavior.

Investors tend to exaggerate the market price over the fair price. The light (red) curve

on the bottom shows the ”sentiment” of the investors (close to ”−1”: bearish sentiment;

close to ”+1”: bullish sentiment).

Although sharp price adjustments during short transitions are common when investors’

sentiment changes, the model of Cross et al. [7] is nevertheless unrealistic in two points

• bistable sentiment,

• a priori fixed price overreaction due to investors’ sentiment.

With bistable sentiment we mean the fact that the investors’ sentiment only switches

from bearish to bullish and then back. However typical e.g. up–trend periods allow

several sharp up–movements of the price during bullish sentiment with only minor price
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Figure 1: Simulation Cross et al. model [7]

corrections in between. The corrections usually last longer than the movements. Simi-

larly, in down–trend periods sharp down–movements and corrections interchange.

The a priori fixed price overreaction in the model of Cross et al. [7] stems from the fact

that the maximal influence of a switch in investors’ sentiment from bearish to bullish

and vice versa is bounded. Once the investors’ sentiment has switched to, say, bullish,

no additional positive influence of the bullish sentiment on the price is possible.

To see that, we introduce the basic price adaptation process of Cross et al. [7] (without

actually stating how the investors are updated):

The state (long or short) of the i–th investor over the n–th time interval is denoted by

si(n) ∈ {±1} , i = 1, . . . ,M , and

σ(n) =
1

M

M∑
i=1

si(n) ∈ [−1, 1] (1)

is a measure of the ratio of long to short investors called sentiment.

The market price at the end of the n–th time interval is denoted by p(n) and updated

via

p(n+ 1) = p(n) · exp
(√

h∆W (n) + κ∆σ(n)
)
, (2)

where ∆W (n) is a standard Gaussian random variable that represents news and ∆σ(n) =

σ(n) − σ(n − 1) denotes the current change of investors’ sentiment (κ, h > 0 are con-

stants).

Since σ(n) ∈ [−1, 1], also ∆σ(n) is bounded, and furthermore, if the majority of the

investors is say bullish (i.e. σ(n − 1) is close to 1), no further upside potential of the
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investors’ sentiment on the price process is possible (∆σ(n) is negative, or small (if

positive)).

This is actually a proof for the two already mentioned unrealistic points: bistable senti-

ment and a priori fixed price overreaction due to investors’ sentiment (see again Figure

1; the fair market process in light is obtained from (2) with κ = 0).

In this paper we propose two improvements to the original model of Cross et al. [7].

Both are capable to show such trend pattern in which sharp movements and prolonged

corrections can alternate but move in the same direction.

Model A. Whereas in Cross’s model investors are only allowed to switch between +1

(long) and −1 (short), our investors can accumulate arbitrary amounts of

short or long positions. We nevertheless use the average investment as

sentiment of the investors and similarly as in Cross’s model the cowardice

of the individual investor increases, in case his investment position differs

from the average investment. Since these investors act pro–cyclic, we call

them traders.

Model B. Besides the traders of Model A, we here also introduce fundamental in-

vestors, which on the one hand act on a larger time scale and on the other

hand every now and then have the possibility to observe the fair market price

(at least approximately) and adjust their investment accordingly. This way

it is guaranteed that the market price will not deviate from the fair price in

the long run. Properties of fundamental investors are the following:

• they act anti–cyclic

• they are capable to observe the fair market price, at least approximately

• they open new positions, as the actual market price moves away from

the fair price

• they close positions, as the actual market price returns to the fair price

• they react to a ”fundamental” market sentiment

• their relative position opposed to other investors increases with the

distance of the actual market price to the fair market price

In both models agents are only coupled via the overall market sentiment and the market

price. We do not use inductive learning as e.g. [1]. Nevertheless our model violates

the EMH. In particular future prices are not independent of market price history as in

Markovian markets. Only when the investors’ states are added to the state space of the

system, the Markov property is regained.
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The paper is organized as follows. In Section 2 we introduce our Model A together with

a variant of it called Model A* and in Section 3 we introduce our Model B together with

a variant, Model B*. Section 4 is used to discuss statistics of sample paths reproducing

Non–Gaussian market statistics of real market data. In particular stylized facts such as

trend patterns, fat tails and clustered volatility can be reproduced. With the exception

of Model A, the simulated actual market price of our models does not deviate from the

fair market price (representing economical data) by too much. Nevertheless, all of our

models support extreme exaggerations of the actual market price compared to the fair

market price. We believe that this feature could be a first step in understanding large

price movements of stocks or even stock indices occurring e.g. during financial crises.

Also in section 4 we compared the data of our models with real market data with resprect

to reproducing stylized facts. Particularly for backtesting trading systems it would be

helpful to have model data that performs similar to real world data.

A continuous market model obtained as limit of our discrete models as the mesh of the

time steps goes to zero seems to be very difficult to get. However, comparisons with

other realistic continuous models like e.g. [10] and [15] would be desirable.

Acknowledgement. The first author wishes to thank Christian J. Zimmer from Banco

Itaú S.A., Sãu Paulo for helpful discussions on the subject.

2 The Model A

2.1 Construction of the Model

We construct a Markov chain with 5M + 2 state variables(
p(n) , si(n) , σ(n) , ci(n) , Pi(n) , Ki(n) , Hi(n)

)
1≤ i ≤M , n≥ 0

.

Here si(n) ∈ Z is the state (amount of positions; long or short) of the i–th investor

over the n–th period and σ(n) := 1
M

M∑
i=1

si(n) is a measure of the ratio of long to

short investors called market sentiment.

This ratio has to be known also from the previous time step to evaluate the fluctuation

∆σ(n) := σ(n) − σ(n− 1) of the most recent change in market sentiment.

The actual market price p(n) at the end of the n–th time period is updated via

p(n+ 1) = p(n) · exp

(
δ
(√

h ∆W (n) + κ∆σ(n)
))

, (3)

where Z∗n := ∆W (n) , n ∈ N0 , is a standard Gaussian random variable that represents

the creation of new, uncorrelated and globally available information over the period n.

If δ = 1 is used, the parameter h > 0 represents the time step since VAR(Z∗n) = 1
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and the parameter κ > 0 is used to balance the influence of internal market dynamics

to the generation of new market information. Accordingly, with 0 < δ < 1 we can

simulate smaller price movements. In the sequel we will compare the price (3) with the

”fundamental” or fair market price pf (n) obtained from (3) by setting κ = 0, i.e.

pf (n+ 1) = pf (n) · exp

(
δ
(√

h∆W (n)
))

. (4)

To update the price in (3) we need to know ∆σ(n) and thus the investors states si(n).

The update of those states is described below. The fact that p(n) reacts on ∆σ(n) can

be justified as a result of the law of supply and demand.

We introduce the tension states (cowardice level) ci(n) and last switching prices Pi(n) of

the i–th investor and how they are updated. In order to do so we need a pool of predeter-

mined stochastic i.i.d. variables
(
K∗i (n)

)
1≤ i≤M , n ∈ N0 , with uniformly distributed

values in
[
K−, K+

]
⊂ (0,∞), and i.i.d. variables

(
H∗i (n)

)
1≤ i≤M , n ∈ N0 , with uni-

formly distributed values in [H−, H+] ⊂ (0,∞), from witch the investors may choose

cowardice and inaction thresholds, Ki(n) and Hi(n), whenever they switch positions.

More precisely, we proceed as follows:

A0 Initialization (n = 0) We choose p(0) = pstart with arbitrary starting price level

pstart > 0 and mimic the situation that all investors are flat at time n = −1 and

decide randomly and independently to go long (+1), short (−1) or flat (0), at time

n = 0. Therefore si(0) := S∗i , 1 ≤ i ≤ M , where S∗i are predetermined i.i.d.

random variables with equally distributed values in {±1, 0} ,
σ(−1) = 0,

Pi(0) = p(0) , 1 ≤ i ≤ M (initial last switching price),

Hi(0) = H∗i (0) , 1 ≤ i ≤ M (initial price range threshold),

Ki(0) = K∗i (0) , 1 ≤ i ≤ M (initial cowardice threshold),

ci(0) = ξ∗i ·Ki(0) , 1 ≤ i ≤ M (initial cowardice level),

where ξ∗i ∈ [0, 1] are uniformly distributed i.i.d. variables.

Step n→ n + 1

The market price p(n) can immediately be updated to p(n+ 1) via (3).

A1 Cowardice level

Denoting [x] ∈ Z the closest integer to x ∈ R , and 1A the characteristic function

of the set A, let

∆i(n) :=
∣∣∣si(n) −

[
σ(n)

]∣∣∣ ∈ N0 ,

(absolute distance of investor’s position to market sentiment)

Σi(n) :=
{

∆i(n) > 1
2

}
⊂ Ω and

Ci(n+ 1) := ci(n) + h∆i(n) 1Σi(n) = ci(n) + h∆i(n) ,
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i.e. we let the cowardice level ci(n) increase to Ci(n + 1) (cf. (7) for the actual

update of ci) in case the i–th investor’s state is not in accordance with the overall

market sentiment
[
σ(n)

] (
i.e. in case ω ∈ Σi(n)

)
and otherwise unchanged. Ω is

the underlying probability space for all random variables we use.

A2 Switching

Ψi(n) :=
{
Ci(n+ 1) > Ki(n)

}
⊂ Ω ,

Φi(n) :=

{
p(n+ 1) /∈

[
Pi(n)

/(
1 +Hi(n)

)
, Pi(n)

(
1 +Hi(n)

)]}
⊂ Ω ,

Θi(n) := Ψi(n) ∪ Φi(n) ⊂ Ω .

The i–th investor switches his position only on Θi(n), i.e. whenever his individ-

ual cowardice level increases over his cowardice threshold
(
ω ∈ Ψi(n)

)
or, if the

updated price leaves his individual price range of comfort
(
ω ∈ Φi(n)

)
.

To be more precise, in case of breakout the investors act pro–cyclic, i.e. they

increase their position in case of bullish breakout and decrease their position in

case of bearish breakout.

If on the other hand this is not the case, i.e. on Φc
i(n), but the investor’s cowardice

threshold is broken, i.e. on Ψi(n), he will move his position one step in the direc-

tion of the market sentiment, i.e. to

(
si(n)− sign

(
si(n)−

[
σ(n)

]))
1Ψi(n)∩Φci (n) .

Let

Φup

i (n) :=
{
p(n+ 1) > Pi(n)

(
1 +Hi(n)

)}
⊂ Ω ,

Φdown
i (n) :=

{
p(n+ 1) < Pi(n)

/ (
1 +Hi(n)

)}
⊂ Ω ,

si(n+ 1) := si(n) 1Θci (n) +

(
si(n)− sign

(
si(n)−

[
σ(n)

]))
1Ψi(n)∩Φci (n)

+
(
si(n) + 1

)
1Φup

i (n)

+
(
si(n)− 1

)
1Φdown

i (n) .

(5)
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Equivalently, the update of the i−th investor reads as follows

si(n+ 1) :=



si(n) , if ω /∈ Θi(n) (no action)

(comfort price range left: act pro–cyclic)

si(n) + 1 , if ω ∈ Φi(n) and p(n+ 1) > Pi(n)
(
1 +Hi(n)

)
si(n)− 1 , if ω ∈ Φi(n) and p(n+ 1) < Pi(n)

/(
1 +Hi(n)

)
(cowardice action: move towards market sentiment)

si(n) + 1 , if ω ∈ Ψi(n) ∩ Φc
i(n) and si(n) <

[
σ(n)

]
si(n)− 1 , if ω ∈ Ψi(n) ∩ Φc

i(n) and si(n) >
[
σ(n)

]
A3 Updates

Only in case the i-th investor switched his position, i.e. on Θi(n), the last switching

price Pi, the cowardice threshold Ki and the comfort price range Hi have to be

updated. Otherwise they are left unchanged:

Pi(n+ 1) := p(n+ 1) 1Θi(n) + Pi(n) 1Θci (n) , (6)

Ki(n+ 1) := K∗i (n+ 1) 1Θi(n) + Ki(n) 1Θci (n) ,

Hi(n+ 1) := H∗i (n+ 1) 1Θi(n) + Hi(n) 1Θci (n) .

The new cowardice level is reset to zero at switching and otherwise raised to

Ci(n+ 1):

ci(n+ 1) := Ci(n+ 1) 1Θci (n) . (7)

2.2 Markov property

As already noted, we assume the random variables S∗i , K
∗
i (n) and H∗i (n) as

predetermined and the associated σ–algebra

G0 := σ (S∗i , K
∗
i (n) , H∗i (n) : 1 ≤ i ≤ M , n ≥ 0)

is known at time zero. We set

Fn = σ
(
Z∗k : 0 ≤ k ≤ n

)
∪ G0 ,

where Z∗k = ∆W (k) is the driving news process (cf. (3)). Hence

f(n) :=
(
p(n) , si(n) , σ(n− 1) , ci(n) , Pi(n) , Ki(n) , Hi(n)

)
1≤ i≤M (8)

is Fn–measurable for all n ≥ 0 by induction. Furthermore, the conditional law of f(n)

given Fn−1 depends only on f(n − 1), yielding a Markov chain. By assuming G0 to be

given, the underlying probability space
(
Ω,A,P

)
is generated only by the news process

Z∗n , n ≥ 0.
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2.3 Numerical results for Model A

We fix parameters similarly as the ones in Cross et al. [7], i.e.

M = 100 , pstart = 5000 , δ = 0.05 ,

κ = 0.15 ,
√

2h = 10−2 , or h = 5 · 10−5 ,

and IK :=
[
K−, K+

]
= [0.001, 0.003] ,

IH :=
[
H−, H+

]
= [0.004, 0.02] ,

i.e. we have comfort price range thresholds between 0.4% and 2.0% .

(9)

The simulation in Figure 2 shows how trends (i.e. several movements in one direction

interrupted by minor corrections) can be obtained with this new model. The price

process p(n) (in bold face) exaggerates the movements of the fair market price process

pf (n) (in light) – see (3) and (4). Furthermore sharp price adjustments can be observed

every now and then, which are not obviously triggered by respective movements in the

fair market price.
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Model A: steps = 10000, M = 100

Figure 2: Trend behavior
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Figure 3 shows the same simulation as above, but instead of the price process p(n) we

plot the corresponding investors’ sentiment σ(n) (scaled by a factor M to see the total

amount of open positions) (in bold) and besides also the MACD/signal lines (moving av-

erage convergence/divergence indicator with standard 26|12|9 periods) of this simulation

(scaled by a factor 25).
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Model A: steps = 10000, M = 100

Figure 3: MACD and sentiment of Fig. 2
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Model A: steps = 10000, M = 100

Figure 4: Alternating sentiment moves of
Fig. 5

In the simulation of our Model A given in Figures 4 and 5 exaggerations to the upper

and lower side interchange, yielding non trend behavior.
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Model A: steps = 10000, M = 100

Figure 5: Non trend behavior

Looking at the corresponding investors’ sentiment σ(n) (in Figure 4 bold), we see even

interchanging of trend patterns on a lower time scale. Again the price process p(n) (in

bold in Figure 5) exaggerates the movements of the fair market price process pf (n) (in

light).

The next simulation of Model A in Figures 6 and 7 shows the price development on

a much longer time period than before (100000 steps versus 10000 before). In this
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simulation one problem of Model A gets obvious: the market price may deviate from

the fair price over all bounds as time proceeds. Similarly the sentiment may grow over

all bounds. This is clearly unsatisfactory. We therefore introduce Model A*.
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Model A: steps = 100000, M = 100

Figure 6: Long simulation of Model A
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Model A: steps = 100000, M = 100

Figure 7: Corresponding sentiment

2.4 The Model A*

To overcome the above problem we let our investors decrease their position (both long

or short) at a faster pace than the pace used to establish the position, at least once the

absolute value of the position has increased over a certain individual risk level Ri > 0.

A0* Initialization

The initialization of our traders works exactly as for Model A in A0, except for

the initialization of an individual risk level

Ri := %/2 +
[
|% · η∗i | ] , 1 ≤ i ≤ M ,

where η∗i are i.i.d. standard Gaussian variables and % > 0 is a parameter.

Step n→ n + 1:

A1* Cowardice level

The cowardice levels are chosen as in A1.

A2* Switching

The sets Θi(n) , Ψi(n) and Φi(n) determining the instances when the positions get

switched remain unchanged as in A2. However the update of the i−th investor

reads as follows
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si(n+1) :=



si(n) , if ω /∈ Θi(n) (no action)

(comfort price range left: act pro–cyclic, single action)

si(n) + 1 , if ω ∈ Φi(n), p(n+ 1) > Pi(n)
(
1 +Hi(n)

)
and si(n) ≥ −Ri

si(n)− 1 , if ω ∈ Φi(n), p(n+ 1) < Pi(n)
/(

1 +Hi(n)
)

and si(n) ≤ Ri

(comfort price range left: act pro–cyclic, double action)

si(n) + 2 , if ω ∈ Φi(n), p(n+ 1) > Pi(n)
(
1 +Hi(n)

)
and si(n) < −Ri

si(n)− 2 , if ω ∈ Φi(n), p(n+ 1) < Pi(n)
/(

1 +Hi(n)
)

and si(n) > Ri

(cowardice action: move towards market sentiment)

si(n) + 1 , if ω ∈ Ψi(n) ∩ Φc
i(n) and si(n) <

[
σ(n)

]
si(n)− 1 , if ω ∈ Ψi(n) ∩ Φc

i(n) and si(n) >
[
σ(n)

]
A3* Updates

The updates are again performed as in Model A, according to A3.

2.5 Numerical simulation of Model A*

In Figures 8 and 9 we see a simulation of Model A* corresponding to the parameters

chosen in Subsection 2.3 with additionally

% = 20 .

We also take exactly the same driving news process
(
Z∗n
)
n≤106

as was used to obtain

Figures 6 and 7.
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Figure 8:Long simulation of Model A∗
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Figure 9:Corresponding sentiment
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One can see that the deviation of market price and fair market price is, as hoped for,

much less in the simulation of Model A*.

3 The Model B

In the long run the deviation of the price process p(n) and the fair market price process

pf (n) is not bounded in our Model A. Although Model A* already fixed this problem to

some extent, we here try a completely different ansatz.

3.1 Construction of the model

To do so, besides the traders of Model A, in Model B we also introduce fundamental

investors.

The fundamental investors on the one hand should act on a larger time scale and on the

other hand every now and then have the possibility to observe the fair market price (at

least approximately) and adjust their investment accordingly. This way it is guaranteed

that the market price will not deviate from the fair price in the long run. The properties

of the fundamental investors are stated at the end of the introduction.

We denote the number of fundamental investors by M̃ . Say s̃j(n) ∈ Z , j = 1, . . . , M̃ ,

is the state of the j–th fundamental investor and

σ̃(n) =
1

M̃

M̃∑
j=1

s̃j(n)

is their average grade of investment. With

σ̂(n) =
1

M + M̃

 M∑
i=1

si(n) +
M̃∑
j=1

s̃j(n)


we measure the total sentiment. Again ∆σ̂(n) = σ̂(n) − σ̂(n − 1) measures the most

recent change in market sentiment. Similarly as in (3) we obtain a new price process

p̃(n) , n ∈ N0 , which is updated according to

p̃(n+ 1) = p̃(n) · exp

(
δ
(√

h∆W (n) + κ̃∆σ̂(n)
))

,
(
h, κ̃ > 0

)
(10)

i.e., besides the news process Z∗n = ∆W (n), n ∈ N , and traders, now also fundamental

investors enter the price building procedure.

The difference between the traders of Model A and the new fundamental investors is

their trading strategy, i.e., how they update their position. The fundamental investors

13



act anti–cyclic and are capable to observe the fair market price

p̃f (n+ 1) = p̃f (n) · exp
(
δ
√
h∆W (n)

)
, (11)

at least approximately. They are not influenced by market sentiment of the traders but

they do react on cowardice in reaction to the sentiment σ̃(n) within all fundamental

investors. Their relative position opposed to other investors increases with the distance

of the actual market price to the fair market price (anti–cyclic action). This is again

modeled through a price range of comfort(
P̃j(n)

/(
1 + H̃j(n)

)
, P̃j(n) ·

(
1 + H̃j(n)

))
,

where P̃j(n) is the last switching price of the j–th fundamental investor, and H̃j(n) ∈[
H̃−, H̃+

]
⊂ (0,∞) is a measure for the length of that price range.

H̃j(n) is as before chosen at random every time the position gets switched out of a pool

of i.i.d. variables
(
H̃∗j (n)

)
1≤ j≤ M̃ , n ∈ N0 , with uniformly distributed values in[

H̃−, H̃+
]
⊂ (0,∞). Similarly, at switching time the individual threshold for the cow-

ardice level of the j–th fundamental investor, K̃j(n), is chosen at random out of a

pool of i.i.d. variables
(
K̃∗j (n)

)
1≤ j≤ M̃ , n ∈ N0 , with uniformly distributed values in[

K̃−, K̃+
]
⊂ (0,∞).

Compared to the respective interval for the traders
[
H−, H−

]
we choose H̃− = βH− and

H̃+ = βH+ with some parameter β > 1 , which guarantees that fundamental investors

act on a longer time scale. Similarly, the respective cowardice thresholds in
[
K̃−, K̃+

]
are chosen scaled with the factor β larger compared with the one of the traders, i.e.

K̃− = βK− and K̃+ = βK+. Together with the state variables inherited from Model

A we obtain 5M + 5M̃ + 3 state variables(
p̃(n), si(n), σ(n), ci(n), Pi(n), Ki(n), Hi(n),

s̃j(n), σ̃(n), c̃j(n), P̃j(n), K̃j(n), H̃j(n)
)

1≤ i≤M ,

1≤ j≤ M̃, n≥ 0

.

B0 Initialization (n = 0)

We choose p̃(0) = pstart with arbitrary starting price level pstart and mimic the situa-

tion that all investors are flat at time n = −1 and decide randomly and independent

to go long (+1), short (−1) or flat (0), at time n = 0. Therefore si(0) := S∗i , 1 ≤
i ≤ M , s̃j(0) = S̃∗j , 1 ≤ j ≤ M̃ , where S∗i , S̃

∗
j are predetermined i.i.d. random
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variables with equally distributed values in {±1, 0} ,
σ(−1) = 0 , σ̃(−1) = 0 and furthermore for the

traders:

Pi(0) = p̃(0) , 1 ≤ i ≤ M (initial last switching price) ,

Hi(0) = H∗i (0) , 1 ≤ i ≤ M (initial price range threshold) ,

Ki(0) = K∗i (0) , 1 ≤ i ≤ M (initial cowardice threshold) ,

ci(0) = ξ∗i ·Ki(0) , 1 ≤ i ≤ M (initial cowardice level; ξ∗i ∈ [0, 1] uniformly i.i.d.) .

fundamental investors:

P̃j(0) = p̃(0) , 1 ≤ j ≤ M̃ (initial last switching price) ,

H̃j(0) = H̃∗j (0) , 1 ≤ j ≤ M̃ (initial price range threshold) ,

K̃j(0) = K̃∗j (0) , 1 ≤ j ≤ M̃ (initial cowardice threshold) ,

c̃j(0) = ξ̃∗j · K̃j(0) , 1 ≤ j ≤ M̃ (initial cowardice level; ξ̃∗j ∈ [0, 1] uniformly i.i.d) ,

Ñj = ζ̃∗j , 1 ≤ j ≤ M̃ (noise level for fair market observation;

ζ̃∗j standard Gaussian i.i.d.) .

Step n→ n + 1

The market price p̃(n) and the fair market price p̃f (n) are updated via (10) and (11) to

p̃(n+ 1) and p̃f (n+ 1).

The update of the traders i = 1, . . . ,M is exactly as in Model A, with only p(n+ 1)

replaced by p̃(n + 1) witch evolves according to (10). Hence only the update of the

fundamental investors is described in the sequel.

B1 Cowardice level

Let ∆̃j(n) :=
∣∣∣s̃j(n) −

[
σ̃(n)

]∣∣∣ ,
Σ̃j(n) :=

{
∆̃j(n) > 1

2

}
⊂ Ω and

C̃j(n+ 1) := c̃j(n) + h ∆̃j(n) .

The cowardice level c̃j(n) of the j–th fundamental investor increases to C̃j(n+ 1)

(cf. (14) below) if his state is not in accordance with the sentiment of all funda-

mental investors.

Fundamental investors will only consider new positions, once the actual market price

p̃(n+ 1) is far from the fair price p̃f (n+ 1). This gap is measured by

q = q(n+ 1) := max

{
p̃(n+ 1)

p̃f (n+ 1)
,
p̃f (n+ 1)

p̃(n+ 1)

}
≥ 1 . (12)
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Since each fundamental investor can only observe the fair price approximately, we intro-

duce a noisy variant of q, i.e.

qj(n+ 1) := q(n+ 1) + ε · Ñj , 1 ≤ j ≤ M̃ , n ∈ N0 ,

for some parameter ε > 0. The switching decision of the j–th fundamental investor will

now depend on whether the market price is close to the fair price, i.e. on Λ̃close
j (n), or

far from the fair price, i.e. on Λ̃far
j (n) , where

Λ̃close

j (n) :=
{
qj(n+ 1) ≤ γ

}
and Λ̃far

j (n) :=
{
qj(n+ 1) > γ

}
,

for some parameter γ > 1 building a threshold.

Whereas in Λ̃far
j (n) the j–th fundamental investor may build new positions and reduce

old positions according to market movements, in Λ̃close
j (n) he will only reduce his old

positions once a signal occurs.

The amount of positions the j-th fundamental investor is buying/selling at switching

time should also depend on the gap between actual market price and fair price. It will

be determined by the function

f(q) := max
{

1,
[
α(q − 1)

] }
, q ∈ R ,

where α > 0 is a parameter. Note that f(q) ∈ N for q ∈ R. If the actual market price

is far away from the fair price, i.e. q � 1, the fundamental investor’s new investment

f(qj) will therefore be more aggressive.
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B2 Switching

Let Ψ̃j(n) :=

{
C̃j(n+ 1) > K̃j(n)

}
⊂ Ω

(cowardice action trigger)

Φ̃j(n) :=

{
p̃(n+ 1) /∈

[
P̃j(n)

/(
1 + H̃j(n)

)
, P̃j(n)

(
1 + H̃j(n)

)]}
⊂ Ω,

(comfort price range left)

Φ̃up

j (n) :=

{
p̃(n+ 1) > P̃j(n)

(
1 + H̃j(n)

)}
⊂ Ω,

(to upside)

Φ̃down
j (n) :=

{
p̃(n+ 1) < P̃j(n)

/(
1 + H̃j(n)

)}
⊂ Ω,

(to downside)

Ξ̃up(n) :=

{
p̃(n+ 1) > p̃f (n+ 1)

}
⊂ Ω,

(market above fair price)

Ξ̃down(n) :=

{
p̃(n+ 1) ≤ p̃f (n+ 1)

}
⊂ Ω.

(market below fair price)

The switching set for which selling or buying actions are triggered is the following:

Θ̃j(n) :=

[
Λ̃far
j (n) ∩

(
Φ̃j(n) ∪ Ψ̃j(n)

)]

∪̇

[
Λ̃close
j (n) ∩

[({
s̃j(n) 6= 0

}
∩ Ψ̃j(n)

)
∪
({

s̃j(n) > 0
}
∩ Φ̃up

j (n)
)

∪
({

s̃j(n) < 0
}
∩ Φ̃down

j (n)
)]]

⊂ Ω .
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We distinguish five disjoint cases for the update of s̃j(n):

(i) for ω /∈ Θ̃j(n) let s̃j(n+ 1) := s̃j(n) (no action) ,

(ii) for ω ∈ Λ̃far
j (n) ∩ Ξ̃up(n) let (only short positions supported)

s̃j(n+1) :=



(comfort price range left:)

min
(

0, s̃j(n) − f
(
qj(n+ 1)

))
, if ω ∈ Φ̃up

j (n)

(bullish breakout; anti–cyclic action)

min
(

0, s̃j(n) + f
(
qj(n+ 1)

))
, if ω ∈ Φ̃down

j (n)

(bearish breakout; anti–cyclic action)

(cowardice action:)

min
(

0, s̃j(n) + 1
)
, if ω ∈ Ψ̃j(n) ∩ Φ̃c

j(n) and s̃j(n) <
[
σ̃(n)

]
min

(
0, s̃j(n) − 1

)
, if ω ∈ Ψ̃j(n) ∩ Φ̃c

j(n) and s̃j(n) >
[
σ̃(n)

]
,

(iii) for ω ∈ Λ̃far
j (n) ∩ Ξ̃down(n) let (only long positions supported)

s̃j(n+1) :=



(comfort price range left:)

max
(

0, s̃j(n) − f
(
qj(n+ 1)

))
, if ω ∈ Φ̃up

j (n)

(bullish breakout; anti–cyclic action)

max
(

0, s̃j(n) + f
(
qj(n+ 1)

))
, if ω ∈ Φ̃down

j (n)

(bearish breakout; anti–cyclic action)

(cowardice action:)

max
(

0, s̃j(n) + 1
)
, if ω ∈ Ψ̃j(n) ∩ Φ̃c

j(n) and s̃j(n) <
[
σ̃(n)

]
max

(
0, s̃j(n) − 1

)
, if ω ∈ Ψ̃j(n) ∩ Φ̃c

j(n) and s̃j(n) >
[
σ̃(n)

]
,

(iv) for ω ∈ Λ̃close
j (n) ∩ {s̃j(n) > 0} (long position possibly reduced)

s̃j(n+1) :=


max

(
0, s̃j(n) − f

(
qj(n+ 1)

))
, if ω ∈ Φ̃up

j (n) ,

(bullish breakout; anti–cyclic action)

s̃j(n) − 1 , if ω ∈
(

Φ̃up

j (n)
)c
∩ Ψ̃j(n) . (cowardice action)
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(v) for ω ∈ Λ̃close
j (n) ∩ {s̃j(n) < 0} (short position possibly reduced)

s̃j(n+1) :=


min

(
0, s̃j(n) + f

(
qj(n+ 1)

))
, if ω ∈ Φ̃down

j (n) ,

(bearish breakout; anti–cyclic action)

s̃j(n) + 1 , if ω ∈
(

Φ̃down
j (n)

)c
∩ Ψ̃j(n) . (cowardice action)

Comments:

ad (ii): If ω ∈ Λ̃far
j (n) the fundamental investors can buy and sell freely according

to their anti–cyclic strategy, i.e. in case of bullish breakout
(
ω ∈ Φ̃up

j (n)
)

they sell and in case of bearish breakout
(
ω ∈ Φ̃down

j (n)
)

they buy stocks.

If only cowardice action is triggered
(
ω ∈ Ψ̃j(n) ∩ Φ̃j(n)c

)
, the position of

the j–th fundamental investor is moved one step towards common sentiment

of the fundamental investors. Taking the minimum relative to 0 guarantees

that for ω ∈ Ξ̃up(n) only short positions are possible. This is a consequence

of the anti–cyclic strategy and the fact that the market price is above the

fair price.

ad (iii): similar as (ii)

ad (iv) and (v):

for ω ∈ Λ̃close
j (n) only reductions of open positions are allowed, i.e. for{

s̃j(n) > 0
}

only selling and for
{
s̃j(n) < 0

}
only buying is possible, once

a cowardice action or a breakout giving this anti–cyclic action is triggered.

B3 Updates

In case the j–th fundamental investor switched his position, the last switching

price P̃j , the comfort price range H̃j and the cowardice threshold K̃j has to be

updated,

P̃j(n+ 1) := p̃(n+ 1) 1Θ̃j(n) + P̃j(n) 1Θ̃cj(n) ,

K̃j(n+ 1) := K̃∗j (n+ 1) 1Θ̃j(n) + K̃j(n) 1Θ̃cj(n) ,

H̃j(n+ 1) := H̃∗j (n+ 1) 1Θ̃j(n) + H̃j(n) 1Θ̃cj(n) ,

(13)

and the new cowardice level is reset to zero at switching or otherwise updated

c̃j(n+ 1) := C̃j(n+ 1) 1Θ̃cj(n) . (14)
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3.2 Numerical results for Model B

In this subsection, numerical simulation of Model B with the same underlying news

process as was used in Subsection 2.3 is given. We used the same parameters as in (9)

and additionally

M̃ = 100 , α = 20 , β = 5 , γ = 1.05 , ε = 0.005 , κ̃ = 0.3 .

In Figure 10 we show a sample trajectory of Model B. Exaggerations can still be observed

(in bold: actual market price; in light: fair price).

The fundamental investors (dashed–bold: M̃ · σ̃; see Figure 11) enter, when the market

price is too far from the fair price. In bold (blue): M · σ (traders); in light (red):(
M + M̃

)
· σ̂ (all investors).
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Figure 10: Long simulation of Model B
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Figure 11: Corresponding sentiment of dif-
ferent investors
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3.3 The Model B*

If we combine the traders of Model A* (see Subsection 2.4) with the fundamental in-

vestors of Model B we obtain Model B* (cf. Figures 12 and 13).
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Figure 12: Long simulation of Model B*
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Figure 13: Corresponding sentiment of dif-
ferent investors

This model follows the fair price the closest, but still allows sharp price adjustments and

also trends with cumulating sentiment.

4 Statistics of the four models

To analyse the data produced by the four introduced models, we focus especially on the

detection of stylized facts in the model data. As our models are non-parametric, i.e. no

a priori distributions are fixed for the models, the stylized facts are the natural way to

compare the model data with data from real stock markets so that one can valuate the

quality of the model to simulate real world data. Therefore, in this section we show the

non-Gaussian return behavior, the absence of autocorrelations of the returns, volatility

clustering and the presence of heavy tails. These are typical properties of asset returns

that are observed in many different studies. For an overview on stylized facts see e.g.

[3].
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4.1 Non-Gaussian return behavior

For a time series (of prices) (p(t))t∈N, the (logarithmic-)returns after n periods are defined

as:

retn(t) := ln

(
p(t)

p(t− n)

)
= ln(p(t))− ln(p(t− n)), t ≥ n+ 1 ∈ N.

The distributions of the price returns (ret10) are plotted1 for the actual market price (bold

red line) and the fair market price (light blue line) for each model (see fig. 14 and 16).

A fit to the Gaussian distribution is than plotted in dashed green (Normal distribution

with empirical mean und empirical standard deviation from the actual market price

series). For models A and A∗ the deviation from Gaussian behavior is obvious, but

also for models B and B∗ a discrepancy between the ret10-distribution and the Gauss

approximation can be seen. Particularly one can see the sharper peak and the fatter tail

of the return distributions of the actual market price (more visible in the “zoomed in”

figure 17). This indicates a high kurtosis of the returns, which is a typical stylized fact

for real market data. For models A and A∗ the tails of the distribution carry so much

weight, that a fit to the Gaussian distribution is not sensible. This extreme behavior is

provoked by the unbounded deviation of the actual market price from the fair price.

(a) model A (b) model A∗

Figure 14: Distribution of ret10 for models A and A∗

1The distributions in this section are plotted using a kernel density estimator with Gaussian kernel.
The bandwidth is h = 1.096 · sd ·steps− 1

5 , where sd is the empirical standard deviation (cf. [20])
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(a) model A (b) model A

Figure 15: Detailed view of the distribution of ret10 for models A and A∗

(a) model B (b) model B∗

Figure 16: Distribution of ret10 for models B and B∗
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(a) model B (b) model B∗

Figure 17: Detailed view of the distribution of ret10 for models B and B∗

4.2 Absence of linear Autocorrelations

Figure 18 shows the empirical autocorrelation function for the ret1 and ret10 distribu-

tion of model B∗. The correlation γ(∆t) := Corr(retn(t), retn(t+ ∆t)), n ∈ {1, 10}, t ∈
{1, . . . , steps} is plotted on the y-axis and the lag ∆t on the x-axis. The autocorre-

lation rapidly decays to zero, i.e. for ∆t > n the correlation is negligible. The other

models yield the same results. The absence of linear autocorrelations is typical for finan-

cial timeseries. The interpration of the graph is only valid for second-order stationary

processes, as otherwise the autocorrelation γ(∆t) would still depend on t.
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(a) γ(∆t) for ret1 distribution (b) γ(∆t) for ret10 distribution

Figure 18: Autocorrelation of the return distributions

4.3 Volatility Clustering

A typical behavior in real market data is that large price variations tend to be followed

by large price variations and small variations by small. This behavior is called volatility

clustering. For a time series (of prices) (p(t))t∈N, we define the volatility as:

volan(t) =

√√√√ 1

n

t∑
i=t−n+1

(
p(i)

mn(i)
− 1

)2

, t ≥ 2n, where mn(t) =
1

n

t∑
i=t−n+1

p(i)

Note that due to normalization volan(t) is scale invariant, i.e. a constant multiple of the

price process p would produce the same volatility. In figures 19 - 22 the distributions

of vola26 and vola1000 are plotted2. Again the bold red line corresponds to the actual

market price and the light blue line to the fair price. Noticeable are the smaller peak and

the heavier (right)-tail for the actual market price (compared to the fair price). Thus

cumulation of high volatility is much more supported by the actual market price. This

effect is even more pronounced for the vola1000 distributions. The extreme behavior of

models A and A∗ of the vola1000 distribution is provoked by the unboundedness of the

price fluctuations and seems unnatural.

2The distributions in this section are plotted using a kernel density estimator with Gaussian kernel.
The bandwidth is h = 1.096 · sd ·steps− 1

5 , where sd is the empirical standard deviation (cf. [20])
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(a) model A (b) model A∗

Figure 19: vola26 distribution for models A and A∗

(a) model B (b) model B∗

Figure 20: vola26 distribution for models B and B∗
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(a) model A (b) model A∗

Figure 21: vola1000 distribution for models A and A∗

(a) model B (b) model B∗

Figure 22: vola1000 distribution for models B and B∗
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4.4 Tail behavior of the return distributions

One measure for the intensity of “fat-tails” is the “Heavy-Tail-Exponent” based on the

assumption of Pareto-like tail distributions.

The distribution of a Pareto random vari-
able Y : Ω → R is characterized by the
survival function:

H̄α,xmin(x) = 1−Hα,xmin(x) = P(Y > x)

=

{(
xmin
x

)α
for x ≥ xmin

1 for x < xmin

with xmin > 0 a given minimum of Y and
α a positive parameter. Hα,xmin(x) is the
cumulative distribution function with cor-
responding probability density function

gα,xmin(x) =

{
αxαmin
xα+1 for x ≥ xmin

0 for x < xmin
Figure 23: Pareto distribution for α = 2

A random variable X : Ω→ R with cumulative distribution function (cdf) F : R→ [0, 1]

is said to be right-heavy-tailed, if the right tail of the distribution resembles the behavior

of a Pareto distribution. More precisely, if

F̄ (x) = 1− F (x) = P(X > x) ∼
(xmin

x

)α
, as x→∞, (15)

where ∼ means that the quotient of the left-hand side to the right-hand side tends to 1

as x→∞.

With the “ Max-Spectrum-Method” from [22] it is possible to measure the fatness of the

tail by approximating the decay exponent α. A consistency analysis for the method for

certain classes of time series (especially also for dependent data) can be found in [22]

and [21].

The method is based on one of the major theorems of “extreme value theory”, the

Fisher-Tippet-Gnedenko theorem (cf. [19]), which states the following:

Let X(1), X(2), . . . be independent and identically distributed (i.i.d.) random variables

with common cdf F : R→ [0, 1] and for m ∈ N, k ∈ N set

Xm(k) := max
1≤i≤m

X(m(k − 1) + i)

the maximum of the k-th block of size m. Assume there is a sequence of pairs

(am(k), bm(k))m∈N ⊂ R2,
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with am(k) > 0 and {
Xm(k)− bm(k)

am(k)

}
k∈N

d−−−→
m→∞

{Z(k)}k∈N , (16)

with non-degenerated random variables Z(k), k ∈ N.3 Then the variables Z(k), k ∈ N
are independent and identically distributed, with a common cdf G : R→ [0, 1] belonging

either to the Gumbel-, the Weibull- or the Fréchet-family.

If, in addition,

• F (x) < 1, ∀x ∈ R (i.e. the right edge of the support of the distribution is ∞),

and

• there exists an α ∈ R, such that 1−F (tx)
1−F (t)

−−−→
t→∞

x−α, x > 0,

hold, the limit distribution G is an α-Fréchet distribution and possible sequences that

yield the demanded convergence in (16) are

bm := bm(k) = 0 and am := am(k) = F−1(1− 1/m), (17)

with F−1 : [0, 1]→ R denoting the pseudoinverse of F (cf. [19, theorem 2.1]).

Now, if we consider a sequence of right-heavy-tailed i.i.d. random variablesX(1), X(2), . . .

with common distribution function F : R → [0, 1], i.e. the survival function behaves

asymptotically (x→∞) like that of a Pareto distribution H̄α,1 as in (15),4 then we have

F (x) < 1, ∀x ∈ R and for x > 0:

1− F (tx)

1− F (t)
· xα =

(1− F (tx)) · (tx)α

(1− F (t)) · tα
(15)−−−→
t→∞

1

1
= 1.

Thus the limit distribution G from the Fisher-Tippet-Gnedenko theorem is an α-Fréchet

distribution. To obtain sequences am and bm for the convergence in (16), we note

F−1(y) · (1− y)
1/α y:=F (x)

= x · (1− F (x))
1/α = x ·

[
F̄ (x)

]1/α → 1,

where the convergence for x → ∞ (or equivalently y = F (x) → 1) follows from (15).

Choosing y = 1− 1/m we get

F−1(1− 1

m
) ·m−1/α m→∞−−−→ 1

and the sequences am and bm can, considering statement (17), be set to

bm = 0 and am = m
1/α, m ∈ N.

3 d−→ means the convergence of finite dimensional distributions.
4xmin is set to 1 for simplicity.
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Therefore, for the block maxima{
Xm(k)

m1/α

}
k∈N

d−−−→
m→∞

{Z(k)}k∈N , (18)

holds, with i.i.d. α-Fréchet distributed random variables Z(k).

A sequence of i.i.d. random variables X(k), k ∈ N is called max-self-similar if for some

H > 0:

{Xm(k)}k∈N
d
= {mHX(k)}k∈N, ∀m ∈ N (19)

holds5. Comparing this definition with the result in (18), right-heavy-tailed random

variables can be seen as asymptotically max-self-similar with parameter H = 1/α.

For the Max-Spectrum method, introduced in [22], we consider a finite sample of i.i.d.,

right-heavy-tailed random variables X(1), X(2), . . . , X(N) with common distribution

function F : [0,∞) → [0, 1]. Since the Max-Spectrum method uses logarithms, in the

following, we consider the random variables to be almost surely positive. The case of

random variables, which can be zero, or negative is controlled by using a special value ∗
and confering the method on the extended real line R∗ := R ∪ {∗}. For a detailed

analysis of this case see [22, section 4].

We choose m = 2j and consider the block maxima

X2j(k) := max
1≤i≤2j

X(2j(k − 1) + i), k = 1, 2, . . . , Nj,

for all j = 1, 2, . . . , blog2Nc, where Nj := bN/2jc.
If the underlying random variables X(1), X(2), . . . are max-self-similar, the following

holds:

log2(X2j(k))
d
= log2((2j)HX(k)) = H · j + log2(X(k)). (20)

For right-heavy-tailed random variables this equation is maintained using the averaged

log maxima

Yj :=
1

Nj

Nj∑
k=1

log2X2j(k), j = 1, 2, . . . , blog2Nc, (21)

which are consistent and unbiased estimators of the expectations E[log2X2j(1)]. More

precisely, it can be shown that

E[Yj] = E[log2X2j(1)] ' 1

α
· j + C, (22)

5 d
= means equality of the finite dimensional distributions.
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holds, with C = E log2 Z, where Z is an α-Fréchet variable (see [22, Proposition 4.1]).

' means that the difference between the left hand side and the right hand side tends to

zero for j →∞.

Thus by plotting the Yj’s versus j we expect to see an almost linear curve, at least for

large values of j. According to (22) the slope of a linear regression on this curve yields

an estimate of 1/α.

Before applying this method to the return distributions of our models, we apply it to

α-Fréchet random variables X(k), for comparison. That means, we generate 100 runs

of N = 100000 pseudo random numbers and summarize the results with a boxplot.

Every box represents the median (middle line), the upper- and lower- quartile (upper-

and lower-edge of the box) and the minimum and maximum (endpoints of the vertical

lines) of the 100 averaged log maxima Yj computed for each j. The results for α = 4

are shown in figure 24a. Since Fréchet variables are max-self-similar (cf. (19)), the

simulation yields an almost perfect fit to the regression line with 1/slope = α̂ ≈ 4.0609.

In a second step, we generate 100 runs of 100000 Pareto distributed pseudo random num-

bers and apply the Max-Spectrum-Method. The results for a Pareto distribution with

tail decay exponent α = 4, i.e. H̄4,1, are shown in figure 24b. The Pareto distribution is

only asymptotically max-self-similar (cf. (18)), but nevertheless the graph of the aver-

aged log2-maxima again shows an almost linear behavior, here with 1/slope = α̂ ≈ 4.124.

(a) Fréchet random variables, α̂ ≈ 4.0609 (b) Pareto random variables, α̂ ≈ 4.124

Figure 24: plot of the averaged log2-maxima of pseudo random numbers generated with
a Fréchet distribution and a Pareto distribution, respectively.

Now we use the method to study the tail behavior of return-distributions. On the one

hand, we study the return-destributions generated by the “investor psychology models”
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and on the other hand, we compare the behavior with the return-distributions of real

world data6.

That means we use the returns X(t) = retn(t + n), t = 1, 2, . . . , N := Ñ − n (defined

in section 4.1) of the simulated price series, where Ñ is the number of computed prices.

Note that the values of retn(t + n) can be positive or negative. Thus we focus on

the right- and left-tails separately. Since the behavior of right- and left-tails does not

differ, we just present the results for the right-tails. In the following figures, the x-axis

shows the values of j, describing the block size m = 2j. The y-axis corresponds to the

averaged-log2-maxima Yj as defined in (21).

To obtain a more detailed view on the results, we repeat this procedure for 100 sample

runs of our price series and (again) summarize the results with a boxplot. Each run was

computed with Ñ = 100000 steps of the respective model.

We start with the results for the four introduced models. Figures 25 and 26 show the

averaged-log-maxima Yj for the Max-Spectrum method for the ret1 data-series of the

respective models. For all four models we observe an concave bend for smaller values of

j, indicating a slow convergence of the method for the model data. As proposed in [22],

we skip the values of Yj for small j in the calculation of α̂. For models A and A∗ there

is a steep increase for higher values of j ∈ (8, 13), which is in line with our finding of an

unbounded deviation from the fair market price in these models.

(a) model A, α̂ ≈ 3.593 (b) model A∗, α̂ ≈ 2.147

Figure 25: plot of the averaged log2-maxima of ret1 for models A and A∗

6Here we will use FDax Tickdata from 17.Oct.2011 to 25.Oct.2011
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(a) model B, α̂ ≈ 7.870 (b) model B∗, α̂ ≈ 7.993

Figure 26: plot of the averaged log2-maxima of ret1 for models B and B∗

As mentioned above, the behavior is analogous for the left-tails. E.g. Figure 27 shows

the plot of the averaged log-minima of the left tail of the ret1-distribution for model B∗.

Figure 27: left tail of ret1-distribution of model B∗, α̂ ≈ 8.095
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For comparison let us look at real world data. Here we expect to find heavy tails as

well. It is well know, that the behavior of the return distributions of real world data

strongly depends on the actual market-phase. To cut this unstable behavior out, one

can compute the results for several periods and (as for the model data) visualize the

results in a boxplot. In this way one artificially generates different sample runs. A

disadvantage is that an immense amount of data is needed to generate for example 100

runs as we used in the results for the models above. Thus, we divided the FDax tickdata

from 17.Oct.2011 to 25.Oct.2011 into subsequences of length 10,000 and computed the

averaged log2-maxima for these sequences. In this way we obtained 53 subsequences.

Figure 28 shows the results. We notice that the tail of the ret1 distribution of model A∗

Figure 28: results for the ret1-distribution from the FDax tickdata, α̂ ≈ 5.06

is heavier (α̂ ≤ 2.2), whereas that of model B and B∗ is less heavy (α̂ ≥ 7.8) than that

of the real world data (α̂ ≈ 4.1).
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Since a return distribution with a lag of 1 tick is of minor interest, we proceed with the

inspection of “higher” return-distributions, i.e. retn, with n > 1. Figure 29 shows the

behavior of averaged log-maxima of the ret10 and ret30 distributions of FDax tickdata.

Again we find heavy-tailed behavior with tail decay rates of α̂ ≈ 5.141 for the ret10-

distribution and α̂ ≈ 4.894 for the ret30-distribution, respectively.

(a) ret10-distribution, α̂ ≈ 5.141 (b) ret30-distribution, α̂ ≈ 4.894

Figure 29: right tail of ret10- and ret30-distribution of FDax-tickdata

The investor psychology models yield the following results for ret10-distributions. For

models A and A∗ the method yields decay rates α̂ of approximatly 2.466 and 1.643,

respectively. For models B and B∗ we have α̂ ≈ 4.4.
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(a) model A, α̂ ≈ 2.466 (b) model A∗, α̂ ≈ 1.643

Figure 30: averaged log2-maxima of the ret10-distributions for models A and A∗

(a) model B, α̂ ≈ 4.386 (b) model B∗, α̂ ≈ 4.365

Figure 31: averaged log2-maxima of the ret10-distributions for models B and B∗
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Models A and A∗ are similar in comparison to the results for ret1-distribution (cf. fig. 25a

and 25b). Still with a high slope around j = 10 and a decreasing slope for higher scales.

The graphs for Models B and B∗ now are more linear, indicating that the convergence

of the method is faster for higher return distributions. The decay rates (α-values) are

similar to the FDax-tickdata.

The results for the ret30-distributions for models B and B∗ almost exactly hit a straight

line (see fig. 33) with decay rates around α̂ ≈ 3.9. The shape of the results for models

A and A∗ stays unchanged.

(a) model A, α̂ ≈ 2.211 (b) model A∗, α̂ ≈ 1.56

Figure 32: right tail of ret30-distribution
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(a) model B, α̂ ≈ 3.978 (b) model B∗, α̂ ≈ 3.974

Figure 33: right tail of ret30-distribution

Altogether one can observe fat tails in the FDax-tickdata and in the model data for

higher order return-distributions, with comparable decay rates, at least for models B

and B∗. For return-distributions of low order, we have a slow convergence of the Max-

Spectrum method for the our models, thus a slightly different behavior in comparison

to the real world data. The tails of the models A and A∗ are constantly heavier than

the tails of the real world data.
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5 Conclusion

All models introduced here show typical stylized facts of real market date like e.g. fat

tails and volatility clustering. Models B and B∗ also do not deviate from the fair market

price by too much, even in the long run.

Although the innovation process Z∗n is standard Gaussian, the market price p(n) is far

from behaving like geometric Brownian motion. The actions of the investors every now

and then yield short transition periods with sharp price adjustments. Even trend behav-

ior with short movements and long corrections can be observed. Clearly those features

would intensify, if the underlying news process would be perturbed by ”news–spikes”,

which usually occur in connection with the release of economic data. Also perturbing

the innovation process by a long term periodic function, representing economic cycles,

would probably even generate long term trend behavior of the market price.
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A Matlab Code

The simulation of all four models is written in Matlab (the code is available on our

web site http://www.instmath.rwth-aachen.de/∼maier). The input is organized via a

parameter file (cf. Table 1), which allows for individual adjustments of all parameters.

Besides the statistics produced here also tick data of the price evolution can be simulated.

4 0 1 2 3 Number of Models, List of Models (0=A, 1=A*, 2=B, 3=B*)

100 100 20 M, tilde M, rho

20 5 5000 alpha, beta, p-start

0.15 0.3 1.05 0.05 kappa, tilde kappa, gamma, delta

0.001 0.003 0.004 0.02 K-, K+, H-, H+

0.00005 0.005 1 10000000 h, epsilon, FactorKH (factor scales similarly K+- and H+-), steps

0 Discrete (0=normally distributed, 1= discrete number generator)

1 Output Statistics (1=yes,0=no)

2 Output Mode (0= no, 1= write tick file, 2=write data, 3= both),

1 Output factor (scales the time when producing tick data)

1 Input Mode, (0=for random generator, 1=use input file, 2=write input file)

DAX.tick Output tick File

inputrandom.mat Input Random News Process Data

liste.mat Output Data

Table 1: Input file parameter.txt

40



References

[1] W. B. Arthur. Inductive reasoning and bounded rationality. Am. Econ. Rev.,

84:406–412, 1994.

[2] N. Barberis, A. Shleifer, and R. Vishny. A model of investor sentiment. Journal of

financial economics, 49:304–343, 1998.

[3] R. Cont. Empirical properties of asset returns: stylized facts and statistical issues.

Quantitative Finance, 1:223–236, 2001.

[4] R. Cont and J.-P. Bouchaud. Herd behavior and aggregate fluctuations in financial

markets. Macroeconomic Dynamics, 4:170–196, 2000.

[5] R. Cross, M. Grinfeld, and H. Lamba. A mean–field model of investor behaviour.

J. Phys., Conference Series 55:55–62, 2006.

[6] R. Cross, M. Grinfeld, and H. Lamba. Hysteresis in economics. IEEE CSM, 29:30–

43, 2009.

[7] R. Cross, M. Grinfeld, H. Lamba, and T. Seaman. A threshold model of investor

psychology. Physica A, 354:463–478, 2005.

[8] R. Cross, M. Grinfeld, H. Lamba, and T. Seaman. Stylized facts from a threshold–

based heterogeneous agent model, Euro. Phys. J. B, 57:213–218, 2007.

[9] E. F. Fama. Efficient capital markets. J. Finance, 46:1575–1618, 1991.
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