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Introduction

In recent decades, technological breakthroughs have occured at an unprecedented pace.
Never thought of achievements seem not so distant any more. Already, cars can drive
autonomously, at least in a controlled environment. People can interact with their smart-
phone simply by talking to it via Siri. And computers can detect cancer in CT scans
more accurately than any doctor. Many of these spectacular achievements have been
realised by machine learning. For ages, humans have dreamt about machines that think
and behave like a human being. While there is not a real artificial intelligence yet, giv-
ing computers the ability to learn has proven to be successful in many areas where a
large amount of data has to be analysed and interpreted. Naturally, the question arises
whether it is possible to see similar spectacular results in finance, where vast amounts
of data have to be interpreted as fast as possible.
The stock market has seen a tremendous shift towards automated trading during the
last decades. The stock exchange floor, where most of the trades were once conducted
in person, is now largely a TV set, as trades are usually performed by computers. Quan-
titative investment funds, in which investment decisions are determined by numerical
methods rather than human judgement, became the largest source of institutional trad-
ing volume in the American stock market in 2016. In 2019, they accounted for 36% of
institutional volume, up from just 18% in 2010, see ["March of the Machines", 2019, p.
19]. Although most of these funds still apply rule-based algorithms, many are pushing
automation even further by using machine learning. In a white paper, the quantitative
analysts of J. P. Morgan state that "analysts, portfolio managers, traders and CIOs will
eventually have to become familiar with Big Data and machine learning approaches to
investing", see [Kolanovic, 2017, p. 8].
The goal of this thesis is to give an overview of applications of machine learning in
finance. The idea is to cover the whole work process from collecting data to launching
a machine learning trading strategy. The thesis is structured as follows: In Chapter 1,
there is an introduction to machine learning in general. Then, the process of collecting
and structuring data is explained in Chapter 2. In Chapter 3, machine learning tech-
niques are introduced and used in order to create a model that can predict stock price
changes. One machine learning technique that can help to detect underlying patterns of
financial markets, feature importance, is highlighted in Chapter 4. Then, a trading strat-
egy that applies the machine learning model, a random forest, is introduced in Chapter
5. Moreover, a clustering algorithm is described that allocates the equity to the assets
beneficially. Finally, the theory is applied to a real dataset in Chapter 6, where a backtest
with post-processing, which uses multiple trend followers, is conducted.
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Chapter 1

Types of Machine Learning

Ever since computers have been invented, there was the idea to somehow let machines
learn tasks by themselves. In recent years, research in this area has made huge leaps
and machine learning is developing rapidly. The use cases are numerous and range
from classifying email as spam, recommending items while shopping online to driving
an autonomous car. The main idea behind every application is to derive knowledge
from data. For a computer program, the process of improving the performance at some
task through experience can be defined as ’learning’, see [Mitchell, 1997, p. 2].
In general, these algorithms belong to one of the following types of machine learning:

• Supervised learning

• Unsupervised learning

• Reinforcement learning

Each of these types will be introduced shortly. For a further discussion, see [Raschka &
Mirjalili, 2015, pp. 40-50].

1.1 Supervised learning

In supervised learning, the model is given labelled data in order to find patterns and
make predictions about new, unseen data. There are two types of supervised learning:
classification and regression.
A classifier has the choice between a few discrete classes, in which similar samples are
grouped together. In this context, labelling means specifying the class membership for
every sample in the dataset. This way, a program can learn typical features of these
classes and use them for class predictions.
Classifying spam emails is a typical use case for supervised learning, see [Hamsapriya
et al., 2011, pp. 458-459]. Given a dataset of emails, the program tries to find patterns.
For example, there might be certain words that often appear in spam emails. If a new
email consists of many of these words, the model predicts that it belongs to the class
of spam emails. Theoretically, there could be multiple classes, for example it could be
desirable to have a classification in spam, invoices and work related emails.
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Other than classifying data with a few, discrete labels, it is also possible to predict a
continuous value directly. This supervised learning method is called regression. As
for the classifier, the data has to contain information about the response variable that is
supposed to be predicted on new data.
In finance, predicting the stock market movement is a popular application area for su-
pervised learning. It is possible to design this as a regression problem, but due to high
volatility, predicting an exact price is difficult. Moreover, simply predicting the price
ignores its path entirely. A very volatile stock might have a high predicted value, but
the risk of suffering a high drawdown is considerable. By classifying assets at a given
trading day as good or bad, which will be discussed in Section 2.2, it is possible to by-
pass these problems. Therefore, the supervised learning models used in this thesis are
classifiers.

1.2 Unsupervised learning

While supervised learning depends on labelled data to predict the most likely label or
value, unsupervised learning detects patterns without labels.
A popular example is the use of recommender systems. Shopping websites often gen-
erate suggestions based on the personal shopping history. This is done by collecting
personalized data, like past products, ratings and the age. Then, customers with similar
features are clustered by algorithms like the k-means clustering method, see [Kim &
Ahn, 2008, p. 1201]. Products that appeal to the peer group are then recommended, as
they most likely catch the customer’s interest as well.
Unsupervised learning algorithms can be used in finance as well. In the context of asset
allocation, clustering algorithms can be used to group similar assets together, which will
be discussed in more detail in Subsection 5.3.3. A Principal Component Analysis (PCA)
can be used to detect the main features that drive stock price movement, see [López,
2018, p. 118]. Another popular research area is sentiment analysis, where the goal is to
extract the sentiment of a piece of text. Used on financial news, it can be used to predict
sudden stock price shifts, see [Yadav et al., 2019, p. 313].

1.3 Reinforcement learning

In reinforcement learning, a program has to achieve a goal by interacting with the en-
vironment. This interaction can be rewarded or punished, depending on its effect. The
program has to learn a way to interact with the environment in such a way that the
expected overall reward over time is maximized.
A good example to visualize this concept is an autonomous car. The main goal is to
transport the passengers. On the way, the autonomous car has to take a lot of actions,
like accelerating, braking or steering. It is hard to prepare the car for every possible
scenario by labelling data, as it is done in supervised learning. In a new approach, if
the car faces an unknown problem, it has therefore some degree of freedom to act while
closely examining the effect of these actions, see [Sallab et al., 2017, p. 71]. This way the
car learns from its mistakes and is prepared for a similar situation in the future.
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In finance, an application of reinforcement learning are chatbots used on the bank’s
websites. These can be implemented with reinforcement learning, interacting with the
human counterpart to give desired information, see [Papaioannou, 2017, p. 366].
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Chapter 2

Data Analysis

The following chapter is dedicated to closely examine the data used for the machine
learning models. Financial data has some properties that are unique and have to be
accounted for. In a naive approach, one may use standard machine learning methods
that seem to produce excellent results, but fail to generalize on new data. The reason
mostly lies in the dependency on time and the correlation of multiple different assets.

2.1 Financial Data Structure

A standard assumption for data input in machine learning models is an identically and
independent distribution, see [Raschka & Mirjalili, 2015, p. 738]. For example, if the
sugar content of grapes is predicted knowing the species, the growing region and the
year, grapes with the same characteristics can be expected to have similar results. A hot
summer may shift the sugar content up, but that will reflect on all grapes in that region
in that year. Therefore, it can be reasonable to assume that the sugar content of grapes
has a similar distribution with different parameters. Furthermore, a sample belongs to
a specific grape, which is not influenced by the results of other tests, the samples are
therefore independent. Such circumstances are good for reliable predictions.
Unfortunately, financial datasets are different. The movement of stock prices is too
complex to safely assert an underlying distribution over the entire asset universe. Fur-
thermore, this underlying distribution may change over time, so the data has to be
interpreted as a time series. A sample, which in this case is the stock price of an asset
on a given day, is therefore highly dependent on prior trading days. Lastly, the price
movement is influenced by the price movements of other assets. It is therefore extremely
difficult to reliably predict a stock price.
A sample of financial data usually consists of the trading day, a unique ticker symbol to
identify an asset and the stock prices for that day. Usually, there is a price for when the
stock market opens and closes and for the highest and lowest stock price for the day. At
some point in time, there may be a split, meaning that existing shares are divided into
smaller shares to boost liquidity. That usually reflects in a sudden price drop of the then
smaller share and has to be accounted for. Furthermore, some companies pay dividends
to their shareholders. To use the stock price as a performance measure, the raw prices
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therefore have to be adjusted. Moreover, often there is an indicator of the daily trading
volume for a given stock.
In the following, the dataset will consist of the members of the S&P 500 index from
January 1990 to January 2019 and of members of the STOXX Europe 600 index from Jan-
uary 2002 to January 2019, including shares of companies that do not exist anymore due
to mergers or bankruptcy. Excluding these is a typical mistake leading to a survivorship
bias, where the dataset solely consists of shares of companies that have been successful
enough not to go bankrupt. Furthermore, in the dataset used in this thesis, assets are
first taken into account when they enter the index. This way, no future knowledge of an
asset entering the index is implied.
At the start, a sample consists of a trading day, a ticker symbol and the adjusted close
price. To give better predictions, more features have to be added. These features can
be either derived from the underlying data, for example the volatility can be estimated
given the past adjusted close prices, or from external data like the S&P 500 index and
the VIX, which is a volatility index. It is even possible to use non-financial data, like
satellite images or social media posts. For an overview of these alternative sources of
data see [Kolanovic & Krishnamachari, 2017, pp. 26-50].
Because a feature is used for predictions, it is very important that every feature only
contains information that has been available at the time of the given sample. Each of
these features is added to the sample vector, resulting in the sample

Xi ∈ R1×M, i ∈ {1, . . . , N},

where M is the number of features and N the number of samples. What features to add
will be discussed in detail in Chapter 4.
Combining all the samples into a single matrix finally yields the so called feature matrix

X ∈ RN×M.

2.2 Labelling

As the machine learning models in this thesis use supervised learning, the data have to
be labelled. In theory, the model should identify ’good’ and ’bad’ assets. This classifica-
tion has to be specified.
There are multiple ways to label financial data. In the following, a couple of labelling
methods will be explained and compared. Each of these methods assigns a number,
typically -1 or 1, to a single sample. These labels form a vector y ∈ ZM, which is added
to the feature matrix. The complete dataset can therefore, following the past notations,
be expressed as

(X, y) ∈ RN×(M+1).

2.2.1 Fixed-time horizon method

The standard labelling method to evaluate the performance of an asset is to look at the
future return. Let pt with t ∈ {1, . . . , T} denote the adjusted close of an asset at the
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trading day t. T describes the maximal number of trading days in the dataset. For
t ≤ T − h, the future return with a horizon h or h-day return is defined by

rt,t+h =
pt+h

pt
− 1.

Given a feature matrix X, a sample Xi is assigned a label yi ∈ {−1, 0, 1} by

yi =


−1 if rti ,ti+h < −τ

0 if
∣∣rti ,ti+h

∣∣ ≤ τ

1 if rti ,ti+h > τ

where τ is a pre-defined threshold, ti is the index of the trading day of the sample Xi

and h is the horizon, see [López, 2018, p. 43].

Figure 2.1: The fixed-time horizon labelling method. Depending on the return after 6
months, the label is either 1 (green), 0 (blue) or −1 (red). In the figure, yi = 1.

There are multiple ways to set the threshold. One way is to choose a threshold that
leads to classes of roughly the same size, which is a desired property for data for ma-
chine learning models. In this case, a threshold of 3% seems to be a good choice for a
small horizon of 20 trading days. Apart from the dataset used in this thesis, this thresh-
old seems to apply to other datasets in practice as well, see [Dixon et al., 2016, p. 69].
However, setting a fixed threshold can be problematic, because differences in volatility
of assets are not accounted for. Volatile assets are most likely assigned −1 or 1, whereas
low-volatility stocks mostly receive 0. The machine learning model will learn this pat-
tern and accurately identify assets with a low volatility, while struggling to identify
the correct return sign of volatile assets. A workaround would be to choose a varying
threshold, depending on a rolling standard deviation of the past returns.
Suppose there is a sample Xi that describes an asset j at the trading day ti. For a series of
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daily past returns of that asset (rt−1,t)t∈{2,...,T} the standard deviation can be estimated
by

σr =

√√√√ 1
T − 2

T

∑
t=2

(
rt−1,t − r

)2
,

with r indicating the arithmetic mean of the return series. However, at the time ti no fu-
ture knowledge is allowed to be leaked. Therefore, only the time series for t ∈ {2, . . . , ti}
can be used. Furthermore, techniques like cross-validation, which will be discussed in
Subsection 3.1.3, require that there is only a limited window of past observations that is
allowed to be used, because a test dataset can predate a training dataset. For the sample
Xi, the k-day standard deviation of returns is defined by

σ
[k]
r,ti

=

√√√√1
k

ti

∑
t=ti−k

(
rt−1,t − r [k]

)2
,

if ti > k. Of course, the arithmetic mean r [k] is calculated with the same rolling window
as well. This standard deviation can be set as the varying threshold mentioned earlier.
Thus, a sample labelled −1 is considered bad regardless of the asset’s specific volatility.
Another aspect to consider is that the fixed-time horizon method does not evaluate the
path of the stock price. Relying on a single trading day, this method is susceptible to
random noise of the price movement signal. Even if, as seen in Figure 2.1, there are big
losses in the evaluation period, assets can still be labelled positively.

2.2.2 Triple-barrier method

The triple-barrier method is an advancement of the fixed-time horizon method. As in
the latter, there is a time barrier evaluating the return after a certain holding period. If
the price path hits this vertical barrier, the sample is labelled 0.
Additionally, there are two horizontal barriers. Firstly, there is a stop-loss limit. When
the return crosses a certain negative threshold first, the sample is labelled −1. This
threshold can be fixed, for example −3%, or varying and depending on the volatility, as
seen in the fixed-time horizon method.
The second barrier is an upper profit-taking barrier. If the price path hits this barrier
first, the sample is labelled 1, because the asset performs exceptionally good. Again, this
upper barrier can be varying and does not have to be symmetrical to the lower barrier.
Theoretically, any combination of these three barriers is feasible, for example there can
be a stop-loss limit and a fixed-time barrier without an upper barrier. It is also possible
to omit the neutral class. If the price path touches the vertical barrier, the label then is
chosen as −1 or 1 according to the sign of the return at the vertical barrier. For a further
discussion, see [López, 2018, pp. 45-47].
The difficulty using this method is to choose good values for the horizontal barriers. In
general, classes should be roughly the same size. However, this often leads to an early
stop-loss, which is susceptible to sudden random price shifts. Furthermore, setting a
long horizon for the fixed-time barrier is computational hard, so labelling takes a lot of
time.
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Figure 2.2: The triple-barrier labelling method. The label is chosen by the first barrier
the price path touches. The upper horizontal barrier (green) indicates 1, the
lower horizontal barrier (red) −1 and the vertical barrier (blue) 0. In the
figure, yi = −1.

2.2.3 Edge Ratio method

The Edge Ratio method is another advancement ot the fixed-time horizon method.
Again, the price return is evaluated after a certain holding period, assigning −1 or 1
depending on the sign of the return. Additionally, the path of the price movement is
taken into consideration as well.
The Edge Ratio is designed to evaluate trading strategies, see [Faith, 2007, pp. 65-
69]. When the strategy gives signals to buy certain stocks, the Edge Ratio gives in-
formation about how profitable this decision would have been. Starting from the time
t0 ∈ {1, . . . , T} the signal has been generated, the maximum adverse excursion (MAE)
and the maximum favourable excursion (MFE) are measured for a certain holding pe-
riod h, provided that h ≤ T − t0. Given a series of stock prices relating to a single asset
(pt)t∈{1,...,T−h}, this is done by simply keeping track of the biggest loss and the highest
gain for that period:

MAEt0(h) = pt0 −min {pt0 , . . . , pt0+h} ≥ 0,

MFEt0(h) = max {pt0 , . . . , pt0+h} − pt0 ≥ 0.

If the trading strategy only submits one signal to buy a stock at t0, the Edge Ratio can
be calculated by

Edge Ratio(h) =
MFEt0(h)
MAEt0(h)

. (2.1)

However, if the trading strategy leads to multiple signals, the individual Edge Ratios
have to be averaged. To make the MAE and MFE comparable, they are divided by
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a volatility measure of the prices. Usually, this volatility measure is the average true
range (ATR) of a stock price, see [Giese, 2015, p. 311].
To calculate the ATR, first the true high and true low of a stock price have to be assessed.
As mentioned earlier, a dataset often contains the highest and lowest value of the stock
price at a given trading day t. The true high is the maximum of the highest price today
and the close price of the previous trading day:

ptrue high
t = max

{
phigh

t , pclose
t−1

}
.

Similarly, the true low can be calculated:

ptrue low
t = min

{
plow

t , pclose
t−1

}
.

Finally, the ATR for k days at the trading day t0 can be calculated by averaging the
differences of the true highs and lows:

ATR[k]
t0

=
1
k

t0

∑
t=t0−k+1

(
ptrue high

t − ptrue low
t

)
.

Suppose the trading strategy gives multiple signals j ∈ {1, . . . , n} to buy stocks. To
derive the Edge Ratio for the signal j at the trading day tj, the MAE and the MFE are
scaled by

MAE∗tj
(h, k) =

MAEtj(h)

ATR[k]
tj

and MFE∗tj
(h, k) =

MFEtj(h)

ATR[k]
tj

.

Finally, the Edge Ratio can be derived by

Edge Ratio(h, k) =

n
∑

j=1
MFE∗tj

(h, k)

n
∑

j=1
MAE∗tj

(h, k)
.

In the context of labelling, calculating the Edge Ratio can be simplified. As the label is
specific for every sample, only one asset has to be examined at a time. Therefore, there
is no need to scale the MAE and the MFE. Hence, in the following, the Edge Ratio will
refer to Equation (2.1) that describes the ratio of the unscaled MFE and MAE for one
asset.
The main idea of the Edge Ratio labelling method is to update the fixed-time horizon
method with the Edge Ratio as a performance measure for the assets’ price path. How-
ever, in contrast to the previous methods, there is no ’neutral’ 0 class of samples with
ambiguous price development. This is done intentionally, because such a class is seldom
necessary. In Chapter 6, supervised learning classifiers are used to identify the assets
that are most likely to have a good future price development. This information is not
coded in the label alone. With every prediction, the models also specify the probability
that the sample belongs to the chosen class, more on that later in the Sections 3.3 and 3.4.
A prediction of a positive label with low confidence therefore serves the same purpose
as a neutral label: it indicates an ambiguous price development. Some of the samples
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with an ambiguous price movement are labelled −1, while others are labelled 1. This is
apparent when samples of a single asset are isolated. At some point in time, the samples
switch their label, while their features have only changed gradually. Therefore, it is hard
to differentiate between those samples. When the classifier has to predict the class of a
similar sample, it can do so with a low confidence only. In fact, even the author of the
triple-barrier labelling method advises on omitting the neutral class, see [López, 2018, p.
69]. Hence, the Edge Ratio labelling method introduced in this thesis relies solely on a
positive and a negative label. Of course, the definition can be easily adjusted by adding
a neutral class for average returns or for Edge Ratios close to 1.
To get a positive label, a sample should have both a good future price path and a pos-
itive future return. An Edge Ratio of 1 indicates a neutral price path. Samples that
possess a lower Edge Ratio should be labelled negatively, because at some point the loss
has outweighed the profit. Intuitively, it might be reasonable to set a high Edge Ratio
threshold to specifically target high performing assets. However, this comes at a cost. To
see this, a classifier is given the task to predict the Edge Ratio label with different Edge
Ratio thresholds. It can be shown that a high Edge Ratio threshold lowers the predicted
probabilities of positive labels, which are very important in a financial context. More
importantly, the precision of the predictions, which is defined in Subsection 3.1.4, de-
creases. This can be seen in Figure 2.3, where every sample of the test set is categorized
depending on its predicted and its true label in so called confusion matrices.

Figure 2.3: Two confusion matrices categorizing samples depending on their 120-day
Edge Ratio labels. Elevating the threshold decreases the precision while im-
proving the prediction of negatively labelled samples.

In short, the smaller the positive class is, the harder it is to predict positively labelled
samples, as the positively labelled training dataset shrinks. However, increasing the size
of the positive class comes at the cost of less desirable predictions, because more sam-
ples with a poor future performance are labelled positively as well. This should be kept
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in mind while also trying to create roughly even sized classes overall, although small
unbalances can be fixed easily by giving underrepresented samples more weight, see
Section 3.2.
As the algorithm used in Chapter 6 only invests in assets if the associated samples are
labelled positively with a high predicted probability, a high precision is essential. The
prediction of negatively labelled samples is of lower importance. Therefore, the Edge
Ratio threshold for the Edge Ratio labelling method in this thesis is set to the neutral
minimum of 1. If the prediction of bad assets is important, for example if an investor
tries to bet on falling prices, decreasing the size of the positive class becomes useful, as
predictions of negatively labelled samples become better.
Additionally to the Edge Ratio as a performance measure for the path, the return at a
fixed-time horizon should be checked, because an asset can have a good Edge Ratio and
still perform poorly. It is possible for the price to rise sharply, only to steadily fall until
the return on the fixed-time horizon is negative. In this case, the Edge Ratio is bigger
than 1 while a loss is realized.
Setting the return threshold for positively labelled samples follows the same logic as the
Edge Ratio threshold. The higher the threshold is set, the smaller the positive class gets
and the less reliable predictions of positive labels become. Hence, a minimal reasonable
return threshold of 0 is set. This way, an investment based on positive labels is predicted
to at least not make a loss. In Chapter 6, this strategy proves to be successful.
The final labelling method for the label yi of a sample Xi, which is depicted in Figure
2.4, consists of the following steps:

1. Calculate the MAE and the MFE of Xi at ti over a period specified by the labelling
horizon h, with ti indicating the index of the trading day of Xi.

2. Calculate the Edge Ratio by dividing the MFE by the MAE.

3. Calculate the return at the fixed-time horizon rti ,ti+h.

4. Assign yi = 1, if the Edge Ratio is bigger than 1 and rt,t+h is bigger than 0.
Else, assign yi = −1.

As with the other labelling methods, a labelling horizon has to be chosen. Again, this
parameter influences the class distribution. When using a small horizon h, the price
movement is prone to random shifts. The h-day return is often negative, therefore -1 is
assigned most often, see Table 2.1. The higher the horizon is chosen, the bigger the pos-
itive class becomes, as the long-term market movement is mostly upward. Fortunately,
this small class unbalance in favour of the positive class is desirable, as described earlier.

Label
Labelling Horizon (in Days)

10 20 40 60 90 120
−1 55.41% 52.79% 50.26% 48.63% 46.84% 45.55%
1 44.59% 47.21% 49.74% 51.37% 53.16% 54.45%

Table 2.1: Label distribution of the Edge Ratio labelling method on the S&P 500 dataset.
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Figure 2.4: The Edge Ratio labellig method. The label is 1, if the MAE (red, dashed)
is smaller than the MFE (green, dashed) and the return after 6 months is
positive (green, solid). Otherwise, it is −1. In the figure, yi = −1.

The Edge Ratio labelling method is especially useful when using a big labelling horizon,
because it is computational fast and random price shifts at the fixed-time horizon are
evened out by taking the price path into account. In the case study in Chapter 6, the
reallocation of the portfolio is restricted to four times a year to limit transaction costs.
Therefore, long labelling horizons are necessary to give a good prediction about long-
term price development. Hence, the Edge Ratio labelling method is used in the rest of
this thesis. The optimal labelling horizon will be analysed in Subsection 6.1.2.
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Chapter 3

Modelling

After the dataset has been set up and labelled, the next step is to build a model that
can predict these labels. In order to do that, evaluation methods to compare different
models have to be defined. Then, an actual model is introduced and improved through
machine learning techniques.

3.1 Model Evaluation

The problem of supervised learning is to measure the performance of a model. In
practice, what matters is the prediction accuracy on new data. However, labelling these
new data is often not possible, so there is no possibility to check whether the prediction
is correct directly. This is especially true for financial data, as the label depends on the
price movement in the future and may not be available for a long time.

3.1.1 Bias-Variance Trade-off

An important issue to keep in mind when working with machine learning models is the
bias-variance trade-off. In general, there are three errors to consider, see [López, 2018,
pp. 93-94]:

1. Bias: If a model is not complex enough, it fails to detect the relationship between
certain features and the label. The model is ’underfit’, as it cannot recognize im-
portant patterns in the dataset.

2. Variance: If a model is too complex, it suffers from high variance. The model
is very sensitive to small changes in the training data and predictions vary a lot
depending on the samples used for training. Consequently, the model generalizes
bad on new, unseen data. The model is ’overfit’ and interprets a lot of random
noise as a pattern.

3. Irreducible error: When observing values, there is always a variance due to ran-
domness or measurement errors. This error cannot be reduced, as real world
values seldom follow an underlying function in a perfect way.
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To make this concept clear, it is helpful to closely examine a common area of machine
learning: regression.
Suppose there are (R,B(R))-valued random variables X, Y and E on a probability
space (Ω,F , P). B(R) denotes the Borel algebra on R. Moreover, suppose there is an
underlying relationship between those random variables, which can be described with
a measurable function f : (R,B(R))→ (R,B(R)) as

Y = f (X) + E , (3.1)

with E
[
E
]
= 0 and E

[
E2] < ∞. The random variable E describes random noise. It is

stochastically independent of X and describes an error induced by measurement errors.
Furthermore, suppose that the second moment of f (X) is finite, so

E
[
( f (X))2

]
< ∞.

In essence, this implies that the expected value and the variance of Y are finite.
The goal of regression is to find a predictor for f that minimizes the expected loss. In
order to accurately describe this expected loss, first the notation has to be clarified.

Notation

Let (Ω,F , P) be a probability space. For a random vector Z : (Ω,F ) → (Rn,B (Rn)) ,
the probability distribution PZ, which is a probability measure by itself, can be defined
by

PZ : B(Rn)→ [0, 1], B 7→ PZ(B) = P
(
{ω ∈ Ω : Z(ω) ∈ B}

)
= P

(
Z−1(B)

)
.

The probability distribution can be used to calculate the expected value of Z. The gen-
eral transport formula states that, given a random vector Z : (Ω,F ) → (Rn,B (Rn)),
a measurable function f : (Rn,B (Rn)) → (R,B(R)) is PZ-integrable, iff f ◦ Z is P-
integrable. In this case,

E [ f (Z)] =
∫
Ω

f (Z(ω))dP(ω) =
∫
R

f (z)dPZ(z)

holds, see [Oloff, 2017, pp. 122-124]. In the regression scenario explained, this formula
is valid, because f is Borel measurable by design and

E [| f (X)|] ≤
√

E
[
( f (X))2

]
< ∞.

In the last step, Jensen’s inequality was used.
Since X and E are defined on the same probability space, the distribution for the random
vector (X,E) can be defined as well, see [Oloff, 2017, p. 160]:

P(X,E) : B(R2)→ [0, 1], B1 × B2 7→ P(X,E) (B1 × B2) = P
(
(X,E)−1(B1 × B2)

)
.

By construction, the random variables X and E are stochastically independent, therefore

P(X,E) (B1 × B2) = PX (B1) · PE (B2)
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for all B1 × B2 ∈ B(R2), see [Oloff, 2017, p. 161].
In order to examine the underlying relationship f , realizations of X and Y are collected
in the dataset dall = {(x1, y1, . . . , (xN , yN)}. A single sample can be interpreted as the
realization of the random vector

D : (Ω,F )→
(
R2,B

(
R2)) , ω 7→ D(ω) = (X(ω), Y(ω)).

As it has been shown before for (X,E), the distribution of D is PD = P(X,Y). Now
suppose that multiple samples that are independent and identically distributed are
collected in a set. In the following, this dataset will be modelled as a stochastic pro-
cess. In order to do that, first a probability measure is defined. For every permutation
π : {1, . . . , N} → {1, . . . , N} and for all Borel sets Bi,1× Bi,2 ∈ B(R2) with i ∈ {1, . . . , N}
define

P(π(1),...,π(N)) :
N⊗

i=1

(
B
(
R2))→ [0, 1],

N

×
i=1

(
Bπ(i),1 × Bπ(i),2

)
7→

N

∏
i=1

PD

(
Bπ(i),1 × Bπ(i),2

)
,

where
N⊗

i=1

(
B
(
R2)) = B

(
R2N) denotes the tensor-product σ-algebra. This probability

measure fulfils two properties. First, because the product is commutative, for every
permutation π : {1, . . . ., N} → {1, . . . , N} and for all Borel sets Bi,1 × Bi,2 ∈ B(R2) with
i ∈ {1, . . . , N} it follows that

P(π(1),...,π(N))

(
Bπ(1),1 × Bπ(1),2 × . . .× Bπ(N),1 × Bπ(N),2

)
=

N

∏
i=1

PD(Bπ(i),1 × Bπ(i),2)

=
N

∏
i=1

PD(Bi,1 × Bi,2)

= P(1,...,N) (B1,1 × B1,2 × . . .× BN,1 × BN,2) .

Second, for
N−1
×
i=1

(Bi,1 × Bi,2) ∈
N−1⊗
i=1

(
B
(
R2)), it can be shown that

P(1,...,N−1)

(
N−1

×
i=1

(Bi,1 × Bi,2)

)
=

N−1

∏
i=1

PD (Bi,1 × Bi,2)

=
N−1

∏
i=1

PD (Bi,1 × Bi,2) · PD
(
R2)

= P(1,...,N)

(
N−1

×
i=1

(Bi,1 × Bi,2)×R2

)
.

Therefore, using the Kolmogorov extension theorem, see [Oloff, 2017, p. 213], it follows
that there exists a stochastic process

DN = {Di}i∈{1,...,N}
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for independent and identically distributed random vectors Di = (Xi, Yi) ∼ PD with the
probability distribution

PDN = P(1,...,N).

This stochastic process models the whole dataset that is used in this regression scenario.
That means that dall can be interpreted as a realization of DN .

Modelling a predictor

The goal of regression is to use a training dataset d ⊂ dall of size n < N to estimate f
with a measurable function

f̂d : (R,B(R))→ (R,B(R)) ,

which is called a predictor of f . The dataset dall is split into a training subset d and
a test subset dtest, which will be discussed in detail in Subsection 3.1.2. The samples
in the dataset are independent and identically distributed. As it has been shown for
DN , the distribution of N samples is simply the product of the distributions of the in-
dividual samples. Therefore, the distribution of the training dataset can be described
by the stochastic process DN that is stopped after n samples have been drawn, which is
denoted by Dn. Hence, d can be interpreted as a realization of Dn.
The exact definition of f̂d depends on the actual model that has been chosen. For exam-
ple, f̂d can be modelled as an affine function, which is the scenario described in linear
regression. In this case, the training dataset is used to derive the optimal slope and
intercept of f̂d. Essentially, more complex models like neural networks work similarly,
although there are potentially millions of parameters that have to be set. The model
specifies how to use the samples in the training dataset to build the predictor f̂d. In
order to derive a universal decomposition for a measurable predictor f̂d, the specific
definition of f̂d is kept vague intentionally.
To evaluate a possible predictor f̂d, a loss function is applied on the samples of the test
set. The predictor f̂d estimates f very well if the loss is small, thus it is modelled in a
way that the loss function is minimized. In regression, a popular loss function is the
mean squared error

1
m

m

∑
i=1

(
yi − f̂d(xi)

)2
,

for (xi, yi) ∈ dtest with |dtest| = m = N − n. Suppose for a moment that the test dataset
were infinite in size. In that case, the strong law of large numbers states that this average
converges almost surely to the expected loss, which is defined as the limit

1
m

m

∑
i=1

(
yi − f̂d(xi)

)2 a.s.→ E
[(

Y − f̂d(X)
)2
]

,

for m → ∞. Unfortunately, the test dataset is finite, so empirically, the expected loss
can only be estimated with the mean squared error. Under the assumption that this
expected loss is finite, which is a reasonable assumption to make for the predictor f̂d,
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the expected loss can be decomposed:

E
[(

Y − f̂d(X)
)2
]

(3.1)
= E

[(
f (X) + E − f̂d(X)

)2
]

=
∫

R2

(
f (x) + ε− f̂d(x)

)2
dP(X,E)(x, ε)

=
∫
R

∫
R

(
f (x) + ε− f̂d(x)

)2
dPE (ε)dPX(x).

Again, the transport formula can be applied because the integrand is measurable as a
composition of measurable functions and the first integral exists. Furthermore, because
the integrand is non-negative and X and E are stochastic independent, Tonelli’s theorem
can be applied in the last step, see [Henze, 2019, p. 351].
For different training datasets, the predictor and therefore the expected error varies,
because d is itself a realization of the stochastic process Dn. If a training set d is chosen,
it is impossible to be certain that this realization ofDn yields the best predictor f̂d. After
all, the training set can be updated with new data, therefore improving or impairing the
predictor.
To make the dependency onDn clear, the predictor can be generalized. Fix a realization
x of X. Then the predicted value for x in dependence of the training set d can be defined
as the measurable function

f̂·(x) :

(
n

×
i=1

R2,
n⊗

i=1

(
B
(
R2)))→ (R,B(R)) , d 7→ f̂d(x).

The combined predictor

f̂ :

((
n

×
i=1

R2

)
×R,

(
n⊗

i=1

(
B
(
R2)))⊗B (R)

)
→ (R,B(R)) (d, x) 7→ f̂d(x)

has to be measurable as well. Moreover, as a last requirement, the second moment of
the predicted value has to be finite:

E
[(

f̂Dn(X)
)2
]
=
∫
Ω

(
f̂Dn(ω)(X(ω))

)2
dP(ω) < ∞,

whereby the expected value is derived in regards to both the training dataset (Dn) and
the test dataset (X). This ensures that both the expected prediction and the variance of
the predictor exist.

Decomposition

Now that the predictor has been modelled, the true expected loss can be defined and
decomposed. By construction, the loss function

l :

((
n

×
i=1

R2

)
×R×R,

(
n⊗

i=1

(
B
(
R2)))⊗B (R)⊗B (R)

)
→ (R,B(R))

(d, x, y) 7→ l(d, x, y) =
(

y− f̂d(x)
)2
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is integrable and measurable as a composition of measurable functions, therefore the
general transport formula can be applied to the expected loss:

E
[(

Y − f̂Dn(X)
)2
]

(3.1)
= E

[(
f (X) + E − f̂Dn(X)

)2
]

=
∫
Ω

(
f (X(ω)) + E(ω)− f̂Dn(ω)(X(ω))

)2
dP(ω)

=
∫

R2+2n

(
f (x) + ε− f̂d(x)

)2
dP(X,E ,Dn)(x, ε, d).

By construction, all the samples in the dataset are independent and identically dis-
tributed. In particular, the training set (modelled by Dn) is independent of the test set
(modelled by (X,E)). Therefore, the joint probability distribution can be split:

P(X,E ,Dn)

(
B1 × B2 ×

n

×
i=1

(Bi,1 × Bi,2)

)
= P(X,E)(B1 × B2) · PDn

(
n

×
i=1

(Bi,1 × Bi,2)

)

= PX(B1) · PE (B2) · PDn

(
n

×
i=1

(Bi,1 × Bi,2)

)
,

for all B1 × B2 ×
n
×
i=1

(Bi,1 × Bi,2) ∈ B
(
R2+2n).

Hence, using the fact that the loss function l is non-negative, Tonelli’s theorem can be
applied again:

E
[(

Y − f̂Dn(X)
)2
]

(3.1)
=

∫
R2+2n

(
f (x) + ε− f̂d(x)

)2
dP(X,E ,Dn)(x, ε, d)

=
∫
R

∫
R

∫
R2n

(
f (x) + ε− f̂d(x)

)2
dPDn(d)dPE (ε)dPX(x).

First, the innermost integral is decomposed. For this purpose, fix realizations x and ε of
X and E , which is equivalent to selecting a single sample (x, y) of the test set, because
ε = y− f (x). Both the expected loss and the second moment of the predicted value are
finite by construction, thus without loss of generality let x and ε be such that

∫
R2n

(
f (x) + ε− f̂d(x)

)2
dPDn(d) = E

[(
f (x) + ε− f̂Dn(x)

)2
]
< ∞
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and E
[(

f̂Dn(x)
)2
]
< ∞. Thus, the expected loss for one fixed sample can be decom-

posed:

E
[(

y− f̂Dn(x)
)2
]

(3.1)
= E

[(
f (x) + ε− f̂Dn(x)

)2
]

= E
[
( f (x) + ε)2 − 2 ( f (x) + ε) f̂Dn(x) +

(
f̂Dn(x)

)2
]

= ( f (x) + ε)2 − 2 ( f (x) + ε)E
[

f̂Dn(x)
]
+ E

[(
f̂Dn(x)

)2
]

+
(

E
[

f̂Dn(x)
])2
−
(

E
[

f̂Dn(x)
])2

=
(

f (x) + ε− E
[

f̂Dn(x)
])2

+ Var
[

f̂Dn(x)
]

(3.2)

Here,

Var
[

f̂Dn(x)
]
= E

[(
f̂Dn(x)

)2
]
−
(

E
[

f̂Dn(x)
])2

=
∫

R2n

(
f̂d(x)

)2
dPDn(d)−

 ∫
R2n

f̂d(x)dPDn(d)

2

describes the variance of the predicted value for x.
However, as described earlier, to really measure the performance of the predictor, it does
not suffice to evaluate the loss function on one sample. Multiple samples in the test set
are used to estimate the true expected loss. This can be done by averaging the expected
loss dependent on x and ε, which has just been calculated, over X and E . Thus, the final
decomposition of the expected loss can be derived:

E
[(

Y − f̂Dn(X)
)2
]

(3.1)
=
∫
R

∫
R

∫
R2n

(
f (x) + ε− f̂d(x)

)2
dPDn(d)dPE (ε)dPX(x)

(3.2)
=
∫
R

∫
R

(
f (x) + ε− E

[
f̂Dn(x)

])2
dPE (ε)dPX(x) +

∫
R

∫
R

Var
[

f̂Dn(x)
]

dPE (ε)dPX(x)

=
∫
R

(
f (x)− E

[
f̂Dn(x)

])2
dPX(x) + 2

∫
R

(
f (x)− E

[
f̂Dn(x)

])
dPX(x) ·

∫
R

εdPE (ε)︸ ︷︷ ︸
=0

+
∫
R

ε2dPE (ε)−

∫
R

εdPE (ε)

2

︸ ︷︷ ︸
=0

+
∫
R

Var
[

f̂Dn(x)
]

dPX(x) ·
∫
R

dPE (ε)︸ ︷︷ ︸
=1

=
∫
R

(
f (x)− E

[
f̂Dn(x)

])2
dPX(x)

︸ ︷︷ ︸
bias

+
∫
R

Var
[

f̂Dn(x)
]

dPX(x)

︸ ︷︷ ︸
variance

+Var [E ]

︸ ︷︷ ︸
noise

.
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In the last step, E [E ] = 0 is used.
The first term describes the bias. It is high if the predictor is not close to the underlying
function f , for example because the model is not complex enough. It also shows that
it is beneficial to have a large dataset to train on, because the expected prediction given
x can be estimated more precisely with more data. However, in practice the size of
the training set is limited. Therefore, trying to lower this error often leads to overfitted
models that rely on a specific training set too heavily.
The second term describes the variance of the predictor. If the predictor is very sensitive
to changes in the training dataset, predicted values vary a lot, therefore the variance is
high. A possibility to lower this error would be to design a simple model that is under-
fitted and uninfluenced by the training set. However, this would most likely lead to a
model with high bias, as the model does not learn anything.
The third term is the irreducible error. It cannot be lowered by choosing another predic-
tor f̂d. Therefore, in this example, even the best predictor has an expected loss greater
than zero. Hence, in order to minimize the expected loss, both bias and variance have
to be lowered, although this usually involves a trade-off.
Such a decomposition does not only hold for a regression with the mean squared error
as the loss function. Under certain assumptions, other loss functions are possible as
well, which makes a similar decomposition applicable for classification problems, see
[James, 2003, pp. 124-125].
Overfitting is a big problem when working with financial data. It is common practice
to evaluate a financial algorithm by using it on historic data in a walk-forward direc-
tion via a backtest, which will be described in Section 5.1. Overly using this method
with machine learning algorithms is risky, because the model is essentially fitted on the
same dataset over and over again. Given enough trials, the algorithm is likely to make
false discoveries, as it can recognize patterns in random noise or irrelevant features. For
example, it has been shown that it is possible to find a profitable monthly trading rule
on a dataset of random walks with mean 0, although there are no underlying seasonal
patterns by design, see [Bailey et al., 2014, p. 468].
There are multiple ways to handle overfitting of machine learning models. When tuning
the parameters of the model, it is possible to intentionally reduce the complexity of the
model, for example see Subsection 3.3.4. Furthermore, machine learning techniques like
cross-validation or ensemble methods can reduce overfitting significantly, which will be
discussed in Subsection 3.1.3 and Section 3.4.

3.1.2 Train/Test Split

In order to evaluate a classifier, the labelled dataset is split into two parts: a training
and a test subset. The training subset is used by the model to learn patterns to predict
class labels. The test subset is completely excluded from this learning stage. When the
final model is fitted, it is used on the test subset to derive predictions. As the test set is
a subset of the labelled data, the real labels can be compared to the predicted ones, thus
allowing a performance measure of the model.
Typically, the samples of the test subset are chosen randomly, so a multitude of different
samples can be tested, see [James, 2013, pp. 176-178]. When samples are independent
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and identically distributed, that is a valid approach. However, a financial dataset has to
be interpreted as a time series.
Suppose there are two samples Xi and Xj that describe the same asset on consecutive
days ti and tj = ti + 1. Due to serial correlation, the features of Xi at ti are roughly the
same on the next trading day tj. Most likely, the label yi of Xi is roughly the same as the
label yj of Xj as well, because it is based on overlapping data. This is a problem when
Xi is in the training set and Xj is in the test set. Genuine new and unseen samples do
not share this level of similarity of both features and label. To predict the label of Xj, a
classifier can thus simply refer to the label of Xi, which is identical most of the time. If
that occurs with many samples, the model seems to have spectacular prediction abilities
without really learning anything. This process is called leakage, because information
of the test set is leaked in the training phase. In these cases, even irrelevant features
have some feature importance, which might lead to false discoveries. Most importantly,
the performance on new, unseen data is bad, since there are no highly similar labelled
samples to derive predictions from. To tackle this, the training and test set should be
separated. There are two main ways to do this: purging and embargoing, see [López,
2018, pp. 105-108].

Figure 3.1: The purged and embargoed data visualized in a price chart.

Purging focuses on separating the data used for labelling. As it has been shown in
Section 2.2, the label yi of the sample Xi is derived from the trading days following ti.
When yi has a horizon of h trading days, the days ti to ti + h are affected. Every sample
Xj that uses a day from ti to ti + h to derive their own label is deleted from the training
set, see Figure 3.1. Thus, if samples of the training and test dataset happen to be similar,
it is ensured that they do not use the same data to derive their labels.
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Purging tries to tackle leakage by deleting neighbouring samples when both features
and labels are similar. As long as the labels are independent, it is okay to have similar
features. In fact, any classifier actively tries to detect similar feature constellations in
order to predict a label, as there might be an underlying relationship. Thus, if features of
samples in the training and test set rely on rolling windows, the windows can overlap.
However, if the test set precedes the training dataset, the features of the training set
could have access to information in the test set. Deleting the first samples of these
training sets is called embargoing. There is no need to embargo samples if the training
set precedes the test set, as all information of the training samples prior to the test is
available at the testing time.
Now suppose there is a dataset that ranges from 1990 to 2019, as there is in Chapter
6. A very simple way to evaluate a model would be to fit it on the first part of the
data, for example on the first 80%, and to test it on the rest in order to minimize the
need to embargo data. However, that way the model would be tested on recent samples
only. For example, in the 80% split, the data from 2013 to 2019 would be used for testing.
These years showed a relatively steady growth. If models would be tested on these years
only, models that predict an upward price movement are favoured. When a financial
crash occurs, like in the beginning of 2020, the model is not prepared. In the training
set, it has access to data of past crashes, but the performance in a crash situation has
never been evaluated, so models that might perform well could have been discarded.
A better way to use the full potential of a training set is cross-validation, where the
model is trained multiple times on different parts of the dataset.

3.1.3 Cross-Validation

In k-fold cross-validation, the dataset is divided into k subsets of roughly the same size.
One of these subsets is used for testing, the others are used to train the model. When
a financial dataset is used, this means that a test set can precede a training set. This
process is repeated k times, so every subset serves as a test set exactly once, as seen in
Figure 3.2.

Figure 3.2: 5-fold cross validation.
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For every fold, the performance is noted, more on that in Subsection 3.1.4. The values
of every fold are averaged to derive a final score. Furthermore, the standard deviation
of these values can be calculated. A high standard deviation implies a high variance of
the model. A model with a high score and a low standard deviation is desirable. For
more details, see [James, 2013, pp. 181-186].
In the context of financial data, when the dataset is indexed chronologically, every subset
spans a fixed time period in order to avoid leakage. If the number of observed assets
drastically changes over time, the sizes of the subsets might need to be altered. In every
fold, purging has to be applied. If the test set precedes the training set, there should be
an embargo as described earlier.
The cross-validation method can be used to evaluate the final model. More importantly,
cross-validation is used to adjust the parameters of a model in beforehand, which is
called hyperparameter tuning. It is possible to test a parameter configuration of a model
on the whole set and pick the best parameters. However, this is not a good practice, as
the test set is used multiple times, which might lead to overfitting, see [Raschka &
Mirjalili, 2015, pp. 296-297]. It is better to only apply the cross-validation method on the
training set. The training set is thus divided into a smaller training and a validation set
multiple times. In the end, the model with the best performance can be tested on the
real test set, giving a reliable evaluation of its performance on new, unseen data. This
scheme is used later in Chapter 6.

3.1.4 Scoring

A supervised learning classifier tries to predict the class membership of samples. How
to choose the right labelling method to build classes has been discussed in Section 2.2.
Now, the question is how to evaluate the performance of the classifier on labelled data.
There are different ways to measure the performance. Each measure has advantages
and drawbacks, which will be discussed in the following.

Accuracy

A classifier has to predict the label yi of the sample Xi for i ∈ Dtest ⊆ {1, . . . , N},
where N denotes the number of samples in the dataset. An easy method to check
these predictions is to simply give the proportion of correct predictions. If ŷi denotes a
predicted label, the accuracy can be expressed as

accuracy =
1

|Dtest| ∑
i∈Dtest

1yi(ŷi) ∈ [0, 1],

where

1yi(y) =

{
0 if yi 6= y
1 if yi = y

The accuracy is a very intuitive measure. However, when the labels are not equally dis-
tributed, for example when there are 70% positive and 30% negative labels, relying on
the accuracy can be problematic. If the model were to always predict a positive label, it
would have an accuracy of 70% without really learning anything.
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To circumvent this, it is a good idea to check a visualization of the true and the predicted
labels. In a confusion matrix, as seen in Figure 3.3, there are four possibilities. The true
label is either −1 or 1 and the predicted label is either −1 or 1. By categorizing the
samples of the test set, it is possible to see the difference of accuracy in between classes.
For example, the classifier depicted in Figure 3.3 mostly predicts positive labels. Unfor-
tunately, the majority of negatively labelled samples are predicted to be positive as well.
If the label distribution is skewed, the accuracy might not take this into account.
However, in some situations like hyperparameter tuning, the program cannot check a
visualization like the confusion matrix. It has to rely on a single number to evaluate the
model’s performance. Therefore, there are other measures that integrate the confusion
matrix.

Figure 3.3: Depending on the true and predicted label of a sample, a confusion matrix
depicts the number of samples that belong to one of the four categories.

F1 Score

Another way to visualize the confusion matrix is seen in Figure 3.4. The square, which
stands for a set of observations, is divided into two rectangles. The left half represents
samples that are labelled positively, the right half represents negatively labelled sam-
ples. A binary classifier tries to predict the label of observations. This is represented
by the circle, as all samples in the circle are predicted to have a positive label and vice
versa. There are essentially 4 different possibilities:

1. TP (true positive): The model correctly identifies a positive label.

2. FP (false positives): The model wrongly assigns a positive label to a negative
labelled sample.

3. TN (true negative): The model correctly identifies a negative label.



3.1. MODEL EVALUATION 29

4. FN (false negative): The model wrongly assigns a negative label to a positive
labelled sample.

The goal of every classifier is to correctly predict all labels, in essence to maximize the
TP and TN area. However, minimizing the FP area generally increases the FN area, as
fewer positive labels are predicted. For more details, see [López, 2018, p. 52].

Figure 3.4: A visualisation of possible errors

Using this terminology, one is able to calculate the accuracy by

accuracy =
TP + TN

TP + FP + TN + FN
∈ [0, 1].

In the context of finance, it is important not to wrongly predict an upward price move-
ment, which can be costly when an investment is conducted. This aspect is modelled by
the precision, which can be expressed as

precision =
TP

TP + FP
∈ [0, 1].

Missing out on positive price movements can be problematic as well. This is modelled
by the recall, described by

recall =
TP

TP + FN
∈ [0, 1].

It is desirable to have both a high precision and a high recall. Both properties can be
combined in a single score, the F1 score, by calculating the harmonic mean:

F1 =

(
2

recall −1 + precision −1

)
= 2 · precision · recall

precision + recall
∈ [0, 1].

The F1 score deals with many problems of the accuracy, as it balances both precision and
recall. If the classifier always predicts a negative label, the recall is 0, thus the F1 score
is 0 as well. However, if the majority of labels are positive, a classifier always predicting
a positive label has precision = accuracy and recall = 1, therefore the F1 score is high as
well. In that case, a solution would be to switch the definition of positive and negative
labels, as shown in [López, 2018, p. 206].
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Negative log Loss

In the financial context, a key component missed by both accuracy and F1 score is the
model’s certainty in its predictions. When the model predicts an upward price move-
ment of an asset with high probability, an investor might be inclined to buy that asset.
If the prediction is wrong, a loss is realized. Contrarily, if the predicted probability of a
positive label is slightly above 50%, the prediction is not really useful. When classifying
in two classes, predictions with low certainty function as a third "neutral" class, where
the exact direction of the price movement is ambiguous.
To take the model’s confidence into account, a measure can be based on the log loss
of the probability of a right prediction, see [López, 2018, pp. 134-135]. For a feature
matrix X ∈ RN×M, let y ∈ {−1, 1}N denote the true labels and p ∈ [0, 1]N the predicted
probabilities that a sample belongs to the positive class. Thus, the negative log loss for
the test set Dtest ⊆ {1, . . . , N} can be estimated by

L (y, p) =
1

|Dtest| ∑
i∈Dtest

(
11(yi) log (pi) + 1−1(yi) log (1− pi)

)
≤ 0,

where 1· denotes the indicator function. Both the accuracy and the F1 score assign high
values for good performance. To be consistent, the negative log loss is favoured over the
positive log loss. This way, high values represent a good score.
For example, suppose the model falsely predicts a positive label ŷi = 1 for a sample
Xi. The model also reports its confidence in this decision with the value pi ∈ [0.5, 1].
The value can be interpreted as the predicted probability that the sample belongs to the
positive class. In this example, it is bigger than 50%, because the classifier predicts a
positive label. If this confidence had been lower than 50%, a negative label would have
been predicted. As the prediction is wrong, the opposite value 1 − pi is used in the
negative log loss. The higher the false predicted probability pi is, the lower log (1− pi),
so over-confident wrong predictions have a much lower negative log loss than uncertain
predictions. Similarly, correct predictions with high confidence are preferred over pre-
dictions with low confidence.
For the reasons listed above, in this thesis the negative log loss is used as the main score
to measure the performance of the models while hyperparameter tuning. However,
given class unbalances of the dataset, this measure is adjusted by using sample weights,
which is explained in the next section.

3.2 Sample Weights

If there is a big class unbalance, it might be beneficial to give the samples of the under-
represented class more weight, to ensure that both classes are equally important. This
can be beneficial when a model is trained, see Subsection 3.3.3. Furthermore, sample
weights can be used when evaluating a model to ensure that samples of minor classes
are not overlooked.
If the sample weight is calculated with the label, it has to be derived with the training
set only. The sample weights for the test set can be applied afterwards. For example,
suppose a class is underrepresented in the training set. If samples that belong to this
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class are given a high weight w, the same weight w is then used on samples of the test
set that also belong to this class. Of course, in this case, the model is not allowed to
see the sample weights of the test set before giving its predictions, as information about
the true label would be leaked. Rather, the sample weights can be applied afterwards to
evaluate the model.
Typically, the weights are chosen inversely proportional to class frequencies. Let Dtrain ⊆
{1, . . . , N} denote a training set. Furthermore, let C denote the number of classes and
Nc

train the number of samples in Dtrain that belong to class c. Then, the average number
of samples in each class is calculated by

1
C
|Dtrain| =

1
C

C

∑
c=1

Nc
train.

The weight inversely proportional to class frequencies can be calculated by

f (c, Dtrain) =
1

Nc
train

1
C

C

∑
c′=1

Nc′
train.

This is used to set the weight for a sample i ∈ {1, . . . , N} that belongs to class c:

wi = f (c, Dtrain) .

This way, class unbalances are compensated. Of course, the training set has to be large
enough to contain every possible class multiple times. If a class has no related sample in
the training set, a classifier cannot predict that particular class. Accordingly, the sample
weight would be set to zero.
In theory, other weighting schemes are possible. For example, it might be beneficial
to give extraordinary samples of sudden shocks of the stock market more weight. For
more on this, see [López, 2018, pp. 59-72].
To use sample weights when evaluating the performance of a model, the scoring mea-
sures have to be adjusted. Exemplary, this is done for the negative log loss.
For a test set Dtest ⊆ {1, . . . , N} and a weight vector w ∈ RN , let

Ñtest = ∑
i∈Dtest

wi

denote the weighted number of samples in the test set. Using the same notation as in
Subsection 3.1.4, the weighted negative log loss can thus be defined by

L̃ (y, p, w) =
1

Ñtest
∑

i∈Dtest

wi

(
11(yi) log (pi) + 1−1(yi) log (1− pi)

)
≤ 0.

3.3 Decision Tree

After explaining model evaluation methods, this section is dedicated to explain the
actual model used to predict stock price movement. As explained earlier, the models
are supervised learning classifiers, using labelled data to learn patterns that help to
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predict the label on new, unseen data. There are many different classifiers that could be
used in finance. This thesis focuses on a simple model, a decision tree, and shows how
ensemble methods improve predictions. In theory, the base model can be exchanged
with other classifiers, for example neural networks.

3.3.1 Tree Structure

A decision tree is an intuitive tool to structure a complex decision making process. As
this structure comes naturally, it is often applied unconsciously. For example, a decision
tree can be used to decide whether to buy a certain stock, as seen in Figure 3.5. For the
strategy depicted, see [Giese, 2015, p. 225].

S&P 500 performance
(12 months) ≥ 5%?

Stock performance
(6 months)  ≥ 10%?

Do not buy.

Stock performance
(12 months) ≥ 20%?

Do not buy.

Buy.

Stock performance
(6 months) twice the

S&P 500 performance?

Do not buy.

Stock performance
(12 months) four times

the S&P 500 
performance?

Do not buy.

Buy.

No

No

No

No

No

Yes

Yes

Yes

Yes

Yes

Figure 3.5: A decision tree of a trading strategy.

The decision tree can be understood as a series of questions, leading to a decision. The
tree consists of nodes, in which these questions are formulated. There is a single root
node, which is followed by multiple child nodes. A node can have multiple child nodes.
For computational reasons, the decision trees used in this thesis are binary, meaning
that every node has two child nodes, although more nodes are possible. There can be
multiple levels of internal nodes. At the end of every branch, there are the so called
leaves, which make a decision.
The nodes and decisions in Figure 3.5 are chosen by hand, using years of trading expe-
rience. A computer can learn from the data and derive a similar structure by itself. It
chooses the features that split the dataset and decides on the optimal threshold for every
split. Such a decision tree can be seen in Figure 3.6. The classifier is build on a dataset
of Apple Inc., ranging from 1990 to 2004, and tries to predict the Edge Ratio label with
a horizon of 120 trading days, as described in Subsection 2.2.3.
Starting at the root node, the algorithm recursively splits the dataset on the feature that
results in the largest information gain, which will be defined later. One child node con-
sists of the part of the dataset that possesses a certain characteristic, the other part does
not. In Figure 3.6, the root node is split on the feature ’ReturnMrktRatio250’, which
describes the ratio of the return of Apple Inc. and the S&P 500 return. The returns are
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Figure 3.6: A decision tree classifier for the stock price movement of Apple Inc.

based on the previous 250 trading days, which is roughly a year. As the return can turn
negative, this ratio can also turn negative if the stock price of Apple Inc. runs opposite
to the market. This is problematic if the S&P 500 return switches its sign, because a
value near zero results in a big ratio that then suddenly switches its sign. Clearly, this
feature has to be improved, more on that in Chapter 4. However, for the sake of sim-
plicity, ’ReturnMrktRatio250’ just describes the unaltered ratio in this example.
For 29.7% of the samples in the training set, this ratio is smaller than 0.579. For this part
of the dataset, the distribution of the classes has changed. While the positive and nega-
tive Edge Ratio labels are distributed evenly in the whole dataset (indicated by ’value’),
after the first split 69.8% of the samples in the left dataset belong to the negative class,
which means there is a negative outlook for the price movement. Using this subset of
samples, the dataset is split on another feature, the 125 day return. If the return is bigger
than 9.7%, the proportion of negative labelled samples rises to 85.1%. Finally, the subset
in the node is split for a last time, again using the 125 day return. This split proves very
efficient, as the proportion of negative labels in the left child node rises to 93%, while
the proportion of positive labels in the right child node is 89.4%. These nodes have no
child nodes, so they are called leaves.
When there is a new observation, for which the label should be predicted, the decision
tree follows the questions in the nodes until it arrives at a leaf node. There, samples
possess similar features to the observation. The final prediction of the label is decided
by the majority of labels that have been observed in this part of the dataset. In Figure 3.6,
a sample having a market return ratio smaller than 0.579 and a 125 day return greater
than 56.8% is predicted to belong to the positive class with a probability of 89.4%, fol-
lowing the class distribution of the dataset in the leaf node.
Decisions made by a decision tree are very transparent and easy to understand, which
is a big advantage to other classifiers. Furthermore, decision trees can give a great
insight in the dataset. For example, studying Figure 3.6, it is apparent that having a
market return ratio greater than 3.991 has almost no effect on the Edge Ratio label in
this particular dataset, as the class distribution stays nearly even (49.2% to 50.8%). This
information can be used to improve trading strategies.
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3.3.2 Information Gain

At every node, the algorithm is supposed to split the dataset on the most characteristic
feature. Ideally, a leaf node is pure, which means that every sample of the subset be-
longs to the same class. In the process of developing a tree, splits that further an uneven
class distribution are favoured. An uneven class distribution can be quantified with an
impurity measure. Most commonly, there are two measures used for decision trees: the
entropy and the Gini impurity, see [Raschka & Mirjalili, 2015, pp. 157-164].
For the dataset Dt at a node t, the proportion of samples that belong to class c ∈
{1, . . . , C} can be defined by

p(c|t) = 1
Nt

∑
i∈Dt

1yc(yi),

with Nt as the number of samples in Dt, yi as the label of a sample i and yc as the label
of class c. Obviously, for every node t:

C

∑
c=1

p(c|t) = 1.

The entropy can be defined as

IH(t) = −
C

∑
c=1

p(c|t) log2 p(c|t).

Since p(c|t) ∈ [0, 1], log2 p(c|t) ≤ 0 and therefore IH(t) ≥ 0. Using l’Hôpital’s rule, it
is easy to show that p log2 p → 0 for p → 0. The entropy is zero when all samples of
a set belong to the same class. The entropy is maximal when all classes have the same
amount of samples, which can be shown using Lagrange multipliers.
Using the same notation, the Gini impurity can be defined as

IG(t) =
C

∑
c=1

p(c|t)(1− p(c|t)).

Similar to the entropy, it is maximized when class sizes are equal.
As seen in Figure 3.7, both measures are similar, which leads to similar results in prac-
tice, see [Raileanu & Stoffel, 2004, p. 92]. Calculating the Gini impurity is faster, but
only slightly.
Having a measure for the class impurity I ∈ {IH, IG}, it is now possible to define the
information gain (IG) at every split for a feature f :

IG(tp, f ) = I(tp)−
Nl

Np
I(tl)−

Nr

Np
I(tr),

where tp denotes the parent node and Np describes the number of samples at the parent
node. Similarly, tl and tr describe the left and the right child node and Nl and Nr

the number of samples at the respective nodes. Hence, the information gain can be
summarized as the weighted increase in impurity, if a node is split on a certain feature.
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Figure 3.7: Entropy and Gini impurity for two classes.

Weighting the impurity measure of every child node favours big splits.
In order to calculate the information gain for a feature, a threshold to split the dataset
on has to be set. To derive the optimal threshold for a feature, the samples in the dataset
of a node are sorted in regards to that feature. Let Nt denote the number of samples in
the dataset of the node t. As this number is finite, it suffices to test Nt − 1 values for
the threshold to derive every possible split. The threshold with the biggest information
gain is chosen as the value to split the dataset on, see [Quinlan, 1993, pp. 25-26].
In the process of building a decision tree, the feature that yields the biggest information
gain is chosen at every split. The algorithm ends when splitting the remaining nodes
yields no information gain, typically when the nodes are pure.

3.3.3 Weighted Information Gain

As described earlier, to predict the class of a new sample, the algorithm follows the
nodes, until it arrives at a leaf where the subset of the data is similar to the new sample.
Then, the predicted label is simply based on the majority of samples in this leaf. If
there is a great class unbalance, it is possible that small classes are overshadowed by the
predominant class, thus preventing the prediction of the minor class. To address this, it
is possible to set sample weights, which are taken into account at every split and in the
final prediction, see Section 3.2.
In order to use sample weights wi for i ∈ {1, . . . , N}, a few changes have to be made.
Instead of using the number of samples in the dataset of a node t, the weighted number
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of samples
Ñt = ∑

i∈Dt

wi

is utilized. Using the same notation as before, the proportion of samples that belong to
a class c at the node t has to be updated:

p̃(c|t) = 1
Ñt

∑
i∈Dt

1yc(yi)wi.

Rather than relying on the simple majority of samples, this weighted proportion is used
in the leaves to derive the final label prediction of new, unseen samples.
Furthermore, weighting has influence on the building process of the tree as well. In the
definition of the impurity measures, the weighted proportion p̃ is used instead of the
normal proportion p. To make a distinction to the previous definitions, these weighted
impurity measures will be referred to as ĨH and ĨG. Finally, the weighted information
gain can be defined by

ĨG(tp, f ) = Ĩ(tp)−
Ñl

Ñp
Ĩ(tl)−

Ñr

Ñp
Ĩ(tr).

Obviously, the old definition of the information gain is a special case of the weighted
information gain for uniform sample weights wi = 1 for all i ∈ {1, . . . , N}.

3.3.4 Regularization

The basic decision tree algorithm tries to split the dataset until every leaf is pure. When
the classification problem is complex, the borders that separate classes become fuzzy.
A split on a node is rarely perfect, as there often remain samples that possess similar
features but have different labels. In that case, the basic algorithm keeps splitting the
dataset until the leaves consist of one sample only. This is a problem, because a new,
unseen sample that happens to be similar to the sample in the one-sample leaf is pre-
dicted to belong to the same class with a predicted probability of 100%, giving a false
sense of certainty. In practice, these kind of decision trees are extremely overfitted, they
might give good predictions on the training set, as samples are alike, but they struggle
to give reliable predictions on new, unseen data. Therefore, in order to tackle overfitting,
regularization is mandatory.
There are different regularization methods, depending on the machine learning model.
For decision trees, the easiest way is to set a maximum depth. This way, after the
dataset has been split a predefined number of times, the algorithm stops. The leaves are
not pure, but this is reflected in the low predicted probability that a new sample belongs
to a certain class. When sample weights are used, rather than setting a maximum depth,
it is a good idea to set the minimum sum of sample weights a leaf is allowed to consist
of. That way, class unbalances can be considered. Another way to stop the development
of the decision tree early is to set a minimum information gain that is required to split
a node.
These are a few examples of so called hyperparameters that have to be defined before
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fitting the machine learning model. Unfortunately, there is rarely a perfect choice, be-
cause there is usually a trade-off between bias and variance, as described in Subsection
3.1.1. For example, if the maximum depth of a decision tree is too high, the model is
overfitted and does not generalize well. If, however, the maximum depth is set too low,
the model is underfit and the tree is too simple.
Via cross-validation, every possible combination of these so called hyperparameters is
tested on the training set. The combination of parameters that yields the best perfor-
mance is then used in the final model.
Unfortunately, even when regularization is used extensively, in practice the performance
of decision trees is underwhelming. A much better strategy is to use decision trees as
the building block of more complex machine learning models. Rather than relying on
a single decision tree, these models combine the predictions of an ensemble of trees to
derive a much better prediction.

3.4 Ensemble Methods

In machine learning, it is common to combine the predictions of multiple classifiers to
improve the overall performance. There are several ways to structure such an ensemble
method. The easiest way is to fit multiple different classifiers and to predict the label that
has been predicted by the majority of these classifiers. This approach is a simplification
of the so called bootstrap aggregating method, which will be discussed in Subsection
3.4.1. This method often performs better than the best classifier of the ensemble on its
own. When a variation of bootstrap aggregating is used on decision trees, one of the
most popular machine learning models is formed, the so called random forest. This
model is discussed in Subsection 3.4.2.
Apart from bootstrap aggregating, there are other forms of ensemble methods. Instead
of fitting several classifiers independently in parallel, boosting fits them sequentially.
Every time a classifier is fit, the next classifier is adjusted so that it avoids the prior clas-
sifier’s mistakes. This method often performs very well. However, boosting is mainly
focused on improving the bias, which often comes at the expense of a higher variance, as
explained in Subsection 3.1.1. As overfitting is a big problem on financial data, boosting
often performs worse than bootstrap aggregating, which mainly improves the variance,
see [López, 2018, pp. 100-101]. That is why the main focus of this thesis is bootstrap
aggregating.
Of course, ensemble methods are not only applicable on classification problems. All of
the ensemble methods that are introduced in this thesis can be easily adjusted to predict
continuous values in a regression problem as well.

3.4.1 Bootstrap Aggregating

Suppose there are two classes {−1, 1} and n different classifiers

f̂ (j)
· : RN×(M+1) ×RM → {−1, 1}, (d, x) 7→ f̂ (j)

d (x) = y(j),

for j ∈ {1, . . . , n}. Basically, the classifier is fitted on a training dataset d ∈ RN×(M+1),
which is a feature matrix with N samples and corresponding labels, to produce a pre-
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diction on an unlabelled sample x ∈ RM. Similar to Subsection 3.1.1, the training
dataset d can be interpreted as a realization of a random matrix D on a probability
space (Ω,F , P).
Suppose a realization d of D is fixed. To diversify the classifiers, every classifier f̂ (j)

· is
fitted on a slightly different training dataset d(j)

b . This is achieved by randomly choosing
N samples in the original training dataset d with replacement. To describe this process,
which is called bootstrapping, define a uniformly distributed random vector

B : (Ω,F )→
(
{1, . . . , N}N ,P

(
{1, . . . , N}N

))
, ω 7→ B(ω)

with PB ∼ U ({1, . . . , N}N). In essence, B describes N random drawings with replace-
ment out of the index set {1, . . . , N}. Thus, only about 63% of the original samples are
used in an average bootstrapped dataset, see [Géron, 2019, p. 195].
Based on a dataset d ∈ RN×(M+1), bootstrapping can thus be defined as

dB : (Ω,F )→
(

RN×(M+1), B
(

RN×(M+1)
))

, ω 7→ db = (di,·)i∈B(ω).

This bootstrap process is performed for every classifier f̂ (j)
· , so multiple datasets d(j)

b =

dB(ωj) are constructed for ωj ∈ Ω with j ∈ {1, . . . , n}. The classifiers are then fitted
on their individual dataset and their predictions are aggregated. In other words, every
predictor votes on what label it would predict. The final prediction is based on the
majority of these votes:

f̂· : RN×(M+1) ×RM → {−1, 1}, (d, x) 7→ f̂d(x) = sgn

(
n

∑
j=1

f̂ (j)

d(j)
b

(x)

)
= y,

where

sgn(z) =

{
1 if z > 0
−1 if z ≤ 0

denotes the sign function. This method is called hard voting.
Another more sophisticated method uses the fact that most classifiers predict the prob-
ability p ∈ [0, 1] that a sample belongs to the positive class, for example as explained in
Subsection 3.3.1. Using the same notation as before, the individual classifiers can also
be defined as

ĝ(j)
· : RN×(M+1) ×RM → [0, 1], (d, x) 7→ ĝ(j)

d (x) = p(j),

for j ∈ {1, . . . , n}. The predicted label y(j) is 1, iff p(j) > 1
2 .

Instead of aggregating the predicted labels of the individual classifiers, the predicted
probabilities can be averaged:

ĝ· : RN×(M+1) ×RM → [0, 1], (d, x) 7→ ĝd(x) =
1
n

n

∑
i=1

ĝ(j)

d(j)
b

(x) = p.

Again, the predicted label is 1 iff p > 1
2 . Hence, predictions of classifiers that have a

high value for p(j) and thus a high confidence in their prediction are given more weight.
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This method is called soft voting.
Bootstrap aggregating can greatly reduce the variance of the prediction, especially when
the classifiers in the ensemble are diversified. Furthermore, the bias can be improved as
well. For a detailed discussion, see [López, 2018, pp. 94-97].

3.4.2 Random Forest

Similarly to the bootstrap aggregating method, a random forest combines multiple de-
cision trees by the soft voting method. For that purpose, the underlying dataset is again
bootstrapped to fit every decision tree on a slightly different dataset.
Additionally, the random forest algorithm optimizes the bootstrap aggregating method
on decision trees by introducing another layer of randomness. As described in Section
3.3, a decision tree is developed by splitting the training dataset multiple times on the
most characteristic feature, respectively. To further diversify the decision trees in the
ensemble, only a random subset of features is evaluated at every split. Thus, the bias of
an individual decision tree might increase, as it perhaps cannot rely on its most char-
acteristic features at every split. However, this also leads to very diversified classifiers
in the ensemble, which in turn decreases both variance and bias of the overall random
forest.
The number of decision trees in the ensemble and the size of the random subset of
samples are hyperparameters of the random forest that have to be chosen in before-
hand. Together with the hyperparameters of the decision tree, the optimal combination
of hyperparameters in regards to the negative log loss as described in Subsection 3.1.4
is determined via cross-validation on the training dataset.
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Chapter 4

Feature Importance

As explained in Section 2.1, samples of financial data are characterized by multiple
features. For example, possible features of a sample are the close price or the trading
volume at the sample’s trading day. If meaningful features are added to a classifier, its
predictions become better. Likewise, if redundant or insignificant features are removed,
the variance of a model usually decreases and its performance is improved. To identify
helpful features, the model’s performance when certain features are added or removed
from the model can be monitored. Another possibility is to use the feature importance,
which will be defined in Subsection 4.1.
Apart from improving machine learning models, the feature importance can be used as
a tool to improve trading strategies in general, which will be discussed in Section 4.2.

4.1 Mean Decrease Impurity

As the classifiers used in this thesis are based on decision trees, a good choice for the
feature importance is the mean decrease impurity. Unfortunately, it is not applicable to
classifiers that are not based on decision trees.
As explained in Section 2.1, financial datasets can be summarized in the feature matrix

X ∈ RN×M.

For i ∈ {1, . . . , N}, a sample Xi ∈ R1×M describes a financial instrument on a specific
trading day. The columns of X describe characteristics of that sample, for example its
close price. The feature importance indicates how much information that particular fea-
ture possesses. If the feature that has been constructed helps to improve predictions,
chances are it really contains valuable information that can be used to construct a better
trading strategy.
The mean decrease impurity (MDI) uses the fact that a decision tree is built by eval-
uating the information gain at every split, see Subsection 3.3.2. In the following, it is
defined for a random forest. The MDI for a decision tree can be derived by simply set-
ting the number of trees in the random forest to 1.
For a random forest with n decision trees T1, . . . , Tn, let T ∈ {T1, . . . , Tn} denote a deci-
sion tree. Every decision tree consists of multiple nodes, which are denoted by t ∈ T.
The number of samples at a node t is denoted by Nt ∈ {1, . . . , N}. If a node t is not a
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leaf node, the dataset of the node is split. The feature f a node is split on is denoted by
s(t) = f . The mean decrease impurity for a feature f can be defined by

MDI( f ) =
1
n ∑

T
∑

t∈T:
s(t)= f

Nt

N
IG(t, f ),

where IG(t, f ) denotes the information gain of feature f at node t as defined in Sub-
section 3.3.2. In essence, the MDI thus describes the average information gain a feature
contributes.
In order to better display the mean decrease impurity for a feature f , it is normalized:

MDI∗( f ) = MDI( f )

(
∑
f ′∈F

MDI( f ′)

)−1

∈ [0, 1],

where F denotes the set of features. This normalized mean decrease impurity is used as
the feature importance in the rest of this thesis.
In the process of building a decision tree, the training dataset is split several times on
the feature that respectively yields the biggest information gain. At every split, the
number of possible features the dataset can be split on should be limited to 1. Thus, the
algorithm simply chooses one feature randomly. This ensures that weak features are not
overshadowed by strong ones, because otherwise the decision tree would always choose
the feature that yields the biggest information gain, thus inflating the importance of
good features. By limiting the number of features to choose from at every split to
1, every feature has the same chance to contribute in decreasing the impurity of the
dataset.
It also should be noted that features that have a big range of values generally have a
higher MDI, as a significant information gain can be achieved in multiple splits. There
are other ways to define the feature importance, each of them with advantages and
disadvantages. For a detailed discussion of different feature importances, see [López,
2018, pp. 113-127].

4.2 Improving Trading Strategies

When a new trading strategy is developed, it has to be tested somehow. Usually, this is
carried out by using a walk-forward backtest, see Section 5.1. In essence, this method
uses a historic dataset to simulate how the trading strategy would have performed if it
were carried out in the past. The idea is that a trading strategy that performed well in
the past is likely to do so in the future as well. This testing scheme is perfectly valid.
However, problems might arise if a trading strategy is backtested on the same dataset
over and over again, for example to fine-tune certain parameters. As it has been ex-
plained in Subsection 3.1.1, this might lead to a trading strategy that is overfitted to the
underlying dataset.
An example for a potentially overfitted trading strategy is the ’16-weeks-strategy’ by
Thomas Gebert. It advises to only buy and sell in certain weeks in a repeating cycle of
16 weeks, whereby the start of this cycle can be chosen arbitrarily, see [Gebert, 2020].
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Although there is no explanation why these weeks are chosen in particular, this strategy
performs very well on the DAX in a walk-forward backtest. However, it is debatable
whether such a strategy really has detected a meaningful pattern in the financial market
or whether buying in week 13, 14 and 15 and selling in week 8, 11 and 16 just happens
to be the optimal combination of weeks on the underlying historic dataset. In the latter
case, there is no guarantee that the strategy performs well on new data. Gebert even
admits that usually, when a trading strategy is detected, it does not work on new data,
as its ’peak performance’ was reached. This might indicate that many of the trading
strategies he detects are overfitted. Rather than giving a genuine insight in the inner
workings of the financial market, overfitted trading strategies detect random patterns in
the training dataset and attribute them meaning.
To investigate whether the financial market really follows the cycle of 16 weeks, the
strategy can be translated into a feature and added to a feature matrix. Let the feature
’16-weeks-cycle’ describe the position of a sample in this cycle, with values ranging from
1 to 16 to indicate the week a financial instrument is located in. The feature matrix is
then used to predict the label of the samples as described in Section 2.2. Of course, the
feature ’16-weeks-cycle’ is only a simplification of the whole trading strategy. Never-
theless, a high feature importance would indicate a genuine discovery. Unfortunately,
Figure 4.1 shows that the feature on its own does not contain much information.

Figure 4.1: The feature importances of a random forest on the S&P 500 data from 1990
to 2017. The 120 indicates that the volatility (Vola), the drawdown (DD) and
the return are based on the last 120 trading days.

If the feature importance is low, the feature can be adjusted to better reflect the under-
lying trading strategy. When this does not help, it is possible that the trading strategy is
a false discovery that does not perform well on new data.
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To show how to use the feature importance, suppose a new trading strategy should
be built. The stock price of Tesla Inc. seems to depend on tweets of its current CEO,
Elon Musk. Under the presumption that this is a general rule, a trading strategy is con-
structed that sells stocks if the corresponding CEO sends negative tweets. To do this,
every time a tweet is sent, a sell signal is generated. If a number of characteristics are
met, the stock is sold. As described in Section 1.2, machine learning algorithms can be
used to analyse the content of written messages. Sentiment analysis can be applied to
assign a number that rates the content of a tweet dependent on its sentiment. Given
enough additional parameters, like the time a tweet is released, the number of words
that are used, how often it is re-tweeted and so on, such a trading strategy can be over-
fitted easily. Before committing to a trading strategy that does not generalize well on
new data, the feature importances of aspects of this trading strategy can be tested. If
a feature like the number of words contains no substantial information, it should not
be included in the trading strategy, as the danger of overfitting on this feature is poten-
tially high. If the features used in the trading strategy all have a high feature importance
and if backtests of this strategy show a high performance, chances are that the trading
strategy really works. To summarize in short, rather than trying out an assumption
with a backtest directly, an extra step is added to reduce the risk of overfitting. The
feature importance can thus work as an additional tool to construct successful trading
strategies.



Chapter 5

Building a Trading Strategy

After the dataset has been been prepared in Chapter 2, a model to predict the future
stock price movement via labels has been modelled in Chapter 3 and relevant features
have been chosen in Chapter 4, it is time to test whether all these machine learning
methods can produce a profitable trading strategy. For that purpose, the standard tech-
nique to test trading strategies is introduced in Section 5.1. Having established a testing
scheme, two major components of a trading strategy will be discussed. How to select
profitable assets is the topic of Section 5.2. How to allocate equity to the selected assets
in the portfolio will be shown in Section 5.3.

5.1 Backtesting

The goal of every trading strategy is to be profitable in the future. Unfortunately, it is
impossible to test the strategy on future data. Even if a strategy would be applied in
a small scale today, a profit in two months does not guarantee that there will not be a
crash afterwards that the strategy is not prepared for. Therefore, other testing methods,
which are called backtests, have to be used to give an impression of how the strategy
might perform on future data. It is important to keep in mind that, while a good back-
test is desirable, it is worthless if the trading strategy does not also perform well on new
data. This is equivalent to giving the numbers of past winning lottery tickets. In the
past, the numbers would have been really profitable, but used today, the numbers are
not helpful at all. Likewise, it is important not to design an overfitted trading strategy
that has a good backtest and performs badly on new data.
The walk-forward backtest uses a historic dataset to simulate how a trading strategy
would have performed if it were used in the past. The backtest moves through a dataset
from start to finish. At every point in time, the trading strategy only has access to data
that have been available at the time. It uses this information to decide what financial
instruments to buy or to sell. When the backtest moves ahead a trading day, it simu-
lates how this decision would have played out. Used over a long period of time, this
backtesting scheme gives a good impression on how a trading strategy performs on real
financial data. This backtesting technique is used in the rest of this thesis.
Apart from walk-forward backtesting, there are other testing schemes that can be used.
Some of them use historic datasets, others simulate different scenarios with real or syn-
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thetic data. For an extensive discussion of different backtesting techniques, see [López,
2018, pp. 151-192].
When a backtest has been performed, there a multiple statistics to evaluate the perfor-
mance. For example, keeping track of the start and the end equity is helpful. However,
as the start equity can be chosen arbitrarily, it is often better to indicate the relative
performance:

Total Return =
ST

S1
− 1,

where St denotes the equity at t ∈ {1, . . . , T}. As the total performance depends on
the time period the backtest is performed on, it is a good idea to measure the yearly
performance. Suppose a backtest is performed for T trading days. As a year has roughly
252 trading days, the annualized total return can be calculated by:

Annualized Return = (Total Return + 1)
252
T − 1.

Furthermore, the volatility of the equity curve can be analysed. Define the daily return
of the equity curve for t ∈ {2, . . . , T} as

Rt =
St

St−1
− 1.

Then, the annualized volatility can be defined as

Annualized Vola =

√√√√ 1
T − 2

T

∑
t=2

(
Rt − R

)2 ·
√

252,

where R denotes the arithmetic mean. Another useful statistic is the drawdown. The
drawdown at t ∈ {1, . . . , T} is defined as

DDt =
max{S1, . . . , St} − St

max{S1, . . . , St}
.

The average drawdown is defined as the arithmetic mean

Average DD =
1
T

T

∑
t=1

DDt

and the maximum drawdown is defined as

Maximum DD = max {DD1, . . . , DDT} .

Finally, a good statistic to combine both risk and reward of a trading strategy is the
Sharpe ratio:

Sharpe Ratio (Vola) =
Annualized Return

Annualized Vola
.

Instead of using the volatility, the average drawdown can be used as well:

Sharpe Ratio (DD) =
Annualized Return

Average DD
.

These statistics will be used to compare backtests in Section 6.3.
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5.2 Asset Selection

The core of every trading strategy is the selection of profitable financial instruments.
How this selection is carried out differs a lot. For example, fundamental analysis tries
to use a business’s financial statements to identify profitable stocks. Technical analysis
studies past market data to forecast the price development.
The goal of this chapter is to use the machine learning classifier that has been modelled
in Chapter 3 in order to select profitable stocks. To compare its performance, it is
contrasted to two other selection methods.

5.2.1 Large Market Capitalization

The easiest way to select stocks is to rely on market capitalisation. Following the logic
that big companies mostly perform well long-term, companies that make up indices
like the S&P 500 are selected exclusively. As the underlying database of this thesis only
consists of the assets in the S&P 500 and the STOXX 600 anyway, this selection scheme
results in selecting all assets in the dataset. In the following, this serves as a benchmark
to compare trading strategies.

5.2.2 Volatility Basket

Another way to select profitable assets is to filter based on the volatility. As it has been
shown in Figure 4.1, where different feature importances have been ranked, the volatil-
ity seems to be a good indicator for the asset’s future price movement. This observation
can be used to construct a trading strategy.
High-volatile assets carry a lot of risk, which often results in a loss long-term, see [Van
Vliet & De Koning, 2017, pp. 23-27]. That is a reason why two of the three asset allo-
cation methods in Subsection 5.3 try to minimize the portfolio’s volatility. Furthermore,
it can be shown that the least volatile assets often get outperformed as well. When all
assets are sorted based on their volatility from low to high, baskets of assets with sim-
ilar volatility can be studied. A good sweet spot between risk and reward seems to be
the selection of the 2nd volatility quintile, in essence assets with a volatility in between
the 20th and the 40th percentile, see [Haase & Platen, 2019, pp. 7-10]. Therefore, the
volatility basket strategy used in this thesis always selects all assets in the 2nd volatility
quintile. The volatility is based on the daily returns of the last 250 trading days and can
be calculated as seen in Subsection 2.2.1.

5.2.3 Machine Learning Selection

The core of the trading strategy explained in this section is the classifier that has been
introduced in Chapter 3. Ideally, the classifier has access to a wide range of data, both
financial and non-financial. Unfortunately, the scope of this thesis limits the potential of
machine learning models, as the features used are almost exclusively based on the close
prices of the stocks in the dataset. Nevertheless, a great variety of market indicators can
be applied and the model used in this thesis gives a good impression of what a machine
learning trading strategy can be capable of. The exact features that are used will be
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detailed in Chapter 6.
One possibility to set up a machine learning trading strategy is to train a classifier on
a dataset and to use its predictions to identify assets to invest in. For that purpose, the
trained classifier is given a set of current, unlabelled samples of financial instruments.
If the trading strategy was to go live, new samples would have to be created from fi-
nancial data by calculating the features, which only need access to past data. Labelling
these current samples is impossible, as this would require future knowledge. However,
labelled samples are only necessary in order to train a model, not to give predictions.
For example, in order to train a decision tree, a labelled dataset is necessary. Once the
tree is build, it can be used to give predictions for new, unlabelled samples.
When a backtest is performed, creating a current sample is simulated by stripping a
sample in the test dataset off its label. Based on the predicted label of the current sam-
ple, the corresponding asset is added to the current portfolio. When assets have been
labelled −1 and 1, all assets with samples that are predicted to have a positive label are
selected for the portfolio.
Alternatively, the predicted probability that an asset belongs to the positive class can be
used to select assets to invest in. As explained in Subsection 3.4.1, the output of classi-
fiers contains a value p ∈ [0, 1]. If this value is larger than 1

2 , a positive label is predicted.
By selecting a minimal threshold pmin ∈ [0, 1], it is possible to only invest in assets that
are very likely to have a good price development. For that purpose, a high threshold
has to be selected. Thus, the machine learning model foregoes assets with a predicted
ambiguous price development in favour of a few strong assets. The exact threshold pmin

greatly depends on the underlying classifier, as reported values for p can vary a lot.
As explained in Section 3.4, an ensemble of different models often improves the overall
performance. Therefore, instead of relying on one classifier, the trading strategy in this
thesis uses multiple classifiers that are fitted on the same training dataset. To predict
the label of an unlabelled sample, the predictions of all classifiers are aggregated via
the soft voting method. If the prediction is positive, the corresponding asset is selected
and becomes a part of the portfolio. Alternatively, a minimal threshold pmin has to be
surpassed in order to qualify for the portfolio.
Theoretically, it is possible to use any classifier in the ensemble method explained above.
In fact, the more diverse classifiers are added, the better the ensemble is expected to
perform. That means that there does not have to be a decision between random forests,
neural networks or other classifiers, as all models can be used simultaneously. In the
work for this thesis, random forests have proven to be a reliable classifier for financial
data. Therefore, multiple random forests are used in this thesis. To diversify the indi-
vidual random forests, different hyperparameters are chosen. Furthermore, the random
forests are fitted on data that have been labelled differently, for example by selecting
varying labelling horizons. Good combinations of hyperparameters are determined via
the cross-validation method on the training set, which will be discussed in Section 6.2.
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5.3 Asset Allocation

When the assets to invest in have been chosen, the natural question is how to allocate
the equity to the assets. Investing in a single stock promises a high reward if the stock
price of that particular asset rises. However, a falling stock price results in heavy losses.
Given how hard it is to accurately predict stock price movements, such a strategy is
close to gambling. A better idea is to spread investments over multiple assets. In the
beginning of modern portfolio theory, Harry Markowitz showed the merit of diversifi-
cation mathematically. He even went as far as to say that "a rule of behaviour which
does not imply the superiority of diversification must be rejected both as a hypothesis
and a maxim", because "diversification is both observed and sensible", see [Markowitz,
1952, p. 77].
There are several ways to diversify a portfolio, which will be discussed in the following.
As seen in many other areas, machine learning techniques offer new approaches for
classic problems.

5.3.1 Equal Weight

The most intuitive way to allocate the equity is to spread it on all assets evenly. After a
certain time, high performing assets allocate lots of equity, while the proportion of low
performing stocks falls. It would be tempting to keep this structure indefinitely. How-
ever, over time, this process of accumulation makes the portfolio prone to a sudden drop
in stock prices of a few assets, which is the reason a diversification was carried out in
the first place. Hence, after a certain period of time, the portfolio should be reallocated.
Solely relying on the equal weight allocation method can be problematic, because of the
correlation of assets in the portfolio. For example, in a portfolio of ten different assets,
there might be three stocks of international banks. On paper, the portfolio is invested in
ten different assets, but almost a third of the equity is invested in banks. If a financial
crisis occurs, all three assets are likely to drop simultaneously, resulting in heavy losses
of the portfolio. That means that the portfolio has not been diversified properly.

5.3.2 Mean-Variance

To address this issue, techniques of classical areas of mathematics, like algebra or cal-
culus, have been used to exploit the correlation structure of the portfolio in order to
derive a diversified portfolio. The idea is to optimize the weights in such a way that the
variance of the portfolio is minimized, while generating a predefined expected return.
Let (St,j)t∈{1,...,T} denote the price series for an asset j ∈ {1, . . . , N}. The daily return can
be calculated by

Rt,j =
St,j − St−1,j

St−1,j
.

Furthermore, suppose the time series R·,j =
(

Rt,j
)

t∈{2,...,T} is stationary. In essence, that
means that the returns can be interpreted as observations of an underlying, unchanging
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random variable

Rj : Ω→ R, ωt 7→ Rj(ωt) = Rt,j

for an appropriate probability space (Ω,F , P) and j ∈ {1, . . . , N}. The returns of all
assets can thus be interpreted as a random vector

R =

R1
...

RN

 .

With w ∈ RN denoting the portfolio weights and µ ∈ R as a threshold for the expected
return, the trade-off between the expected return and the variance can be defined as

min
w∈RN

Var
[
wTR

]
s.t.

N
∑

j=1
wj = 1

wj ≥ 0, j ∈ {1, . . . , N}

E
[
wTR

]
≥ µ

(5.1)

There is no formula for an explicit solution to this problem. However, if the constraint
of positive weights is loosened, there are formulas for the optimal portfolio, for example
see [Maier-Paape & Zhu, 2018, pp. 19-21]. When it is impossible to use an explicit
formula, optimisation algorithms have to be utilized.
In theory, by minimizing the portfolio variance directly, it is possible to prevent big
losses, thus generating a diversified portfolio. However, the optimized portfolios suffer
from a lot of problems empirically, see [López, 2018, pp. 221-223]. Firstly, the portfolio
weight is usually concentrated in a few assets. In general, this leads to a portfolio that
is prone to a price drop of these key assets, which means the portfolio is not diversified
properly. To counter this, it is a good idea to set constraints for maximal weights.
Secondly, portfolios tend not to be stable, a small change in the return series can result
in a completely different portfolio structure. Thirdly, standard mean-variance portfolios
usually underperform and can be beaten by the simple equal weight strategy described
in Subsection 5.3.1, see [De Miguel, 2009, p. 1931].
A reason why this method fails to reproduce the theoretical results in practice could be
computational. Rearranging the equation shows that the covariance matrix

Σ = E
[
(R− E [R]) (R− E [R])T

]
∈ RN×N

has to be estimated, because

Var
[
wTR

]
= wTΣw ∈ R.

With Rt,· ∈ R1×N for t ∈ {1, . . . , T} and R = 1
T

T
∑

t=1
Rt,· ∈ R1×N as the sample mean, the

covariance matrix can be estimated by

V =
1

T − 1

T

∑
t=1

(
Rt,· − R

)T (Rt,· − R
)
∈ RN×N . (5.2)
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In general, quadratic programming methods that try to solve Equation (5.1) require the
inversion of the covariance matrix, for example see [Markowitz, 1956, pp. 111-133] or
[Nocedal & Wright, 2006, pp. 463-490]. An optimisation with a covariance matrix that is
not invertible is challenging, as there can be several stationary points and local minima,
see [Nocedal & Wright, 2006, p. 449]. However, to estimate an invertible covariance
matrix, there have to be a lot of samples. In general, at least 1

2 N(N + 1) independent
and identically distributed (iid) observations are necessary for an estimation that is not
singular, see [López, 2018, p. 223]. For a portfolio of 50 assets, that means that there
have to be at least five years of daily iid data. Furthermore, the correlation structure
does not remain invariant with a reasonable confidence level for such periods of time.
To understand why it is problematic to invert the covariance matrix, it is helpful to look
at its condition number. The condition number shows how sensitive a function is to
small changes or errors in the input, see [Dahmen & Reusken, 2006, p. 11]. The condition
number is lowest for a diagonal correlation matrix, which is its own inverse. The more
correlated assets are added, the higher the condition number rises and numerical errors
make the inverse unstable. If there are many correlated assets, small changes in the
underlying return matrix produce a completely different inverse. At some point, the
covariance matrix is not invertible anymore. This means that the more correlated the
assets in the portfolio are, the higher numerical errors occur, which leads to a bad
diversification when it is needed the most.

5.3.3 Hierarchical Risk Parity

To solve this issue, new methods from graph theory and machine learning can be used.
Until now, most of macroeconomic and financial research rests upon classical applica-
tions of linear algebra and stochastic calculus. Linear algebra focuses on the location in
Euclidean geometry, stochastic calculus on the changes of this location in conjunction
with an underlying random variable. An examination of the locations of the prices in a
complex system like the financial market is very important. However, logical relations
can help to describe this structure as well. The financial market could be understood as
a network of interconnected assets that influence each others price movements. Linear
algebra can answer questions about how closely together the system moves, but not
what connections ensure the flow in the network or what nodes can shut the network
off. A good example is a subway map. In it, the exact coordinates of stations are dis-
carded to focus on the relations of train stations. To answer questions about a system’s
organization, areas of mathematics like graph theory are helpful. In combination with
machine learning, new approaches to investigate financial markets can be investigated,
see [Calkin & López, 2014, p. 43-45]. These methods can complement existing asset
allocation methods.
The approach introduced in this thesis is Hierarchical Risk Parity (HRP). Using a clus-
tering algorithm, hierarchical structures among the assets are exploited to circumvent
the stability issues described earlier.
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Hierarchical Clustering

A covariance matrix includes the covariances of every pair of return series in the dataset.
This translates to a fully connected graph, where every node is connected to all other
nodes, see Figure 5.1. In the financial context, that means that every asset is a full sub-
stitute for any other asset. In reality, an investor is more likely to exchange a European
utility company with another European utility company, rather than exchanging it with
an Asian fintech start-up. Moreover, inverting this matrix means evaluating every single
connection, which is very complex.

Figure 5.1: A portfolio of 50 assets displayed as a fully connected graph.

In graph theory, there is another graph structure that is applicable for this scenario:
a tree graph, as seen in Figure 5.2. In it, nodes that are similar are connected via an
edge. When two nodes have been connected, they form a cluster. When another node
is close to a node in the cluster, an edge between those nodes is added and the cluster
thus expanded. By keeping track of the order nodes are added to clusters, a tree graph
naturally gives its nodes a hierarchy. In the financial context, German fintechs could
be grouped together, which could in turn be part of the cluster of European financial
services and so on.
In contrast to a fully connected graph, the tree graph contains information about the
nodes hierarchy. Nevertheless, the structure is simpler and there are fewer connections
that have to be evaluated when inverting covariances. While a fully connected graph
has 1

2 N(N − 1) edges, the proposed tree structure only has N − 1.
To derive this structure, the hierarchical clustering algorithm can be used, see [López,
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2018, pp. 224-229]. The algorithm starts by treating every asset as a single cluster con-
taining itself. Then, it merges the closest assets into a bigger cluster one by one, until all
assets are grouped together. In order to do this, the criteria that make up close assets
have to be defined.

Figure 5.2: A portfolio of 50 assets displayed as a tree graph. When to connect two assets
will be described later in detail. For example, an edge can indicate that the
return series of the two linked assets correlate the most out of all assets.

In finance, it makes sense to group assets if their return series are highly correlated. Let
R ∈ RT×N be a return matrix. As described in Subsection 5.3.2, the columns can be
interpreted as the realisations of underlying random variables

Rj : Ω→ R, ωt 7→ Rj(ωt) = Rt,j

for j ∈ {1, . . . , N} and t ∈ {1, . . . , T}. Furthermore, let V be the estimated covariance
matrix as described in (5.2). For j ∈ {1, . . . , N}, the empirical standard deviation of Rj

can be described by

σRj =
√

Vj,j

For i, j ∈ {1, . . . , N}, let

ρi,j =
Vi,j

σRi σRj

∈ [−1, 1] (5.3)

denote Pearson‘s correlation coefficient of Ri and Rj. Then, the correlation matrix can
be expressed as

ρ =
[
ρi,j
]

i,j∈{1,...,N} .

Based on this correlation, a distance measure can be defined:

d̃ : {1, . . . , N}2 → [0, 1] ⊂ R, (i, j) 7→ d̃i,j =

√
1
2
(1− ρi,j).
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This distance measure is a metric, see [López, 2018, p. 239] for a proof. It is low if two
return series are correlated and high if they are anticorrelated. To give an overview, all
distances of assets are combined in a single distance matrix

D̃ =
[
d̃i,j

]
i,j∈{1,...,N}

.

When two assets are clustered together, distances to other assets should be considered
as well. This prevents a huge central cluster surrounded by outliers and enables the
formation of many equally sized clusters. In order to do that, the distance matrix is
updated by calculating the Euclidean distance between its columns. For two columns
D̃i and D̃j of D̃, the Euclidean distance is defined as

d̊ : RN×RN →
[
0,
√

N
]
⊂ R,

(
D̃i, D̃j

)
7→ d̊i,j =

∣∣∣∣∣∣D̃i − D̃j

∣∣∣∣∣∣
RN

=

√√√√ N

∑
n=1

(
d̃n,i − d̃n,j

)2
.

The new distance matrix, which is a distance matrix of distances, can be defined as

D̊ =
[
d̊i,j

]
i,j∈{1,...,N}

.

This matrix serves as a base distance matrix for all following calculations.
The hierarchical clustering algorithm forms clusters by grouping several assets together.
At the start, every asset is part of a one-element cluster. The set of clusters at the
beginning can be defined as

U(1) = {u1, . . . , uN},

with ui = {i} for i ∈ {1, . . . , N}. New clusters are created by merging clusters that are
close. If the clusters ui∗ and uj∗ are merged in the kth iteration of the algorithm, the set
of clusters is updated:

U(k+1) =
(

U(k)\{ui∗ , uj∗}
)
∪ {uN+k},

with uN+k = ui∗ ∪ uj∗ ⊂ {1, . . . , N}. In order to identify clusters to merge, a distance
measure of clusters has to be defined, which is called ’linkage criterion’. Here, the single
linkage criterion is used, which is defined as

d : P
(
{1, . . . , N}2)→ R,

(
ui, uj

)
7→ d(ui, uj) = min

{
d̊α,β : α ∈ ui, β ∈ uj

}
,

where P denotes the power set. The single linkage criterion could be applied on a
distance matrix of assets like D̃ with an alternative definition

d′(ui, uj) = min
{

d̃α,β : α ∈ ui, β ∈ uj

}
.

In that case, the linkage criterion is very intuitive, as the distance is simply the minimum
distance between assets of each cluster. However, this might produce stretched out
clusters. To counter this flaw, it is applied on a distance matrix of distances D̊, which
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takes into account multiple distances d̃ between assets. There are many other linkage
criteria to choose from, each producing different clusters, see [Raffinot, 2018, p. 91].
To give an overview of the distances in between clusters, all distances in the kth iteration
of the algorithm are collected in a set

D(k) =
{

d(ui, uj) : ui, uj ∈ U(k)
}

.

As the number of clusters in U(k) is finite, this set can be displayed as a matrix. In fact,
because all clusters only contain one element in the beginning, D(1) can be mapped to D̊.
In the following, the set D(k) is called the distance matrix of clusters in the kth iteration.
In every iteration k, the minimal entry of the corresponding distance matrix D(k) is used
to determine the clusters that are merged:

(ui∗ , uj∗) = argmin
(ui ,uj)∈U(k)×U(k)

ui 6=uj

{
d(ui, uj)

}
⇒ uN+k = ui∗ ∪ uj∗ .

Of course, it is possible that there are multiple clusters with identical distances. In fact,
as the distance matrix is symmetric, there are always at least two identical minimal
entries. In these cases, the pair of clusters to merge can be chosen randomly out of the
clusters with minimal distance. The order is not that relevant, because the other pair
of clusters will be merged in the next iteration anyway, at least if the single linkage
criterion is used.
When two clusters have been merged, the algorithm updates the list of clusters U(k+1)

with uN+k, calculates new entries for the distance matrix D(k+1) and merges two more
clusters. This is repeated until all assets form a single big cluster.
The full hierarchical clustering algorithm can be summarized as follows:

1. Initialize the list of clusters:

U(1) = {u1, . . . , uN},

with ui = {i} for i ∈ {1, . . . , N}.

2. Set the iteration counter:
k = 1.

3. Transform the correlation matrix to a distance matrix of assets with Pearson‘s
correlation coefficient ρi,j as defined in (5.3):

ρ→ D̃ with d̃i,j =

√
1
2
(1− ρi,j).

4. Transform this distance matrix by computing the Euclidean distance in between
columns:

D̃ → D̊ with d̊i,j =

√√√√ N

∑
n=1

(
d̃n,i − d̃n,j

)2
.
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5. If
∣∣∣U(k)

∣∣∣ = 1, stop.

6. Calculate the distance matrix of clusters

D̊ → D(k) =
{

d(ui, uj) : ui, uj ∈ U(k)
}

with the linkage criterion

d(ui, uj) = min
{

d̊α,β : α ∈ ui, β ∈ uj

}
.

7. Identify the two clusters (ui∗ , uj∗) that are closest and denote them as cluster uN+k:

(ui∗ , uj∗) = argmin
(ui ,uj)∈U(k)×U(k)

ui 6=uj

{
d(ui, uj)

}
⇒ uN+k = ui∗ ∪ uj∗ .

8. Update the list of clusters:

U(k+1) =
(

U(k)\{ui∗ , uj∗}
)
∪ {uN+k}.

9. Increase the iteration counter k by 1 and loop to step 5.

In the end, the history of the list of clusters can be used to derive a tree graph, which
can be visualized as seen in the example in Figure 5.3.

Figure 5.3: A dendogram of the example that is about to be discussed. On the y-axis,
the distance between merging clusters is displayed.
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Hierarchical Clustering - Example

To properly understand the hierarchical clustering algorithm, it is helpful to test it in
an example. For that purpose, suppose that there are four assets with a corresponding
correlation matrix

ρ =


1 −0.3 0.5 −0.4
−0.3 1 0.1 0.8
0.5 0.1 1 0
−0.4 0.8 0 1


Step 1: Initialize the list of clusters:

U(1) = {u1, u2, u3, u4} = {{1}, {2}, {3}, {4}}.

Step 2: Set the iteration counter k = 1.

Step 3: Derive a distance matrix of assets from the correlation matrix:

ρ =


1 −0.3 0.5 −0.4
−0.3 1 0.1 0.8
0.5 0.1 1 0
−0.4 0.8 0 1

→ D̃ =


0 0.8062 0.5 0.8367

0.8062 0 0.6708 0.3162
0.5 0.6708 0 0.7071

0.8367 0.3162 0.7071 0


Step 4: Transform the distance matrix via the Euclidean distance in between columns:

D̃ =


0 0.8062 0.5 0.8367

0.8062 0 0.6708 0.3162
0.5 0.6708 0 0.7071

0.8367 0.3162 0.7071 0



→ D̊ =


0 1.2649 0.7315 1.2973

1.2649 0 1.0708 0.4497
0.7315 1.0708 0 1.1131
1.2973 0.4497 1.1131 0


Step 5:

∣∣∣U(1)
∣∣∣ > 1, so continue.

Step 6: Use the linkage criterion to derive the distance matrix of clusters. In the first
iteration, D(1) = D̊.

Step 7: Use the smallest non-diagonal entry of the distance matrix D(1) to identify
clusters to merge:

0.4497 = d({2}, {4}) ⇒ u5 = {2, 4}.

Step 8: Update the list of clusters:

U(1) = {{1}, {2}, {3}, {4}} → U(2) = {{1}, {3}, {2, 4}}.
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Step 9: Update k = 2 and loop to step 5.

Step 5’:
∣∣∣U(2)

∣∣∣ > 1, so continue.

Step 6’: Update the distance matrix of clusters. Start by calculating the linkage cri-
terion d(ui, uj) = min

{
d̊α,β : α ∈ ui, β ∈ uj

}
with ui, uj ∈ U(2) for the new

cluster: [
d ({1}, {2, 4})
d ({3}, {2, 4})

]
=

[
1.2649
1.0708

]
.

The list of clusters U(2) has been updated by removing the clusters {2} and
{4} and by adding the merged cluster {2, 4}. Thus, to calculate the new
distance matrix of clusters D(2), the rows and columns that correspond to {2}
and {4} are deleted and a new row and column for {2, 4} is added:

D(1) =


0 1.2649 0.7315 1.2973

1.2649 0 1.0708 0.4497
0.7315 1.0708 0 1.1131
1.2973 0.4497 1.1131 0


→ D(2) =

 0 0.7315 1.2649
0.7315 0 1.0708
1.2649 1.0708 0


Step 7’: Use the smallest non-diagonal entry of the distance matrix D(2) to identify

clusters to merge:

0.7315 = d({1}, {3}) ⇒ u6 = {1, 3}.

Step 8’: Update the list of clusters:

U(2) = {{1}, {3}, {2, 4}} → U(3) = {{2, 4}, {1, 3}}.

Step 9’: Update k = 3 and loop to step 5.

Step 5”:
∣∣∣U(3)

∣∣∣ > 1, so continue.

Step 6”: Update the distance matrix of clusters. Start by calculating the linkage crite-
rion for the new cluster:

d ({2, 4}, {1, 3}) = 1.0708

Delete the rows and columns of D(2) that correspond to {1} and {3} and add
a new row and column for {1, 3}:

D(2) =

 0 0.7315 1.2649
0.7315 0 1.0708
1.2649 1.0708 0

→ D(3) =

[
0 1.0708

1.0708 0

]
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Step 7”: Use the smallest non-diagonal entry of the distance matrix D(3) to identify
clusters to merge:

1.0708 = d({2, 4}, {1, 3}) ⇒ u7 = {2, 4, 1, 3}.

Step 8”: Update the list of clusters:

U(3) = {{2, 4}, {1, 3}} → U(4) = {{2, 4, 1, 3}}.

Step 9”: Update k = 4 and loop to step 5.

Step 5”’:
∣∣∣U(4)

∣∣∣ = 1, so stop.

The result of the hierarchical clustering algorithm can be visualized with a dendogram,
see Figure 5.3. A dendogram plots the order in which clusters are formed, which assets
a cluster consists of and how close they are. In this example, it is apparent that the assets
2 and 4 and, with some limitations, the assets 1 and 3 can be grouped together.

Quasi-Diagonalization

By using the results of the hierarchical clustering algorithm, the assets can be reordered.
The new order, which can be seen on the x-axis in Figure 5.3, can be derived by following
the tree graph in the dendogram from top to bottom:

[
u7

]
→
[

u5

u6

]
→

 u5

1
3

→


2
4
1
3

 .

If the return series of two assets correlate, they are placed together. Thus, when the
correlation matrix is rearranged accordingly, it is visible that the highest correlation
values are located near the diagonal of the matrix, see Figures 5.4 and 5.5. Clusters are
displayed clearly as rectangles.
This order is then used to rearrange the covariance matrix, which will be used when
assigning portfolio weights.
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Figure 5.4: The correlation matrix of the S&P 500 companies before clustering. Under-
lying is a dataset of daily returns from 2014 to 2019.

Figure 5.5: The correlation matrix of the S&P 500 companies after clustering. Underlying
is a dataset of daily returns from 2014 to 2019.
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Recursive Bisection

Clustering has delivered a quasi-diagonal matrix. For a diagonal covariance matrix,
the inverse-variance allocation is optimal. To see this, consider the standard portfolio
optimization problem with the estimated covariance matrix V:

min
w∈RN

wTVw

s.t. wT1N = 1,

where

1N =

 1
...
1

 ∈ RN .

Using a Lagrange multiplier, it can be easily shown that the solution to this problem is

w =
V−11N

1T
NV−11N

∈ RN . (5.4)

A diagonal covariance matrix can be inverted by inverting the values on its diagonal.
Therefore, if the covariance matrix is diagonal, the optimal weight for j ∈ {1, . . . , N} can
be calculated by

wj =
V−1

j,j
N
∑

n=1
V−1

n,n

.

For N = 2, the formula reads

w1 =

1
V1,1

1
V1,1

+ 1
V2,2

= 1− V1,1

V1,1 + V2,2
and w2 =

V1,1

V1,1 + V2,2
.

The following algorithm uses a recursive bisection to set the weights. This means that at
every recursive step, the task is to allocate the weights to two subsets of assets at a time.
The allocation method used to do this is inspired by the optimal allocation formula for
N = 2.
To explain how the weight is distributed, the first step is explained in detail, using a few
assumptions to describe an ideal weight allocation. These constraints will be relaxed
later.
Let V ∈ RN×N denote the covariance matrix that has been rearranged with the hierar-
chical clustering algorithm. Suppose that the set of assets is split in half. That means
that

L1 =

{
1, . . . ,

⌊
N
2

⌋}
and L2 =

{⌊
N
2

⌋
+ 1, . . . , N

}
,

where b·c denotes the floor function. The task is to allocate weights to L1 and L2. In
order to simplify the first step, the assets in their respective subsets L1 and L2 are treated
as a unity. Basically, the assumption is that L1 and L2 form homogeneous clusters. In
that case, let vL ∈ R denote the ’variance’ of a cluster L, which will be defined later.
For example, the mean variance of a cluster could be used as vL. Furthermore, suppose



62 CHAPTER 5. BUILDING A TRADING STRATEGY

that the assets in their respective cluster are completely independent from the assets
in the other cluster, basically Vi,j = 0 for all assets i ∈ L1 and j ∈ L2. Under these
assumptions, the task to reallocate the weight between the assets can be simplified to
the task of allocating the weight to the two clusters L1 and L2 that, if treated as a unity,
have a covariance matrix [

vL1 0
0 vL2

]
∈ R2×2.

Thus, following the formula for optimal weights for N = 2, the weights for the assets
can be set as

wi = 1− vL1

vL1 + vL2

∈ [0, 1] for i ∈ L1,

wj =
vL1

vL1 + vL2

∈ [0, 1] for j ∈ L2.

It should be noted that the weights do not add up to 1 anymore, because every asset
is given the weight of the whole cluster. However, because of the recursive bisection,
the weights will be altered in the next step. In the end, the constraint wT1N = 1 is met
again.
Of course, the assumptions of homogeneous and independent clusters are not realis-
tic. However, the rearrangement by the hierarchical clustering algorithm has created a
quasi-diagonal covariance matrix, where the highest values are located in the proximity
of the diagonal entries. That means that, although the covariance Vi,j of assets i ∈ L1 and
j ∈ L2 is not zero, it is generally small. Furthermore, assets in L1 and L2 are most likely
not homogeneous, but assets that have been placed together in clusters might correlate
strongly nonetheless. As the assumptions are not met in general, this allocation method
does not grand optimal weights, but it might be a good heuristic allocation. Other meth-
ods to allocate weights to two subsets of assets are applicable.
To describe the variance of a subset of assets vL, let V ∈ RN×N denote the covari-
ance matrix that has been rearranged with the hierarchical clustering algorithm. For
a contiguous subset L ⊂ {1, . . . , N} with |L| = n, the covariance matrix between the
constituents of L can be defined as

VL =
[
Vi,j
]

i,j∈L ∈ Rn×n.

Of course, the order of assets is preserved.
There are multiple ways to define the variance of a subset of assets. For example, the
mean variance of all assets could be chosen:

vL =
1
n

1T
n diag [VL] 1n,

where

diag[A] =


A1,1 0 . . . 0

0
. . .

...
...

. . . 0
0 . . . 0 An,n

 ∈ Rn×n
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denotes the diagonal matrix for a matrix A ∈ Rn×n.
The algorithm in this thesis uses the variance of an inverse-variance allocation as de-
scribed in Equation (5.4), applied to VL:

vL = w̃ t
LVLw̃L,

with

w̃L =
diag [VL]

−1 1n

1T
n diag [VL]

−1 1n
.

In the calculation, assets with low variance receive more weight. Moreover, if two assets
i and j in L both have a low variance, the covariance Vi,j is given much weight as well.
The complete algorithm can be summarized as follows:

1. The algorithm is initialized by:

(a) Setting the list of items L = {L0} , with L0 = {1, . . . , N}.
(b) Assigning a unit weight to all items: wj = 1 for all j ∈ {1, . . . , N}.

2. If |Li| = 1 for all Li ∈ L, stop.

3. For each Li ∈ L such that |Li| > 1 :

(a) Bisect Li into two contiguous subsets L1
i ∪ L2

i = Li, where
∣∣L1

i

∣∣ = ⌊ 1
2 |Li|

⌋
and

the order is preserved.

(b) For k ∈ {1, 2}, define the variance of Lk
i as

vLk
i
= w̃ t

Lk
i
VLk

i
w̃Lk

i
,

where VLk
i

is the covariance matrix between the constituents of Lk
i and

w̃Lk
i
=

diag
[
VLk

i

]−1
1l

1T
l diag

[
VLk

i

]−1
1l

for l =
∣∣Lk

i

∣∣ .

(c) Compute the split factor

αi = 1−
vL1

i

vL1
i
+ vL2

i

∈ [0, 1].

(d) Re-scale allocations wj by a factor of αi for all j ∈ L1
i .

(e) Re-scale allocations wj by a factor of (1− αi) for all j ∈ L2
i .

4. Update the list of items. For every element Li ∈ L that has been bisected, replace
Li with its smaller subsets L1

i and L2
i .

5. Loop to step 2
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Recursive Bisection - Example

To demonstrate the recursive bisection, the example that has been elaborated in the
hierarchical clustering step is resumed. In this example, a correlation matrix was given:

ρ =


1 −0.3 0.5 −0.4
−0.3 1 0.1 0.8
0.5 0.1 1 0
−0.4 0.8 0 1

 .

This matrix was then used to form clusters and to rearrange the assets:
1
2
3
4

→


2
4
1
3

 .

Suppose the corresponding standard deviations for one day returns were

σ1 = 0.03, σ2 = 0.02, σ3 = 0.02, σ4 = 0.03.

Intuitively, the assets 2 and 3 are the least volatile, so they should receive more weight
than the other assets if the goal of the asset allocation is to create a stable portfolio.
However, as it has been shown before, the assets 2 and 4 form a close cluster. Thus, it
might be reasonable not to give asset 2 too much weight, because otherwise a large part
of the portfolio is invested in two assets that correlate strongly.
Given a correlation matrix and standard deviations, the corresponding covariance matrix
can be derived:

V =


σ1 0 0 0
0 σ2 0 0
0 0 σ3 0
0 0 0 σ4

 ρ


σ1 0 0 0
0 σ2 0 0
0 0 σ3 0
0 0 0 σ4



=


0.0009 −0.00018 0.0003 −0.00036
−0.00018 0.0004 0.00004 0.00048

0.0003 0.00004 0.0004 0
−0.00036 0.00048 0 0.0009



= 10−4


9 −1.8 3 −3.6
−1.8 4 0.4 4.8

3 0.4 4 0
−3.6 4.8 0 9

 .

Using the new order of assets, the covariance matrix is rearranged:

V = 10−4


4 4.8 −1.8 0.4

4.8 9 −3.6 0
−1.8 −3.6 9 3
0.4 0 3 4

 .
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Step 1: Initialize the algorithm:

(a) The first list of assets is set as L = {L0} with L0 = {2, 4, 1, 3}.

(b) Unit weights are initialized: w(0)
2 = w(0)

4 = w(0)
1 = w(0)

3 = 1.

Step 2: Obviously, |L0| > 1, so the algorithm continues.

Step 3: Select L0 = {2, 4, 1, 3}.

(a) Bisect L0 into L1
0 = {2, 4} and L2

0 = {1, 3}.
(b) For L1

0, the corresponding part of the covariance matrix is

VL1
0
= 10−4

[
4 4.8

4.8 9

]
.

Therefore,

diag
[
VL1

0

]−1
= 104

[
1
4 0
0 1

9

]
.

Thus, the inverse-variance allocation weights can be calculated as

w̃L1
0
=

diag
[
VL1

0

]−1
12

1T
2 diag

[
VL1

0

]−1
12

=
104

104
( 1

4 +
1
9

) [ 1
4
1
9

]
=

[
9

13
4

13

]
.

Finally, the variance of L1
0 can be calculated as

vL1
0
= w̃ t

L1
0
VL1

0
w̃L1

0
= 4, 8 · 10−4.

For L2
0, the variance is derived similarly as

vL2
0
= w̃ t

L2
0
VL2

0
w̃L2

0
= 4 · 10−4.

(c) The split factor is computed by

α0 = 1−
vL1

0

vL1
0
+ vL2

0

= 0.45673.

(d) The weights for the assets in L1
0 are re-scaled:

w(1)
2 = w(1)

4 = α0w(0)
2 = 0.45673.

(e) The weights for the assets in L2
0 are re-scaled:

w(1)
1 = w(1)

3 = (1− α0)w
(0)
1 = 0.54327.

Step 4: Update the list of items with L1 = L1
0 and L2 = L2

0:

L = {L0} → L = {L1, L2}.
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Step 5: Loop to step 2.

Step 2’: As |L1| > 1 and |L2| > 1, the algorithm continues.

Step 3’: Select L1 = {2, 4}.

(a) Bisect L1 into L1
1 = {2} and L2

1 = {4}.
(b) As L1

1 only contains one asset, VL1
1
= 4 · 10−4, w̃L1

1
= 1 and vL1

1
= 4 · 10−4.

Similarly, it can be shown that vL2
1
= 9 · 10−4.

(c) The split factor is computed by

α1 = 1−
vL1

1

vL1
1
+ vL2

1

= 0.69231.

(d) The weights for the assets in L1
1 are re-scaled:

w(2)
2 = α1w(1)

2 = 0.3162.

(e) The weights for the assets in L2
1 are re-scaled:

w(2)
4 = (1− α1)w

(1)
4 = 0.14053.

Select L2 = {1, 3}.

(a) Bisect L2 into L1
2 = {1} and L2

2 = {3}.
(b) Compute vL1

2
= 9 · 10−4 and vL2

2
= 4 · 10−4.

(c) Compute the split factor: α2 = 0.30769.

(d) Re-scale the weights in L1
2:

w(2)
1 = α2w(1)

1 = 0.16716.

(e) Re-scale the weights in L2
2:

w(2)
3 = (1− α2)w

(1)
3 = 0.37611.

Step 4’: Update the list of items with L3 = L1
1, L4 = L2

1, L5 = L1
2 and L6 = L2

2:

L = {L1, L2} → L = {L3, L4, L5, L6}.

Step 5’: Loop to step 2.

Step 2”: |Li| = 1 for all Li ∈ L, so stop.

The final weights can be seen in Table 5.1. As suspected, the least volatile assets 2 and 3
receive the most weight. Out of the two clusters {2, 4} and {1, 3}, the latter is favoured.
This is not due to the individual asset’s volatility, as both clusters have an asset with a
standard deviation of 0.02 and 0.03, but because of their correlation structure. Assets 2
and 4 correlate strongly, therefore their combined weight is diminished.
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Asset 1 2 3 4
Weight 0.16716 0.3162 0.37611 0.14053

Table 5.1: The final weights of the example that has been discussed.

The main advantage of the Hierarchical Risk Parity method is its omission of the inver-
sion of the covariance matrix, which is why it is a very robust algorithm. In fact, the
covariance matrix can be ill-conditioned or even singular. Moreover, the algorithm is
fast, as it converges in logarithmic (best case) or linear (worst case) time, see [López,
2018, p. 238].
In this thesis, one variant of the HRP algorithm is introduced. Of course, it can be
adjusted and improved. In the hierarchical clustering step, other distance measures d,
d̃ and d̊ can be used to form different clusters. It is even possible to use completely
different clustering algorithms, as long as assets in clusters are placed together to form
a quasi-diagonal covariance matrix. For a comparison of different clustering algorithms
in finance, see [Kolanovic & Krishnamachari, 2017, pp. 93-98]. Furthermore, in the hi-
erarchical clustering step, different functions for the variance vL of a subset L and for
the split factor α can be applied. Instead of carrying out the recursive bisection, the
allocations could also be split following the hierarchical clusters from top to bottom as
seen in a dendogram.
Empirical studies suggest that "hierarchical clustering based portfolios are robust, truly
diversified and achieve statistically better riskadjusted performances than commonly
used portfolio optimization techniques", see [Raffinot, 2018, p. 97]. The results in the
case study in Chapter 6 also seem to be promising.

5.4 Post-Processing

When a trading strategy is tested with a backtest, an equity curve is generated. If the
strategy went live, it would be closely monitored by the investor in order to be able to
interfere when unforeseen price drops occur. Similarly, an arbitrary equity curve can be
monitored automatically with post-processing.
The idea is to apply long-term trend indicators, which will be introduced in detail in
Subsection 6.1.1, to the equity curve. Basically, the trend indicators display a positive
trend ’1’ when the portfolio has been doing well. Price drops of the equity curve trigger
the output of a negative trend ’0’. This functions as a safeguard mechanism, as the
trading strategy is only allowed to invest in assets when the underlying trend is positive,
effectively overriding trading decisions of the trading strategy. If a negative trend is
triggered, all assets are sold at the next day. Note that the asset selection and the asset
allocation process is unaffected from this. After all assets have been sold because the
trend turned negative, the trading strategy switches to simulating how its decisions
would have played out. Basically, the portfolio is still monitored and reallocated, but
trading decisions are not carried out. When the simulated equity curve starts to rally
again, the trend indicator switches to a positive trend and the trading strategy is allowed
to invest in the assets once again.
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Every trend indicator has different parameters that affect its behaviour. Post-processing
can be diversified by applying multiple trend indicators to the equity curve at once, each
one responsible for a small share of equity. For example, suppose ten different trend
indicators are used during post-processing. If one trend indicator switches to a negative
trend, only a tenth of the equity is frozen and the other nine tenth are still invested, until
the corresponding trend indicators turn negative as well.
As the trend indicators only need access to the past equity curve, post-processing can
be integrated in the backtesting process, thus ensuring that a similar strategy could be
applied on live data. The effect of post-processing will be analysed with real data in
Subsection 6.3.3. For more details, see [Maier-Paape, 2016, p. 1-22].



Chapter 6

Case Study

In this chapter, the machine learning techniques are tested on actual data. Step by step,
the chapter shows how to process the data, how to build machine learning models and
how to apply them.
Underlying are two datasets: assets that make up the S&P 500 index from January 1990
to June 2020 and assets that make up the STOXX Europe 600 from January 2002 to June
2020. The datasets are survivorship bias free, so shares of companies that do not exist
any more due to mergers or bankruptcy are included. Furthermore, assets are first taken
into account when they enter the index. This way, no future knowledge of an asset en-
tering the index is implied. Moreover, assets with a close series that spans less than 400
trading days are removed from the dataset. As some features have a backward-looking
window of 250 trading days and one label a forward-looking horizon of 120 trading
days, at least 92.5% of these asset’s dataset would be discarded anyway. Furthermore,
penny stocks with an adjusted close price of less than 5$ are removed, as small absolute
price changes near zero result in massive return rates.

6.1 Data Processing

In Chapter 2, the structure of the underlying dataset as a matrix has been explained in
detail. An extract of this dataset can be seen in Figure 6.1. A row of this matrix repre-
sents a sample, which describes the characteristics of a financial instrument at a point
in time. In the columns, features and labels are displayed.
If a value cannot be calculated, as the underlying data is missing, it is displayed as NaN
(Not a Number). For instance, the features of the first samples and the labels of the last
samples are missing. When a machine learning model is fitted on a dataset, samples
with missing feature values are removed.
The core of the data is a set of adjusted close stock prices. The most basic dataset con-
sists of samples that have a date (’Date’), an asset symbol to identify the individual
assets (’AssetSymbol’), the adjusted close price (’CloseAdj’) and labels. Unfortunately,
the feature ’AssetSymbol’ is not numeric, so it cannot be interpreted by a random forest
classifier. Therefore, this feature is not used by the final machine learning model.
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Figure 6.1: An extract of the S&P 500 dataset.

As seen in Section 2.2, labels can be derived from the close price alone. In this ex-
ample, three labels are added: the Edge Ratio label with a labelling horizon of 60, 90
and 120 trading days (’Label60’, ’Label90’ and ’Label120’). When a classifier is trained,
it has access to one of these labels. This helps to diversify classifiers in the machine
learning trading strategy, which has been mentioned in Subsection 5.2.3.
As explained in Chapter 4, machine learning models need access to meaningful features
to give accurate predictions. These features have to be constructed and added to the
data matrix. For example, in Figure 6.1 the 10-day return has been added as a feature
’Return10’. In Subsection 6.1.1, multiple features are introduced. In Subsection 6.1.2,
they are analysed in order to select meaningful features.

6.1.1 Feature Engineering

There are countless possibilities to construct new features. The features used in this
thesis are defined in this subsection. In general, they can be grouped together in regards
to the data they are based on.

Time-Based

Every sample has a time stamp. Therefore, it is natural to analyse whether the time in
itself has an influence on the price development.
The first time-based feature to analyse is the year of a sample (’Year’). Intuitively, it is
not clear whether this is a good feature. On the one hand, when the classifier tries to
predict the label of a current sample, there are few samples with a similar year in the
training dataset. On the other hand, the year might help to differentiate between old
and new data in the training dataset. Like all other features, the feature importance will
show whether to include this feature in the final model.
Another interesting approach is to analyse whether the financial market follows seasonal
trends. Rather than specifying the month of a sample, the day of the year (’DayOfYear’)
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is chosen to indicate the position of a sample in the respective year, because samples
can be differentiated more precisely. The next interesting period of time to investigate
is a month (’DayOfMonth’), as traders might be more anxious towards the end of the
month. Finally, the weekday can be analysed as well (’DayOfWeek’).

Index-Based

It would be a mistake to think an asset is independent from other assets. When most of
the financial market is bullish, it is more likely that the price of an individual asset rises
as well. Likewise, if the market is bearish, the risk of falling prices for any single asset
is considerable. There are many ways to take into account the market development. As
all assets in the datasets are part of either the S&P 500 or the STOXX Europe 600, the
respective index can be used as a basis for calculations.
Based on all assets in the index, a price is formed. For t ∈ {1, . . . , T}, let pt denote the
close price of the respective index at day t. There are no splits or dividends, so adjusting
the close price has no effect. To stay consistent with individual assets, the close price of
the index is called adjusted close nonetheless:

(IndexCloseAdj)t = pt,

for t ∈ {1, . . . , T}.
However, an isolated close price at a point in time does not reflect temporal develop-
ments very well. In order to give a sample information about the past, features have
to be based on multiple data. The easiest way to do this is to calculate the return. The
k-day return at day t ∈ {k + 1, . . . , T} can be calculated as

(IndexReturn k)t =
pt

pt−k
− 1.

For t ∈ {1, . . . , k}, the k-day return cannot be calculated. This is denoted by NaN in the
dataset. Similarly, if a value for any other feature cannot be calculated, an entry of NaN
is placed in the dataset instead.
To indicate the window of past trading days a feature is based on, a number is added
as a suffix. For instance, the 120-day return of the index is denoted as ’IndexReturn120’.
If another feature has access to past data, a corresponding suffix is added as well. In
Subsection 6.1.2, the optimal windows for individual features are studied.
Furthermore, the index’ volatility can be analysed as well. In order to do this, the daily
logarithmic returns of the close prices are calculated:

r̃t = log
(

pt

pt−1

)
.

A k-day moving average, here applied on the logarithmic returns, is defined as

r̃
[k]
t =

1
k

k−1

∑
i=0

r̃t−i.
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As described in Subsection 2.2.1, the k-day rolling standard deviation can be estimated:

σ
[k]
r̃,t =

√√√√ 1
k− 1

k−1

∑
i=0

(
r̃t−i − r̃

[k]
t

)2
. (6.1)

Thus, the volatility based on these daily logarithmic returns at t ∈ {k, . . . , T} can be
calculated by

(IndexVola k)t = σ
[k]
r̃,t .

Instead of calculating the volatility by oneself, external data can be utilized. For in-
stance, the Volatility Index (VIX) is a measure of the volatility of the stock market based
on options of stocks related to the S&P 500, see [Appel, 2005, p. 154]. Before 2003,
calculations were based on the smaller S&P 100 index. As the old and the new VIX are
comparable, they are both listed as a feature ’VIX’ in this thesis.
Finally, the drawdown of the close prices can be calculated as well. It is highly correlated
to the volatility, which will be shown in Subsection 6.1.2. First, the rolling minimum and
maximum for k days are defined:

p[k]min,t = min{pt−k+1, . . . , pt} and p[k]max,t = max{pt−k+1, . . . , pt}. (6.2)

The drawdown with a rolling window of k trading days at t ∈ {k, . . . , T} is then defined
as

(IndexDD k)t =
p[k]max,t − pt

p[k]max,t

∈ [0, 1].

Index-Based, Trend Indicators

When a feature is defined, it is essential that the feature gives some sort of temporal
context, as the classifier is given one sample at a time. The index’ close price at t is
only a snapshot of the price series and the k-day return only takes into account two data
points: the current close and the close k trading days prior. Therefore, indicators that
better describe the temporal context of the close price have to be constructed. There are
five trend indicators that are introduced in this thesis: an envelope around the moving
average of the price, a Bollinger Band, a Donchian channel, the MACD and a trend
oscillator. For more details, see [Maier-Paape, 2016, p. 4-10].
First of all, the close can be normalized. As the underlying data can be interpreted
as a time series, this method can be visualized as an envelope around the graph of the
moving average close price, as seen in Figure 6.2. The envelope has a fixed distance from
the average close, for example ±3% of the average close, and the indicator describes the
position of the close price relative to the envelope. The moving average close price at t
based on the last k trading days can be calculated as

p[k]t =
1
k

k−1

∑
i=0

pt−i. (6.3)
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Thus, the relative position to the mean for an envelope of 3% at t ∈ {k, . . . , T} is defined
as

(IndexEnvelope k)t =
pt − p[k]t

0.03 p[k]t

. (6.4)

Figure 6.2: 3% envelope around the 150-day moving average of the adjusted close price.

Using an envelope, the close becomes more comparable to close prices at other points
in time. The threshold, which is fixed as 3% in this thesis, helps to interpret the feature.
A value of 1 indicates that the current close price is 3% higher than the moving average,
as

pt − p[k]t

0.03 p[k]t

≥ 1 ⇔ pt ≥ 1.03 p[k]t .

Similarly, a value of −1 indicates that the current price is 3% lower than the moving
average. To concentrate on the essentials, a simpler feature can be constructed for t ∈
{k + 1, . . . , T}:

(IndexEvelopeTrend k)t =


0 if (IndexEnvelope k)t ≤ −1
1 if (IndexEnvelope k)t ≥ 1

(IndexEvelopeTrend k)t−1 else

with the initialization

(IndexEnvelopeTrend k)k =

{
0 if (IndexEnvelope k)k ≤ 0
1 if (IndexEnvelope k)k > 0

Other initialization methods are possible. In general, it is desirable to start a feature as
early as possible, as a NaN value at the beginning of the dataset cannot be interpreted
by a classifier.
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The ’Trend’ feature has the added benefit that trends have more longevity in comparison
to (6.4), as a trend changes its sign only when the respective opposite threshold of 3%
or -3% is hit. To indicate that a trend indicator feature is simplified to a discrete set of
values, the suffix ’Trend’ is added.
Unfortunately, the envelope does not take into account the volatility of the close prices,
which can change drastically over time. If the envelope around the moving average
close price is based on the standard deviation of prices, it is called a Bollinger Band,
see [Bollinger, 2002, xxii]. The rolling standard deviation of the price series σ

[k]
p,t can be

calculated by

σ
[k]
p,t =

√√√√ 1
k− 1

k−1

∑
i=0

(
pt−i − p[k]t

)2
. (6.5)

The position of the close price relative to the Bollinger Bands at t ∈ {k, . . . , T} can be
defined as

(IndexBollinger k)t =
pt − p[k]t

2 σ
[k]
p,t

.

Again, other values for the threshold are possible. In this thesis, it is fixed on the
standard 2 σ

[k]
p,t.

Figure 6.3: A 2σ Bollinger Band around the 150-day moving average of the adjusted
close price.

A simplified version of this feature can be constructed for t ∈ {k + 1, . . . , T}:

(IndexBollingerTrend k)t =


0 if (IndexBollinger k)t ≤ −1
1 if (IndexBollinger k)t ≥ 1

(IndexBollingerTrend k)t−1 else
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with the initialization

(IndexBollingerTrend k)k =

{
0 if (IndexBollinger k)k ≤ 0
1 if (IndexBollinger k)k > 0

Another way to put the close price into a temporal context is to use Donchian channels,
see [Bollinger, 2002, p. 40]. Basically, the indicator gives the position of the close price
relative to a rolling minimum and maximum, which has been defined in (6.2). The
position relative to the Donchian channel at t ∈ {k, . . . , T}, which can be seen in Figure
6.4, can be defined as

(IndexDonchian k)t =
pt − p[k]min,t

p[k]max,t − p[k]min,t

∈ [0, 1].

Figure 6.4: A Donchian channel with a rolling window of 150 days around the adjusted
close price.

In contrast to the envelope or the Bollinger Band, the current close price is always con-
tained in the Donchian channel, as the channel is expanded when the current close be-
comes the new rolling minimum or maximum. The simplified trend at t ∈ {k+ 1, . . . , T}
is 0 or 1, depending on the last barrier the current close price has touched:

(IndexDonchianTrend k)t =


0 if pt = p[k]min,t

1 if pt = p[k]max,t
(IndexDonchianTrend k)t−1 else

with the initialization

(IndexDonchianTrend k)k =

{
0 if pk ≤ 1

2

(
p[k]min,k + p[k]max,k

)
1 else
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so the first value for the trend is chosen depending on whether the current price at t = k
is nearer to the rolling minimum or maximum.
The three trend indicators that have been introduced so far are all based on some sort
of envelope or channel around the close price. There are other indicators that try to
capture the momentum of a price.
For instance, the Moving Average Convergence-Divergence (MACD) indicator is con-
structed with moving averages with different time windows in order to detect the un-
derlying trend, see [Appel, 2005, pp. 165-172]. The indicator uses exponential moving
averages of the price series, which gives more weight to recent data points. The s-day
exponential moving average at day t ∈ {2, . . . , T} is defined as

EMA1(p, s) = p1

EMAt(p, s) =
2

s + 1
pt +

(
1− 2

s + 1

)
EMAt−1(p, s).

(6.6)

The quotient 2
s+1 is typically used to calculate the s-day exponential moving average,

see [Appel, 2005, pp. 134-135].
However, there is an issue with this definition when used to construct features. Accord-
ing to (6.6), even short-term exponential moving averages have access to the whole price
series starting from t = 1. Thus, it is possible that a feature based on exponential mov-
ing averages has access to samples in the test dataset, if it predates the training dataset.
As explained in Subsection 3.1.3, this happens when using cross-validation. In order to
keep track of the number of days k a feature has access to, k is always displayed in the
feature name.
A possible workaround would be to apply (6.6) with a rolling window by moving the
start of the exponential moving average a day at a time. Unfortunately, this solution has
two key problems.
Firstly, the beginning of the exponential moving average series in (6.6) greatly depends
on the starting value. If the underlying price series is volatile, starting the calculation
a day later can have a big impact on the exponential moving average. As the moving
average becomes more volatile, so does the rolling feature. In practice, a feature at day
t0 might differ drastically from a feature at day t1 = t0 + 1, although the underlying
price series has not changed apart from one value.
Secondly, (6.6) requires a recursive calculation. Applying a rolling window hence forces
the computer to re-calculate the whole series for every trading day, which is very time
consuming and therefore not feasible.
In order to circumvent these problems, an alternative definition of an exponential mov-
ing average with a window of k trading days at day t ∈ {k, . . . , T} is used in this thesis:

EMA[k]
t (p, s) =

k−1
∑

i=0
wi pt−i

k−1
∑

i=0
wi

, (6.7)

with

wi =

(
1− 2

s + 1

)i
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for i ∈ {0, . . . , k− 1}.
For an infinite underlying price series, both definitions are identical. In order to see this,
consider

EMA[∞]
t (p, s) =

pt +
(
1− 2

s+1

)
pt−1 +

(
1− 2

s+1

)2 pt−2 + . . .

1 +
(
1− 2

s+1

)
+
(
1− 2

s+1

)2
+ . . .

.

As the denominator is a geometric series with initial term equal to 1 and a ratio of
1− 2

s+1 , this can be rearranged:

EMA[∞]
t (p, s) =

pt +
(
1− 2

s+1

)
pt−1 +

(
1− 2

s+1

)2 pt−2 + . . .
1

1−(1− 2
s+1 )

=

(
pt +

(
1− 2

s + 1

)
pt−1 +

(
1− 2

s + 1

)2

pt−2 + . . .

)
2

s + 1

=
2

s + 1
pt +

((
1− 2

s + 1

)
pt−1 +

(
1− 2

s + 1

)2

pt−2 + . . .

)
2

s + 1

=
2

s + 1
pt +

(
1− 2

s + 1

)(
pt−1 +

(
1− 2

s + 1

)
pt−2 + . . .

)
2

s + 1

=
2

s + 1
pt +

(
1− 2

s + 1

)
EMA[∞]

t−1(p, s)

which is similar to (6.6).
Using a short warm-up, the beginning of the exponential moving average series is con-
sistent in a rolling scheme. Furthermore, using vectorization, the calculation of (6.7) can
be sped up drastically. For the implementation of an exponential moving average with
a limited time window, see A.3 in the Appendix.
The original MACD is the difference between the 12-day exponential moving average
and the 26-day exponential moving average:

MACDt = EMAt(p, 12)− EMAt(p, 26).

To be more sensitive to short-term price developments, an additional 9-day exponential
moving average is added to the model. In the original trading strategy, when the MACD
exceeds the additional signal line, a buy signal is generated.
In order to evaluate long-term developments, the moving averages have to span a bigger
time period. To be consistent with the original MACD trading strategy, the relations
between the moving averages stay the same. Hence, instead of 12, 26 and 9, the values
12
26 k, 26

26 k and 9
26 k are used to derive the exponential moving averages in relation to the

rolling window k. The rolling k-day MACD can thus be defined as

MACD[k]
t = EMA[k]

t

(
p,

6
13

k
)
− EMA[k]

t (p, k) .

In addition, the feature used in this thesis uses an envelope around the signal line based
on the standard deviation of the MACD series. The final feature describes the position
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of the MACD relative to the signal line, scaled by the standard deviation of the MACD
line:

(IndexMACD k)t =
1

σ
[k]
MACD,t

(
MACD[k]

t − EMA[k]
t

(
p,

9
26

k
))

,

where σ
[k]
MACD,t denotes the rolling standard deviation of the MACD at day t, which is

calculated similar to (6.5). Thus, the value surpasses 1 if the MACD is greater than the
signal line plus the standard deviation of the MACD. Similarly, it is smaller than −1 if
the MACD signal is below the lower threshold.

Figure 6.5: The 150-day MACD with an envelope around the signal line.

The simplified version of this feature can be constructed for t ∈ {k+ 1, . . . , T} as follows:

(IndexMACDTrend k)t =


0 if (IndexMACD k)t ≤−1
1 if (IndexMACD k)t ≥ 1

(IndexMACDTrend k)t−1 else

with the initialization

(IndexMACDTrend k)k =

{
0 if (IndexMACD k)k ≤ 0
1 if (IndexMACD k)k > 0

Furthermore, a feature can be based on the trend oscillator by Prof. Dr. Stanislaus
Maier-Paape, see [Maier-Paape, 2016, p. 9]. Similar to the MACD, the trend oscillator
combines several moving averages. Note that the trend oscillator that is introduced
in this thesis is a simplified version. Whereas the original uses a combination of both
regular and exponential moving averages, the trend oscillator in this thesis relies on
exponential moving averages alone. For a snippet of the simplified algorithm in pseudo
code, see Appendix A.
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Firstly, a ’gradient’ of the exponential moving average of the price is calculated:

grad[k]
t =

EMA[k]
t (p, k)− EMA[k]

t−1(p, k)
pt

.

Secondly, a short-term exponential moving average of this gradient is calculated and
transformed so that the values range from 0 to 1:

osci[k]t =
1
2
+

1
π

arctan
(

200 · EMA[k]
t

(
grad[k], 11

))
∈ [0, 1].

This signal is called the oscillator. In this thesis, a 11-day exponential moving average is
used, although other time spans are possible.
The value of the oscillator can vary a lot when the underlying prices are volatile. There-
fore, an envelope around 1

2 is added to account for the volatility. In order to do that, the
volatility is derived from the osci time series:

vt =

(
osci[k]t −

1
2

)2

.

As described in (6.3), a rolling volatility v[k]t is calculated. This volatility is used to derive
the lower and upper envelope:

lower[k]t =
1
2
− 7

10
v[k]t and upper[k]t =

1
2
+

7
10

v[k]t .

Figure 6.6: The 150-day trend oscillator with a volatility based envelope around 0.5.

The relative position of the oscillator can be added as a feature:

(IndexOscillator k)t =
osci[k]t − 1

2
7

10 v[k]t

.
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Thus, the value for this feature is 1, iff the value of the oscillator is at the upper envelope.
Similarly, it is −1, iff the oscillator hits the lower envelope. Again, other values for the
volatility factor, which is chosen as 7

10 in this thesis, are possible.
A simplified version of this feature can be constructed for t ∈ {k + 1, . . . , T}:

(IndexOscillatorTrend k)t =


0 if (IndexOscillator k)t ≤−1
1 if (IndexOscillator k)t ≥ 1

(IndexOscillatorTrend k)t−1 else

with the initialization

(IndexOscillatorTrend k)k =

{
0 if (IndexOscillator k)k ≤ 0
1 if (IndexOscillator k)k > 0

Index-Based, Adjusted Trend Indicators

The trend indicators that have been introduced all make use of some sort of envelope.
Inspired by the Donchian channel, all these indicators can be adjusted. Machine learn-
ing algorithms offer novel ways to analyse financial indicators. To test these methods,
new versions of the previous mentioned indicators are added and analysed.
The main idea is simple: instead of using the normal lower and upper threshold of an
indicator, rolling minima and maxima can be utilized. Suppose there is a signal st at
t ∈ {1, . . . , T}. Furthermore, there is an envelope (’lower’, ’upper’) that sets thresholds
for this signal. Instead of using the original lower threshold for the signal, the adjusted
lower threshold at t ∈ {k, . . . , T} is formed by using a rolling maximum

(
lower[k]max,t

)
as

described in (6.2). Similarly, an adjusted upper threshold can be formed
(
upper[k]min,t

)
.

Hence, a positive trend is generated when the signal st exceeds upper[k]min,t rather than
uppert.

Figure 6.7: An adjusted 150-day Bollinger Band with a rolling maximum lower and a
rolling minimum upper threshold (’IndexBollMaxMin150’).
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An example of this technique can be seen in Figure 6.7, where the original Bollinger
Band from Figure 6.3 has been adjusted.
A rolling maximum of the lower threshold enables the indicator to detect downward
trends more quickly, as the lower threshold does not drop with the current signal. For
instance, the Bollinger Band might detect trends too late, as the lower threshold declines
when the price drops, because the standard deviation rises sharply and the moving av-
erage price falls as well. Similarly, if prices are down, an upward trend can be detected
faster when a rolling minimum of the upper threshold is used. This technique offers a
new approach to established trend indicators.
In this thesis, there are three possible settings for a threshold: the original value can be
used, a rolling minimum can be applied, or a rolling maximum can be utilized. As the
lower and the upper threshold can be adjusted independently, this gives a total of nine
different settings for an indicator.
To denote such an adjusted indicator, a suffix is added to show that a rolling minimum
(’Min’) or maximum (’Max’) is applied, or that the original threshold is used and no
function applied (’None’). The first suffix stands for the lower, the second for the up-
per threshold. Thus, ’IndexBollMinNone k’ would indicate an adjusted k-day Bollinger
Band, with a k-day rolling minimum lower and the original upper threshold. To limit the
length of the feature name, abbreviations are used for the ’Envelope’ (’Env’), ’Bollinger’
(’Boll’) and ’Oscillator’ (’Osci’) features when they are adjusted. The Donchian channel
is already constructed with rolling minima and maxima, therefore the channel is not
adjusted in this thesis.

Figure 6.8: An adjusted 150-day Bollinger Band with a rolling minimum lower and a
rolling maximum upper threshold (’IndexBollMinMax150’).

When the indicators are adjusted with rolling minima and maxima, it is possible that
the lower threshold exceeds the upper threshold and vice versa. This would be prob-
lematic, as the signal could qualify for both a positive and a negative trend at the same
time. To circumvent this, the upper threshold is bounded by the lower threshold, as
seen in Figure 6.9. Therefore, instead of crossing, the lower and upper threshold would
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merge. Of course, other techniques are possible. For example, a small envelope around
the mean of the crossed lower and upper threshold could be constructed.

Figure 6.9: An adjusted 3 % envelope around a 150-day moving average of the close
price with a rolling maximum lower and the original upper threshold
(’IndexEnvMaxNone150’).

Price-Based, Individual Asset

A sample in the dataset describes the characteristics of an individual asset at a given
trading day. Of course, the market trend is a large factor to consider when giving pre-
dictions. However, characteristics that are unique to an asset can be used for predictions
as well.
Most importantly, a stock has a price that can be used to construct features. As explained
earlier with the index-based features, the adjusted close price (’CloseAdj’) is used in this
thesis. Again, the close has to be put in a temporal context. This can be achieved by
applying the same features used for the index for the individual assets. To differentiate
these features to the features based on the index, the prefix ’Index’ is removed.
For instance, let X1 ∈ RM+1 denote a sample at t0 and (pt)t∈{1,...,t0} the price series of
the underlying asset. The feature ’Return k’ describes the k-day return of the underlying
asset:

(Return k)t0(X1) =
pt0

pt0−k
− 1.

For another sample X2 ∈ RM+1 at t0 that describes a different asset, the feature ’Return
k’ is calculated using the prices ( p̃t)t∈{1,...,t0} of the underlying asset of X2:

(Return k)t0(X2) =
p̃t0

p̃t0−k
− 1.

Therefore, the two samples X1 and X2 have different values for the feature ’Return k’.
However, if both assets are listed in the same index, the value for ’IndexReturn k’ is
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the same, as both samples share the same date t0. Thus, all features that have been
introduced for a index can be applied for individual stock prices as well. Although the
trend indicators have been designed to describe index prices, they might still be useful
on the more volatile individual stock prices.
When designing good features, the feature correlation should be taken into account, as
correlated features only describe the same characteristic multiple times. For example,
the return of a stock price correlates with the return of the index price, which can be
seen in Figure 6.10. Thus, rather than using the features ’Return k’ and ’IndexReturn k’,
uncorrelated features are added. Two easy ways to adjust the stock price’s return are
used in this thesis. Firstly, the return of the index can be subtracted from the stock price
return, creating a residualised return that solely depends on an asset’s performance:

ReturnIndexRes k = Return k− IndexReturn k.

Secondly, the ratio of the returns can be build, as described in Subsection 3.3.1:

ReturnIndexRatio k =
Return k

IndexReturn k
.

A value for ’IndexReturn k’ that is almost zero or negative might create a ratio that is
hard to interpret. This will be analysed with the feature importance in Subsection 6.1.2.

Figure 6.10: Feature correlation of return features for the S&P 500 dataset.
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Price-Based, Market Structure

Instead of using the index as an indicator for the market movement, the constituents of
the index can be analysed directly. This is done by aggregating the price-based features
that have been introduced for the individual assets.
Let Xt denote the set of samples that describe assets of a given market at t ∈ {1, . . . , T}.
In particular, |Xt| is the number of assets contained in that market at day t. One way
to aggregate features is to compute the arithmetic mean. For example, the feature ’En-
velopeTrend k’ can be transformed into a market feature:

(MrktEnvelope k)t =
1
|Xt| ∑

X∈Xt

(EnvelopeTrend k)t(X) ∈ [0, 1].

Features that have been calculated by that method are denoted with a prefix ’Mrkt’. In
theory, any individual feature can be aggregated to form a market feature. However,
using discrete features is preferable, as they are less prone to outliers and sudden mar-
ket shifts become visible more quickly. Therefore, except for the features ’MrktVola k’,
’MrktDD k’ and ’MrktReturn k’, all market features are based on their discrete counter-
parts that are denoted with a ’Trend’. For instance, the feature ’MrktDonchian k’ is build
on ’DonchianTrend k’ rather than ’Donchian k’. As the ’Trend’ features are either 0 or
1, the market feature can be interpreted as the proportion of assets that have a positive
trend according to the underlying indicator.

6.1.2 Feature Selection

It is relatively easy to construct new features to add to the model, but it is hard to create
meaningful features. Adding redundant or insignificant features might even impair
a model. Therefore, it is a good idea to analyse the features in order to only select
meaningful ones.
The following analysis of the feature importance is restricted to the years 1990-2004 (for
the S&P 500 dataset) and 2003-2011 (for the STOXX Europe 600 dataset). The years
after that are part of the test dataset, which will be used for the backtest in Section 6.3.
Therefore, the classifier should not have access to these samples beforehand.

Window Length

Most of the features have a rolling window of past samples they use for calculations.
In order to analyse the impact of the rolling window on a feature, the labelling horizon
has to be taken into account. As described in Chapter 4, the feature importance indi-
cates how much a feature contributes to successful predictions. Therefore, the feature
importance is based on the label the classifier uses, as it determines how to classify
samples. In Figures 6.11, 6.12 and 6.13, it is apparent that features with a long rolling
window generally have a high feature importance. Most of the features with a 50-day
window rank relatively low, even for a short labelling horizon of 60 days. Furthermore,
some features have a high feature importance for every labelling horizon (’MrktVola250’,
’MrktBollinger250’, ’MrktDonchian250’). Others always have a low feature importance
(’MrktEnvelope50’, ’MrktReturn50’, ’MrktDD50’).
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Figure 6.11: Feature importance for selected market features for the S&P 500 dataset.

Figure 6.12: Feature importance for selected market features for the S&P 500 dataset.
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Figure 6.13: Feature importance for selected market features for the S&P 500 dataset.

It would be possible to use features with a large rolling window exclusively, as these
features tend to have a high feature importance. However, in order to give a compre-
hensive description of the state of a sample, multiple different rolling windows should
be used for a given feature. In this thesis, the features have rolling windows of 10, 25,
50, 100, 150, 200 and 250 trading days, thus giving the classifier the ability to react to
both short-term and long-term trends.

Adjusted Trend Indicators

As explained in Subsection 6.1.1, trend indicators can be adjusted by using the rolling
minimum or maximum of thresholds. In total, there are nine different combinations of
rolling minima and maxima for the lower and the upper threshold.
The feature importance for the adjusted MACD feature is displayed in Figure 6.14. First
of all, the distinction between the ’Index’ and the ’Mrkt’ features is obvious. As ex-
plained in Section 4.1, the mean decrease impurity (MDI) is used to measure the feature
importance. Discrete features generally have a lower MDI, as a decision tree can split
the dataset on this feature only once. This explains why the ’Trend’ features have a
relatively low feature importance. However, although ’IndexMACD150’ is not a discrete
feature, it still ranks lower than the other ’Mrkt’ features. Therefore, Figure 6.5 seems
to suggest that building MACD features based on all individual assets yields a higher
feature importance than relying on the index price alone. This observation is consistent
with the other trend indicators, which can be seen in Appendix B.
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Figure 6.14: Feature importance for adjusted MACD features for the S&P 500 dataset.

Furthermore, the feature importance of trend indicators can be improved by using ad-
justed thresholds, since the original market indicator (’NoneNone’) rarely ranks high.
Surprisingly, the ’MinMax’ configuration has the highest feature importance for most
of the market indicators, which can be seen in Appendix B. In general, configurations
that produce a wide envelope (’MinMax’, ’NoneMax’, ’MinNone’) perform well. This
could indicate that the width of the original envelope is set too tight in all market indi-
cators. Alternatively, it might suggest that it is advantageous to stick to a trend when
prices fall or rise, as the ’MinMax’ envelope widens in these scenarios, which makes it
harder to switch the label. When prices move horizontally for a long period of time, the
’MinMax’ configuration produces a narrower envelope, which makes it easier to detect
new trends. For ’Index’ features, this observation is not that obvious, as features that
detect a falling trend quickly (’MaxMax’, ’MaxNone’) have a higher feature importance
compared to the other ’Trend’ features. Nevertheless, the ’MinMax’ configuration still
ranks relatively high.
Using the ’MinMax’ configuration to detect entry signals to buy stocks probably does
not work well, as trends are detected very late, which can produce high costs if a stock
is sold too late and high opportunity costs if a stock is bought too late. However, a clas-
sifier needs features to be accurate at any given trading day in order to produce accurate
predictions. This shift of focus from finding the exact time a trend changes to accessing
the current trend accurately might explain the high feature importance of the ’MinMax’
configuration.
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As the feature importance of the adjusted ’MinMax’ indicators is generally higher than
the feature importance of the original ’NoneNone’ indicators, the final model uses mar-
ket features with the ’MinMax’ constellation.

Market Features

A look at all market features in Figure 6.15 shows similar results to Figure 6.14: ’Mrkt’
features generally have a higher feature importance than ’Index’ features and the ’Min-
Max’ constellation is advantageous. Therefore, ’Mrkt’ features are chosen over ’Index’
features for the final model.

Figure 6.15: Feature importance for selected market features for the S&P 500 dataset.

Interestingly, the adjusted close of the index has a very high feature importance. Maybe
the classifier is able to attribute samples to historic market phases due to the respec-
tive current index close. Furthermore, the MDI tends to be lower if there are multiple
features that correlate highly, as two correlated features are to a certain degree inter-
changeable. The heatmap in Figure 6.16 shows that there are essentially three blocks
of market features: trend indicators, features that describe the market volatility and
the close of the index. That would explain why a unique feature like ’IndexCloseAdj’
has a high feature importance. Moreover, the feature ’MrktBollMinMax150’ seems to
be somewhat independent of features like the market return, which boosts its feature
importance. In general, unique and independent features are desirable, as highly corre-
lated features explain the same characteristic of a sample and therefore might lead to a
complex model with unnecessary variables that is prone to overfitting.
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Figure 6.16: Feature correlation for selected market features for the S&P 500 dataset.

The feature importance for the STOXX Europe 600 dataset can be seen in Figure B.8 in
the appendix. The feature ’VIX’ has a relatively high feature importance, even though
it describes the volatility of the US-American rather than the European market. Overall,
the market feature importance plots for the STOXX Europe 600 and the S&P 500 datasets
are comparable.

Individual and Time-Based Features

The feature importance of the rest of the features can be seen in Figure 6.17. Similar
to the close of the index, the close of the individual stock seems to contain information
as well. Maybe stocks with a high price have been successful historically, which would
explain why they have a high price in the first place. Furthermore, the close price is
uncorrelated to all other features, which elevates its feature importance.
The time-based features offer some surprises: The feature ’Year’ has a very high fea-
ture importance, probably because it helps to relate a sample in the training set to the
market phase of its respective time. For instance, samples in the year 1999 presumably
behave differently from samples in the year 2008. When the label of a new sample is
predicted, recent samples in the training dataset are given more relevance, as their year
is similar to the new sample. Interestingly, the feature ’DayOfYear’ ranks relatively high
as well. Maybe there really are seasonal effects. However, the causation is not clear. If
characteristic events like price rallies tend to happen in specific seasons, that does not
mean that they are caused by the season. Nevertheless, the feature importance plot for
the STOXX Europe 600 dataset, which stretches another time period, also shows a high
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Figure 6.17: Feature importance for selected features for the S&P 500 dataset.

feature importance for ’DayOfYear’, which can be seen in Figure B.9 in the appendix. In
order to analyse seasonal effects further, more datasets that stretch over longer periods
of time would have to be evaluated. The other two time-based features (’DayOfMonth’
and ’DayOfWeek’) have a relatively low feature importance and are thus not included
in the list of features for the final model.
Similar to the market features, discrete ’Trend’ features only have a small feature impor-
tance. In order to limit the number of unnecessary features, they are thus not used by
the final classifier as well. The final list of features can be seen in Appendix C.

6.2 Hyperparameter Tuning

After meaningful features have been selected, a classifier has to be specified that can
use these features. In Sections 3.3 and 3.4, two possible models have been introduced:
decision trees and random forests.
As mentioned in Subsection 3.1.3, the dataset used for hyperparameter tuning is re-
stricted to the years 1990-2004 (for the S&P 500 dataset) and 2003-2011 (for the STOXX
Europe 600 dataset), as the other half of the respective dataset is used for a backtest in
Section 6.3. Using samples from the test dataset would improve the performance of the
final model. However, to simulate a realistic test scenario in the backtest and to reduce
overfitting, only information that is available at the start of the backtest can be used in
order to train the model.
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6.2.1 Decision Tree

An extract of a hyperparameter tuning of a decision tree can be seen in Figures 6.18. In
the hyperparameter tuning, different combinations of three parameters have been tested:
the impurity measure (’criterion’), the maximal depth of the tree (’max_depth’) and the
number of features to choose from when splitting the dataset at a node (’max_features’).
For all tests, a 120-day Edge Ratio label has been utilized. Of course, there are many
hyperparameters that could have been tested additionally.

Figure 6.18: An extract of the hyperparameter tuning process of a decision tree with the
S&P 500 dataset. The classifier is evaluated with the negative log loss.

Figure 6.19: An extract of the hyperparameter tuning process of a decision tree with the
S&P 500 dataset. The classifier is evaluated with the negative log loss.

There is no big difference in between the impurity measures. However, the other two
hyperparameters influence the performance of the classifier a lot. When set too low, the
decision tree is underfitted and performs badly. Setting these two parameters too high
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by choosing no restriction (’None’) is even worse: the negative log loss is catastrophic
as the decision tree is extremely overfitted, see Figure 6.19. Such a decision tree predicts
labels with a high predicted probability value. Because there is no restriction, the leaf
nodes might only contain a few samples. In that case, the predicted probability of a
label for a similar sample is close to 0 or close to 1. If such a prediction is false, the
corresponding negative log loss is very small.
Overall, the performance of the decision tree is bad, as it tends to overfit easily.

6.2.2 Random Forest

Next, a random forest is evaluated. To analyse the effect of the labelling horizon, a
random forest with fixed hyperparameters and different labelling horizons is tested.
Choosing different labelling horizons only has a minor effect on the performance, which
can be seen in Table 6.1. In general, it seems to be easier to detect long-term trends, as
the performance with the 120-day labelling horizon is slightly better. The goal in Section
6.3 will be to design multiple diversified classifiers. As the performance for all tested
labelling horizons is acceptable, all three labelling horizons are used in this thesis.

Labelling Horizon 60 90 120
Accuracy 0.5405 0.5365 0.5397
Precision 0.5367 0.5397 0.5453
F1-Score 0.5398 0.5364 0.5394
Neg. log Loss -0.6930 -0.6909 -0.6878

Table 6.1: The performance of a random forest in dependence of the labelling horizon.

An extract of the hyperparameter tuning process for a random forest can be seen in
Figure 6.20. Compared to the decision tree in Figure 6.18, both the bias and the variance
of the model have been improved.

Figure 6.20: An extract of the hyperparameter tuning process of a random forest with
the S&P 500 dataset. The classifier is evaluated with the negative log loss.



6.2. HYPERPARAMETER TUNING 93

The effect is even more noticeable when applied on an overfitted classifier. This can be
seen when comparing Figure 6.21 to Figure 6.19, as both models have no restriction to
the depth of a decision tree or the number of features that can be checked for a split.
The random forest is still overfitted, as the performance in fold 5 differs greatly from
the other folds. However, the average score has been boosted from -17.4 to -1.3.

Figure 6.21: An extract of the hyperparameter tuning process of a random forest with
the S&P 500 dataset. The classifier is evaluated with the negative log loss.

To give an overview of how the hyperparameters affect the classifier, the results of the
hyperparameter tuning are summarized:

• ’n_estimators’: the number of decision trees in the ensemble.
If the number is set too small, the classifier overfits like a decision tree. Increasing
the number of trees improves the model. At a certain number, adding trees has no
benefit, as the trees in the ensemble cannot be diversified properly any more. A
value around 100 seems to be a good choice.

• ’criterion’: the impurity measure.
There are no major differences in between the Gini impurity and the entropy.

• ’min_weight_fraction_leaf’: the minimal weight fraction of samples a leaf is al-
lowed to contain.
The classifier is overfitted when this value is set too low and underfitted when it
is set too high. A value around 0.01-0.05 seems to be a good choice. It has to be
set high if ’max_feature’ is high and vice versa, as the classifier overfits otherwise.

• ’max_feature’: the number of random features a decision tree can evaluate when
performing a split.
The classifier is overfitted when a high value is set. Setting low values works well,
as there are many correlated features. A value of 1-3 seems to be a good choice.

• ’class_weight’: the sample weight.
When all samples are weighted equally, the classifier performs badly when trained
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on bullish data only. Therefore, the weights are chosen inversely proportional to
the class frequencies in the bootstrapped datasets, as described in Section 3.2. This
is denoted by ’balanced_subsample’.

The hyperparameter tuning on the STOXX Europe 600 dataset reveals the same optimal
parameter combinations. However, the performance on the training dataset is signif-
icantly worse. Either European assets behave differently from US-American ones and
cannot be described accurately with the underlying set of features, or the time period is
disadvantageous. The training dataset spans from 2003 to 2011, which covers the finan-
cial crisis from 2007 to 2008 and the European debt crisis afterwards. This might explain
why predicting the Edge Ratio Label is more difficult.

6.3 Backtesting

After a classifier has been trained on financial data, it can be used to make predictions for
the label of current samples. As the label tries to indicate the future price development
of a financial instrument, the classifier can thus help in identifying profitable stocks.

6.3.1 Asset Selection

In Section 5.2, multiple approaches to select assets have been introduced. The first is
relying on large market capitalization by investing in all constituents of the index (’No
Filter’). The second is to rank assets according to their volatility and to choose a specific
basket, here assets with a volatility in between the 20th and the 40th percentile (’Vola
Basket’). The third approach is to use the predictions of a machine learning classifier
(’ML Selection’).
Every 60 trading days, which is roughly equivalent to three months, the portfolio is
allowed to be reallocated. This number is chosen arbitrarily to limit transaction costs.
For the ’No Filter’ strategy, that means that assets that leave the index are replaced with
new index members. For the ’Vola Basket’ strategy, the volatility is updated and the
assets in the new volatility basket are selected. Hence, both strategies do not have to
be managed actively. The ’ML Selcetion’ strategy, on the other hand, can give daily
predictions that could be used to detect trends early. However, to be comparable to the
other two strategies, the ’ML Selection’ strategy is only allowed to reallocate the portfo-
lio every 60 trading days as well. Lifting this limitation would benefit the ’ML Selection’
strategy greatly, as it could better time when to invest and when to go flat. This can
be seen in the Appendix D. However, monitoring the financial data more often would
be an advantage over the other passively managed trading strategies the ’ML Selection’
strategy is compared to.
As mentioned in Subsection 5.2.3, rather than relying on the prediction of a single clas-
sifier, the predictions of an ensemble of classifiers are used in order to select profitable
stocks with the ’ML Selection’ strategy. In this thesis, three different random forests are
utilized, which can be seen in Table 6.2.
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Classifier 1 Classifier 2 Classifier 3
Model Random Forest Random Forest Random Forest
Label Edge Ratio Label Edge Ratio Label Edge Ratio Label

Labelling Horizon 60 Days 90 Days 120 Days
Hyperparameter

n_estimators 75 125 100
criterion gini entropy gini
min_weight_

fraction_leaf
0.02 0.03 0.02

max_features 1 2 3

class_weight
balanced_

subsample
balanced_

subsample
balanced_

subsample

Table 6.2: The specifications for the classifiers used to select assets.

After the classifiers have been fitted on the training dataset, they can be used to pro-
duce predictions for the probabilities p1, p2, and p3 ∈ [0, 1] that a current sample has a
positive label. The final prediction is the mean of the three predictions:

p =
p1 + p2 + p3

3
.

Hence, when p ≥ 0.5, a positive label would be predicted for the respective sample. In
Table 6.3, the merit of an ensemble model can be observed. Combining the predictions
of classifiers 1, 2 and 3 can boost the total return while keeping a low average draw-
down. Therefore, the ensemble model is used in this thesis when referring to the ’ML
Selection’ strategy.
The ’Vola Basket’ strategy relies on a portfolio size of 20% of the original asset universe.
To be comparable, the ’ML Selection’ strategy aims for the same desired portfolio size.
For example, suppose all assets in the S&P 500 are predicted to have a positive label
and thus qualify for an investment. In that case, the ’ML Selection’ strategy would only
select the 100 assets with the highest value for p. In another scenario, suppose all assets
are predicted to have a negative label. In that case, no asset would be selected and the
equity would not be invested until the portfolio is reallocated once again. In this thesis,
money not invested in the assets is not invested at all, therefore there is no profit from
interest.
When the future outlook is bleak, it is possible that the classifiers cannot identify 100
assets to invest in. However, it is possible that individual assets are still predicted to
have a positive price development, for example because they are expected to rally more
quickly after a financial crisis. In that case, the program is allowed to invest in these as-
sets. Of course, it would not be wise to invest all the equity in only a handful of assets.
Therefore, the minimal portfolio size is set to 50. If the classifiers identify 20 assets to
invest in, only 40% of the equity can be invested, therefore limiting the risk of losses.
Hence, if the classifiers can identify at least 50 assets, the ’ML Selection’ strategy is fully
invested.
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Asset Selection ML Selection ML Selection ML Selection ML Selection
Classifier 1 2 3 1, 2, 3
Threshold p ≥ 0.5 p ≥ 0.5 p ≥ 0.5 p ≥ 0.5

Asset Allocation Equal Weight Equal Weight Equal Weight Equal Weight
Reallocation 60 Days 60 Days 60 Days 60 Days

Av. Portfolio Size 87.65 88.43 90.09 90.82
Start Equity 1000 1000 1000 1000
End Equity 3362 3948 3795 4194
Total Return (in %) 236.29 294.82 279.54 319.50
Ann. Return (in %) 8.57 9.76 9.46 10.21
Ann. Vola (in %) 19.92 20.94 22.36 20.62
Av. DD (in %) 6.87 6.08 8.20 6.20
Max. DD (in %) 53.58 52.68 60.18 53.01
Sharpe Ratio (Vola) 0.43 0.47 0.42 0.50
Sharpe Ratio (DD) 1.25 1.61 1.15 1.65

Table 6.3: Backtest statistics for chosen strategies, performed on the S&P 500 dataset
from 2005-09-14 to 2020-06-19.

The behaviour of the ’ML Selection’ strategy can be influenced by setting a threshold
for the predicted probability p. In theory, an investment should me made only when
the classifiers are reasonably sure that an asset will perform well, which is denoted by a
high value for p. Obviously, the range of this value depends on the individual classifier,
as an overfitted classifier is more likely to produce very high predicted probabilities.
The values tested in this thesis therefore only apply to the classifiers described in Table
6.2 and are influenced by the underlying dataset. The performance of the ’ML Selection’
strategy for different thresholds for p in combination with an equal weight (’EW’) asset
allocation can be seen in Figure 6.22.
For a low threshold, the program is almost always invested. The higher the threshold
is set, the longer the portfolio is not invested at all. This can also be seen in Figure
6.23. In general, most of the predicted probabilities for a label seem to be close to 0.5.
This can be explained by the design of the classifiers. As described in Section 6.2, the
hyperparameters of the classifiers have been chosen such that the negative log loss is
maximized. Overly confident false predictions have a very low negative log loss and are
therefore avoided, which results in a classifier that is not overfitted.
On the one hand, a high threshold can limit losses. For example, if the threshold is set
to 0.55, the portfolio is not invested at all from the end of 2007 to the end of 2008, thus
missing a big part of the financial crisis. On the other hand, a high threshold also means
that the strategy is overly cautious and misses out on profits, for example from 2010 to
2015 in the case of p ≥ 0.55. Hence, while it is possible to forecast sudden price shifts
like a financial crisis in theory, the model in this thesis is not able to do so precisely. As
most of the features are based on lagged trend indicators, this is not surprising.
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Figure 6.22: Equity curve of multiple ’ML Selection’ strategies applied on the S&P 500
dataset with a logarithmic scale.

Figure 6.23: Portfolio size of the ’ML Selection’ strategy for different settings on the S&P
500 dataset. The portfolio is reallocated every 60 trading days.
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The performance of the different settings can be seen in Table 6.4 with the test statistics
that have been defined in Section 5.1. While the lowest threshold p ≥ 0.5 has the high-
est return, it also has the highest volatility. The higher the threshold is set, the lower
the total return and the lower the volatility and the drawdown becomes. Surprisingly,
even though the setting p ≥ 0.55 produces a strategy that is rarely invested, setting the
threshold to 0.5, 0.53 or 0.55 has little effect on the Sharpe ratio based on the volatility.
In fact, the Sharpe ratio based on the average drawdown even rises. Only when setting
the threshold to 0.57, the Sharpe ratio drops significantly.

Asset Selection ML Selection ML Selection ML Selection ML Selection
Threshold p ≥ 0.5 p ≥ 0.53 p ≥ 0.55 p ≥ 0.57

Asset Allocation Equal Weight Equal Weight Equal Weight Equal Weight
Reallocation 60 Days 60 Days 60 Days 60 Days

Av. Portfolio Size 90.82 55.17 21.37 6.44
Start Equity 1000 1000 1000 1000
End Equity 4194 3251 2336 1186
Total Return (in %) 319.50 225.15 133.66 18.67
Ann. Return (in %) 10.21 8.32 5.92 1.17
Ann. Vola (in %) 20.62 17.38 12.51 10.71
Av. DD (in %) 6.20 4.23 2.26 4.74
Max. DD (in %) 53.01 36.43 27.87 26.86
Sharpe Ratio (Vola) 0.50 0.48 0.47 0.11
Sharpe Ratio (DD) 1.65 1.97 2.63 0.25

Table 6.4: Backtest statistics for chosen strategies with varying thresholds for p, per-
formed on the S&P 500 dataset from 2005-09-14 to 2020-06-19.

However, the high performance of the strategies can to a large degree be explained by
lucky timing, as it is beneficial to reallocate shortly before a price drop occurs. There-
fore, the backtest is also influenced by the exact dates the portfolio is reallocated, which
is a potential source of overfitting. As the performance of the strategy with a low thresh-
old p ≥ 0.5 does not rely on going flat at the right time, the strategy probably does not
depend on timing. This presumption is analysed in Table 6.5, where the start date of the
backtest is shifted by 15, 30 and 45 trading days while keeping the 60 day reallocation
rule. While there are differences, the key statistics are roughly similar, which indicates
that the strategy is relatively robust.
As the ’ML Selection’ strategy with the setting p ≥ 0.5 has a good performance and is
robust to different start dates, this strategy is compared to the other trading strategies.
Rather than relying on the classifiers to predict price drops, forcing a full investment
seems to be desirable, especially since the risk is controlled with post-processing later
in Subsection 6.3.3 anyway.
The backtest for the S&P 500 dataset can be seen in Figure 6.24, a summary of key statis-
tics can be seen in Table 6.6. As a benchmark, the scaled S&P 500 is added. The first
thing to notice is that the ’No Filter’ strategy that invests in all members of the index
with equal weight only has an average portfolio size of 471, in contrast to the 500 mem-
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Asset Selection ML Selection ML Selection ML Selection ML Selection
Threshold p ≥ 0.5 p ≥ 0.5 p ≥ 0.5 p ≥ 0.5

Asset Allocation Equal Weight Equal Weight Equal Weight Equal Weight
Reallocation 60 Days 60 Days 60 Days 60 Days

Start Date 2005-09-14 2005-10-05 2005-10-26 2005-11-16
Av. Portfolio Size 90.82 90.13 91.03 90.44
Start Equity 1000 1000 1000 1000
End Equity 4194 3523 3901 3866
Total Return (in %) 319.50 252.36 290.16 286.60
Ann. Return (in %) 10.21 8.95 9.75 9.72
Ann. Vola (in %) 20.62 20.71 20.13 20.81
Av. DD (in %) 6.20 6.10 5.94 5.94
Max. DD (in %) 53.01 53.08 49.59 49.83
Sharpe Ratio (Vola) 0.50 0.43 0.48 0.47
Sharpe Ratio (DD) 1.65 1.47 1.64 1.64

Table 6.5: Backtest statistics for chosen strategies, performed on the S&P 500 dataset
with shifting start dates until 2020-06-19.

bers of the S&P 500 index. As mentioned in the beginning of this chapter, this can be
explained by the cleansing of the dataset, because some assets only span a short amount
of time and can thus not be processed by the program.

Figure 6.24: Equity curve of selected trading strategies applied on the S&P 500 dataset
with a logarithmic scale.

Both the ’Vola Basket’ and the ’ML Selection’ strategy can outperform the large market
capitalization strategy that selects all index members. All strategies are greatly influ-
enced by the financial crisis 2008, which explains the large maximal drawdown. The
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Asset Selection No Filter Vola Basket ML Selection No Filter
Threshold 20th-40th prctl. p ≥ 0.5

Asset Allocation Equal Weight Equal Weight Equal Weight Index
Reallocation 60 Days 60 Days 60 Days

Av. Portfolio Size 471.00 94.24 90.82 500
Start Equity 1000 1000 1000 1000
End Equity 2491 2904 4194 2524
Total Return (in %) 149.18 190.48 319.50 152.43
Ann. Return (in %) 6.39 7.50 10.21 6.48
Ann. Vola (in %) 21.92 18.74 20.62 20.21
Av. DD (in %) 9.61 7.20 6.20 9.97
Max. DD (in %) 61.51 51.85 53.01 56.78
Sharpe Ratio (Vola) 0.29 0.40 0.50 0.32
Sharpe Ratio (DD) 0.66 1.04 1.65 0.65

Table 6.6: Backtest statistics for chosen strategies, performed on the S&P 500 dataset
from 2005-09-14 to 2020-06-19. As a benchmark, the performance of the scaled
S&P 500 is added.

’ML Selection’ strategy generates the most profit by far. While the ’Vola Basket’ strat-
egy has the least volatility, the ’ML Selection’ strategy has the least average drawdown.
Overall, the ’ML Selection’ strategy has the best performance. This cannot be explained
by the classifier’s ability to forecast price drops, as the model is fully invested most of
the time. Rather, the selection of assets seems to be mostly accurate, especially after a
market correction, which can be seen in 2009 and 2019 in Figure 6.24.
Finally, the same classifiers that have been introduced in Table 6.2 are applied on the
STOXX Europe 600 dataset. Due to the smaller size of the dataset, the backtest is con-
ducted from 2011 to 2020 only. The corresponding index, here the STOXX Europe 600, is
added as a benchmark. What is immediately obvious in Figure 6.25 is that the model is
often not invested at all, even for a low threshold of p ≥ 0.5. This means that the classi-
fiers are reluctant in predicting a positive label. This might be explained by the fact that
the training dataset is dominated by the samples following the financial crisis from 2007
onward. The hyperparameter tuning process on the STOXX Europe 600 process also
showed a worse performance compared to the S&P 500 dataset in general, so the poor
backtest performance was foreseeable. A more close observation of the backtest reveals
a bad timing at the beginning, as the model invests as the market prices drop and goes
flat when prices start to rally again. Although the ’ML Selection’ strategy can almost
catch up to the other trading strategies, the final performance is only okay because the
model decided to go flat before the prices plummet because of the coronavirus 2020.
As the ’ML Selection’ strategy worked best on the S&P 500 dataset when it was almost
always invested, a similar approach is applied to the STOXX Europe 600 dataset by low-
ering the threshold for p even further to zero. In effect, the model cannot go flat any
more, as it also invests in assets with a predicted negative label. Rather, it has to rely
on its ability to detect the most profitable stocks in a given asset universe. This strategy
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Figure 6.25: Equity curve of selected trading strategies applied on the STOXX Europe
600 dataset with a logarithmic scale.

proves to be somewhat effective, which can also be seen in Figure 6.25. The correspond-
ing test statistics can be seen in Table 6.7. Cutting losses during a market correction is
better handled during post-processing, which will be the topic of Subsection 6.3.3. In
general, the better the classifiers perform on the training dataset during the hyperpa-
rameter tuning, the higher the threshold for p can be set, as the models ability to foresee
price drops has probably improved.

Asset Selection No Filter Vola Basket ML Sel. ML Sel. No Filter
Threshold 20th-40th prctl. p ≥ 0.5 p ≥ 0

Asset Allocation EW EW EW EW Index
Reallocation 60 Days 60 Days 60 Days 60 Days

Av. Portfolio Size 564.64 112.83 77.41 112.62 600
Start Equity 1000 1000 1000 1000 1000
End Equity 1542 1636 1599 1867 1652
Total Return (in %) 54.27 63.63 59.94 86.79 65.25
Ann. Return (in %) 5.29 6.03 5.74 7.71 6.15
Ann. Vola (in %) 16.48 14.85 9.40 15.11 17.16
Av. DD (in %) 5.62 4.80 4.09 3.91 7.37
Max. DD (in %) 35.97 33.97 16.56 33.09 35.55
Sharpe Ratio (Vola) 0.32 0.41 0.61 0.51 0.36
Sharpe Ratio (DD) 0.94 1.26 1.40 1.97 0.83

Table 6.7: Backtest statistics for chosen strategies with an equal weight asset allocation,
performed on the STOXX Europe 600 dataset from 2011-10-03 to 2020-06-09.
As a benchmark, the performance of the scaled STOXX Europe 600 is added.
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6.3.2 Asset Allocation

Until now, the equity has been distributed evenly on all assets in the portfolio. As de-
scribed in Section 5.3, clustering algorithms can be applied to the portfolio to allocate
the equity. The method introduced in this thesis is Hierarchical Risk Parity (’HRP’). In
theory, correlations of the assets in the portfolio should be taken into account, which
should result in a smaller volatility of the equity curve.
The effect of HRP can be seen in Figure 6.26. The difference in between HRP and an
equal weight allocation scheme is small. What stands out is the price drop in the end
of 2008, where the HRP method manages to limit the loss significantly. During most
of the bearish market phases, the HRP method performs better than the equal weight
method. During most bullish market phases, it seems to be the other way around. As
the beneficial effect in bearish phases is more prominent, the HRP method performs
better than the equal weight method.

Figure 6.26: Equity curve of selected trading strategies applied on the S&P 500 dataset
with a logarithmic scale.

The benefits of the HRP asset allocation can be seen more clearly when looking at the
backtest statistics in Table 6.8. A comparison to Table 6.6 shows that the HRP method
lowers both the volatility and the drawdown. Only the ’Vola Basket’ strategy is unaf-
fected by the HRP allocation. When presented with a diversified portfolio, the HRP al-
gorithm results in an equal weight allocation scheme, which explains the similar results.
Nevertheless, when the HRP algorithm adjusts the portfolio weights, it is beneficial, as it
lowers the volatility and therefore improves the Sharpe ratio. The results for the STOXX
Europe 600 dataset are similar, which can be seen in Table 6.9.
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Asset Selection No Filter Vola Basket ML Selection
Threshold 20th-40th prctl. p ≥ 0.5

Asset Allocation HRP HRP HRP
Reallocation 60 Days 60 Days 60 Days

Av. Portfolio Size 471.00 94.24 90.82
Start Equity 1000 1000 1000
End Equity 2723 2989 4385
Total Return (in %) 172.33 198.92 338.58
Ann. Return (in %) 7.03 7.71 10.54
Ann. Vola (in %) 18.55 18.18 18.86
Av. DD (in %) 7.69 7.41 4.96
Max. DD (in %) 54.14 52.05 46.63
Sharpe Ratio (Vola) 0.38 0.42 0.56
Sharpe Ratio (DD) 0.91 1.04 2.13

Table 6.8: Backtest statistics for strategies with an HRP asset allocation, performed on
the S&P 500 dataset from 2005-09-14 to 2020-06-19.

Asset Selection No Filter Vola Basket ML Selection ML Selection
Threshold 20th-40th prctl. p ≥ 0.5 p ≥ 0

Asset Allocation HRP HRP HRP HRP
Reallocation 60 Days 60 Days 60 Days 60 Days

Av. Portfolio Size 564.64 112.83 77.41 112.62
Start Equity 1000 1000 1000 1000
End Equity 1572 1734 1614 1877
Total Return (in %) 57.25 73.47 61.45 87.74
Ann. Return (in %) 5.53 6.76 5.86 7.77
Ann. Vola (in %) 14.17 13.94 8.65 13.38
Av. DD (in %) 4.30 3.81 3.89 3.40
Max. DD (in %) 32.52 31.59 16.91 31.07
Sharpe Ratio (Vola) 0.39 0.49 0.68 0.58
Sharpe Ratio (DD) 1.28 1.78 1.50 2.28

Table 6.9: Backtest statistics for strategies with an HRP asset allocation, performed on
the STOXX Europe 600 dataset from 2011-10-03 to 2020-06-09.

6.3.3 Post-Processing

As explained in Section 5.4, post-processing can be applied to an equity curve as a safe-
guard mechanism. Five trend indicators are applied to the equity curve in this thesis: an
envelope around the moving average of the equity, a Bollinger Band, a Donchian chan-
nel, the MACD and a trend oscillator. For a more detailed discussion of trend indicators
and post-processing, see [Maier-Paape, 2016, p. 1-22].
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Trend Indicators

The exact algorithms have been introduced in Subsection 6.1.1 as ’Trend’ features. Rather
than applying the trend indicator to the price of the index or to the price the individual
asset, the trend indicator is applied to the equity curve instead. Again, ’1’ indicates a
positive trend and ’0’ indicates a negative one.
Unfortunately, at the beginning of the backtest, there are not enough data points of
the equity curve to reliably initialize the trend indicators. In contrast to the feature
construction, the first values of the trend indicators cannot be discarded, as the trading
strategy goes live right away. Waiting until the trend indicators work well means missing
out on a lot of potential profit.
A better approach is to decide whether to invest right away based on the current market
phase. In order to do that, the trend indicators are applied to the respective index of the
dataset, here the S&P 500 or the STOXX Europe 600, as enough data are available at the
start of the backtest. For the first 250 trading days, post-processing decisions are thus
based on the trend indicators that are applied to the index. Of course, the exact period
can vary and depend on the individual trend indicator. Only after this initialization
period, the trend indicators are applied directly to the equity curve. This process is
explained in more detail for the ’MACDTrend’ in the next paragraph.
To vary the trend indicators, different parameters can be set. The 3% envelope around
the moving average of the equity, the 2σ Bollinger Band and the Donchian channel are
defined by their rolling window. For instance, ’BollingerTrend120(Days)’ indicates that
a Bollinger band is applied to a 120-day moving average of the equity curve. Similar to
the feature construction, the trend is ’1’ when the upper barrier has been touched last.
If the lower barrier has been touched last, the trend is ’0’.
Post-processing is applied after the training phase during the backtest. Therefore, time
restrictions that have applied to the features do not apply to the trend indicators any
more, as all information at the start of a walk-forward backtest can be used. This has
implications to the exponential moving average, which does not have to be restricted
any more. Therefore, the standard definition for an s-day exponential moving average
at day t ∈ {1, . . . , T} can be utilized:

EMA1(p, s) = p1

EMAt(p, s) =
2

s + 1
pt +

(
1− 2

s + 1

)
EMAt−1(p, s), t ≥ 2

where pt denotes the equity at day t ∈ {1, . . . , T}.

MACD Trend

Using this definition of an exponential moving average, the MACD without a time
restriction can be defined in dependence of a factor f ∈N:

MACDt(p, f ) = EMAt(p, 12 f )− EMAt(p, 26 f ).

Rather than varying the period of days the MACD has access to, the factor f controls
whether short- or long-term trends are detected. Similar to the MACD feature, another
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exponential moving average is added as a signal line, which also depends on f :

signalt(p, f ) = EMAt(p, 9 f ).

The final trend for day t ∈ {251, . . . , T} is calculated similar to the feature construction:

(MACDTrend f (Factor))t

=


0 if MACDt(p, f ) ≤ signalt(p, f )− σ

[250]
MACD(p, f ),t

1 if MACDt(p, f ) ≥ signalt(p, f ) + σ
[250]
MACD(p, f ),t

(MACDTrend f (Factor))t−1 else

where σ
[250]
MACD(p, f ),t denotes the 250-day standard deviation of the MACD at day t, which

is defined similarly to (6.5). As explained earlier, the trend for day t ∈ {1, . . . , T} is
based on the respective index. Suppose the index starts at day t̃0 ∈ Z with t̃0 << 1. Let
p̃t denote the price of the index at day t ∈

{
t̃0, . . . , 250

}
. Then, the ’MACDTrend’ at day

t ∈
{

t̃0 + 251, . . . , 250
}

can be calculated:

(MACDTrend f (Factor))t

=


0 if MACDt( p̃, f ) ≤ signalt( p̃, f )− σ

[250]
MACD( p̃, f ),t

1 if MACDt( p̃, f ) ≥ signalt( p̃, f ) + σ
[250]
MACD( p̃, f ),t

(MACDTrend f (Factor))t−1 else

As t̃0 << 1, the initialization is arbitrary and can be set to 0:

(MACDTrend f (Factor))t̃0+250 = 0

Trend Oscillator

The final trend indicator, the trend oscillator, can be defined with the standard definition
of an exponential moving average as well. The exponential moving average is used to
calculate the ’gradient’ of the equity pt at day t ∈ {2, . . . , T}

gradt =
EMAt(p, 100)− EMAt−1(p, 100)

pt

and to calculate the oscillator signal

oscit =
1
2
+

1
π

arctan(200 · EMAt(grad, 11))∈ [0, 1].

The volatility is calculated similar to Subsection 6.1.1:

vt =

(
oscit −

1
2

)2

.

However, as there is no time restriction any more, a long-term moving average v[1000]
t

of the volatility can be used in order to derive an upper and a lower threshold for
the oscillator signal. Similar to the other trend indicators, the trend oscillator has an
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initialization period of 250 days, so the full 1000-day moving average is not feasible. As
a compromise, the moving average is expanded gradually for t ≥ 250 by calculating
v[min{t,1000}]

t .
The trend oscillator is altered by varying the factor α ∈N, which controls the sensitivity
of the trend signal. In Subsection 6.1.1, this parameter has been set to 7. For t ∈
{251, . . . , T}, the trend indicator can thus be defined as

(OscillatorTrend α (Alpha))t

=


0 if oscit ≤ 1

2 +
α
10 v[min{t,1000}]

t

1 if oscit ≥ 1
2 +

α
10 v[min{t,1000}]

t
(OscillatorTrend α (Alpha))t−1 else

The initialization is similar to the other trend indicators, which has been explained in
detail for the ’MACDTrend’ indicator in the last paragraph. If t̃0 ∈ Z with t̃0 << 1 de-
notes the start of the index price series, the ’OscillatorTrend’ for t ∈

{
t̃0 + 251, . . . , 250

}
is based on the price series of the index and the first value of ’OscillatorTrend’ for
t = t̃0 + 250 is set to 0.

Backtesting

There are three asset selection algorithms that have been introduces in Subsection 6.3.1
(’No Filter’, ’Vola Basket’, ’ML Selection’) and there are two asset allocation methods
from Subsection 6.3.2 (’EW’, ’HRP’). Hence, there are a total of six different equity curves
produced with a backtest for each dataset. In order to test how robust post-processing
works, it is applied to all 6 equity curves.
As described in Section 5.4, different settings for the individual trend indicators can be
used. In general, these settings adjust how sensitive a trend indicator is. The influence
of the number of days the moving average of the ’EnvelopeTrend’ indicator is based on
can be seen in Figure 6.27. In general, the more days the moving average uses, the later
it detects new trends. However, setting the value too low might lead to premature trend
signals, which can be seen at the end of 2011.
Rather than over-optimizing post-processing by searching for the perfect setting, a range
of effective settings is identified. Trend indicators with different settings are then com-
bined by assigning each trend indicator a share of the equity, as described in Section 5.4.
The settings used in this thesis can be seen in Table 6.10.

Trend Indicator Parameter Range
EnvelopeTrend rolling window 100 to 200 by steps of 10
BollingerTrend rolling window 100 to 200 by steps of 10
DonchianTrend rolling window 100 to 200 by steps of 10
MACDTrend factor for (12, 29, 9) 10 to 20 by steps of 1
OscillatorTrend α (sensitivity) 4 to 14 by steps of 1

Table 6.10: Settings for the trend indicators used for post-processing.



6.3. BACKTESTING 107

Figure 6.27: Equity curves based on the S&P 500 dataset before and after post-processing
with different settings.

Note that all indicators describe a long-term tend. Therefore, the trend only changes
rarely. As a single trend indicator is only responsible for a small share of the equity,
transactional costs are low and therefore ignored in this thesis.
The influence of this post-processing scheme for the S&P 500 dataset can be seen in
Figure 6.28 and Table 6.11.

Figure 6.28: Equity curves based on the S&P 500 dataset before and after post-
processing.

All trend indicators can limit losses during the financial crisis 2008. Therefore, the equity
curve after post-processing outperforms the original ’No Filter & EW’ strategy for the
most part. However, as the trend indicators rely on lagged data, they are ill equipped
for sudden price drops, as seen in 2020. If there is a sudden ’v’-shaped recovery, most
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Asset Selection No Filter No Filter No Filter No Filter No Filter No Filter
Asset Allocation EW EW EW EW EW EW

Reallocation 60 Days 60 Days 60 Days 60 Days 60 Days 60 Days
Post-Processing None Envelope Bollinger Donchian MACD Oscillator
Start Equity 1000 1000 1000 1000 1000 1000
End Equity 2492 2448 2170 2269 1403 2287
Total Return (in %) 149.18 144.77 117.01 126.88 40.30 128.65
Ann. Return (in %) 6.39 6.26 5.39 7.71 2.32 5.77
Ann. Vola (in %) 21.92 11.38 10.81 11.47 11.95 10.87
Av. DD (in %) 9.61 5.47 5.93 6.13 6.12 5.88
Max. DD (in %) 61.51 17.97 20.99 20.88 35.33 18.18
Sharpe Ratio (Vola) 0.29 0.55 0.50 0.50 0.19 0.53
Sharpe Ratio (DD) 0.66 1.14 0.91 0.93 0.38 0.98

Table 6.11: Backtest statistics for equity curves with and without post-processing. The
backtests have been performed on the S&P 500 dataset from 2005-09-14 to
2020-06-19.

trend indicators stay invested for too long and reinvest too late, which results in rela-
tive losses compared to the original strategy. Nevertheless, the overall performance is
improved, as drawdowns are reduced significantly.
Post-processing works as a safeguard mechanism that cuts losses when the equity drops
too quickly. The better the underlying trading strategy works, the smaller the beneficial
effect of post-processing. This can be seen in Figure 6.29 and Table 6.12.

Figure 6.29: Equity curves based on the S&P 500 dataset before and after post-
processing.

Although post-processing manages to limit the drawdown during the financial crisis
2008, the original equity curve catches up quickly and manages to outperform the post-
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processed equity curves afterwards. As described in Subsection 6.3.1, this can be ex-
plained in part by the ability of the ’ML Selection’ strategy to identify the most profitable
assets after a price correction. If the equity is invested in the assets too late, most of that
beneficial effect is lost. However, the overall volatility can still be reduced significantly.

Asset Selection ML Sel. ML Sel. ML Sel. ML Sel. ML Sel. ML Sel.
Threshold p ≥ 0.5 p ≥ 0.5 p ≥ 0.5 p ≥ 0.5 p ≥ 0.5 p ≥ 0.5

Asset Allocation HRP HRP HRP HRP HRP HRP
Reallocation 60 Days 60 Days 60 Days 60 Days 60 Days 60 Days

Post-Processing None Envelope Bollinger Donchian MACD Oscillator
Start Equity 1000 1000 1000 1000 1000 1000
End Equity 4386 3329 2888 3021 1823 3041
Total Return (in %) 338.58 232.93 188.77 202.13 82.260 204.14
Ann. Return (in %) 10.54 8.50 7.45 7.78 4.15 7.83
Ann. Vola (in %) 18.86 9.27 8.98 9.36 10.26 9.03
Av. DD (in %) 4.96 3.61 4.20 4.26 4.10 3.91
Max. DD (in %) 46.63 16.08 13.16 13.48 27.03 12.18
Sharpe Ratio (Vola) 0.56 0.92 0.83 0.83 0.40 0.87
Sharpe Ratio (DD) 2.13 2.35 1.78 1.83 1.01 2.01

Table 6.12: Backtest statistics for equity curves with and without post-processing. The
backtests have been performed on the S&P 500 dataset from 2005-09-14 to
2020-06-19.

Studying the Tables 6.11 and 6.12, the main advantage of post-processing becomes ap-
parent: the drawdown, especially the maximum drawdown, is reduced substantially.
In general, the Sharpe ratio can be improved. As seen in Figures 6.28 and 6.29, the
’MACDTrend’ indicator detects the last price drop 2020 too late, which might explain
the high maximum drawdown and low return. Nevertheless, even the ’MACDTrend’
indicator improves both the volatility and the avarage drawdown.
Post-processing works best when there are many bearish phases during the backtest.
This can be seen in Figure 6.30, where post-processing is applied on the STOXX Europe
600 dataset. As there are no big equity drops in between 2012 and 2019, the original
trading strategy performs best. During the crisis of 2020, most of the post-processed
equity curves manage to go flat in time, only the ’MACDTrend’ indicator suffers a huge
drawdown. Unfortunately, the dataset ends in June, therefore it is unclear how the eq-
uity curves develop after the crisis. Up to June 2020, most of the post-processed equity
curves have limited the loss while not missing out on a lot of profit.
The missing of the 2008 crisis can explain the under performance of the STOXX Europe
600 dataset compared to the S&P 500 dataset, which can be seen in Table 6.13. Most
trend indicators are able to lower the maximum drawdown significantly. However, the
average drawdown of the average original equity curve is the lowest. Post-processing
with the ’MACDTrend’ indicator performs worst by far, as it suffers from the crisis 2020
the most. Furthermore, the annualized return is reduced significantly. Overall, although
the volatility can be reduced, post-processing has no significant benefit in a backtest on
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the STOXX Europe 600 dataset from 2011 to 2020.

Figure 6.30: Equity curves based on the S&P 500 dataset before and after post-
processing.

Asset Selection ML Sel. ML Sel. ML Sel. ML Sel. ML Sel. ML Sel.
Threshold p ≥ 0 p ≥ 0 p ≥ 0 p ≥ 0 p ≥ 0 p ≥ 0

Asset Allocation HRP HRP HRP HRP HRP HRP
Reallocation 60 Days 60 Days 60 Days 60 Days 60 Days 60 Days

Post-Processing None Envelope Bollinger Donchian MACD Oscillator
Start Equity 1000 1000 1000 1000 1000 1000
End Equity 1877 1245 1238 1265 1015 1251
Total Return (in %) 87.74 24.55 23.75 26.54 1.52 25.15
Ann. Return (in %) 7.77 2.64 2.56 2.84 0.18 2.70
Ann. Vola (in %) 13.38 7.61 7.21 7.65 8.59 7.95
Av. DD (in %) 3.40 5.12 4.19 4.39 3.67 4.99
Max. DD (in %) 31.07 13.71 13.71 14.79 30.38 16.18
Sharpe Ratio (Vola) 0.58 0.35 0.36 0.37 0.02 0.34
Sharpe Ratio (DD) 2.28 0.52 0.61 0.65 0.05 0.54

Table 6.13: Backtest statistics for equity curves with and without post-processing. The
backtests have been performed on the STOXX Europe 600 dataset from 2011-
10-03 to 2020-06-09.
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Conclusion

In this thesis, multiple machine learning algorithms have been analysed and applied
to finance. For instance, feature importance has been used to visualize what drives
price developments of financial instruments. Furthermore, profitable assets have been
detected with classifiers like random forests and a diversified portfolio has been built
with clustering algorithms via hierarchical risk parity.
This thesis has shown that it is possible to use machine learning in finance profitably, at
least in theory. However, doing so in practice would require a lot of additional work.
For example, if the feature importance was used to build and improve trading strategies
as described in this thesis, a lot more work would have to go into identifying good
features more reliably. Moreover, the feature importance could change over time for
different financial instruments, which should thus be investigated as well. Finally, how
to combine multiple features to build a coherent trading strategy cannot be answered
easily.
Trying to predict stock price movements with random forests has shown that a classifier
is only as good as the data it is given. Of course, better algorithms can boost the
performance, which could be seen when comparing decision trees to random forests.
However, without carefully crafted features that describe a characteristic of a sample,
even a random forest cannot be used profitably. Moreover, standard machine learning
techniques like cross-validation have to be used carefully, as algorithms on financial data
tend to overfit easily. Financial markets are extremely complicated constructs that are
highly correlated and change over time, which makes it hard to use machine learning
algorithms that have been established in other areas.
In conclusion, machine learning in finance works best when combined with the results
of years of financial research. The best trading strategy in this thesis uses a machine
learning classifier with established trend indicators as features and post-processing to
manage the risk. Thus, machine learning is a valuable tool to learn more about financial
markets and to design profitable trading strategies.
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Appendix A

Code Snippets

Figure A.1: Pseudo code for the trend oscillator by Prof. Dr. Stanislaus Maier-Paape.

Figure A.2: The 150-day trend oscillator with window=150, vola_window=150,
osci_window=11 and alpha=7.
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Figure A.3: A fast implementation of an exponential moving average with a limited time
window in python.



Appendix B

Feature Plots

Adjusted Trend Indicators

First, the feature importance of the adjusted trend indicators is tested for multiple trend
indicators on multiple datasets. This section refers to Subsection 6.1.1, where the other
corresponding plots can be seen.

Figure B.1: Feature importance for adjusted envelopes for the S&P 500 dataset.
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Figure B.2: Feature importance for adjusted envelopes for the STOXX Europe 600
dataset.

Figure B.3: Feature importance for adjusted Bollinger Bands for the S&P 500 dataset.
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Figure B.4: Feature importance for adjusted Bollinger Bands for the STOXX Europe 600
dataset.

Figure B.5: Feature importance for adjusted MACD features for the STOXX Europe 600
dataset.
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Figure B.6: Feature importance for adjusted trend oscillators for the S&P 500 dataset.

Figure B.7: Feature importance for adjusted trend oscillators for the STOXX Europe 600
dataset.
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Feature Importance Overview

An overview of the feature importance of the S&P 500 dataset can be seen in Subsection
6.1.1. Here, the corresponding plots for the STOXX Europe 600 dataset are presented.

Figure B.8: Feature importance for market features for the STOXX Europe 600 dataset.
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Figure B.9: Feature importance for selected features for the STOXX Europe 600 dataset.



Appendix C

List of Features

The features have been defined in Subsection 6.1.1. For k ∈ {10, 25, 50, 100, 150, 200, 250},
the following features are used in the final model:

Time-Based Features

• ’Year’

• ’DayOfYear’

Individual Features

• ’CloseAdj’

• ’Return k’ ’ReturnIndexRes k’, ’ReturnIndexRatio k’

• ’Vola k’, ’DD k’

• ’Envelope k’, ’Bollinger k’, ’Donchian k’, ’MACD k’, ’Oscillator k’

Market Features

• ’IndexCloseAdj’

• ’MrktReturn k’

• ’MrktVola k’, ’MrktDD k’, ’VIX’

• ’MrktEnvMinMax k’, ’MrktBollMinMax k’, ’MrktMACDMinMax k’,
’MrktOsciMinMax k’
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Appendix D

Backtest Plots

The influence of different re-allocation periods is visible in the following plots.

Figure D.1: Equity curve of selected trading strategies with varying reallocation periods,
applied on the S&P 500 dataset with a logarithmic scale. The depicted ’ML
Selection’ strategies have a threshold of p ≥ 0.5.
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Figure D.2: Equity curve of selected trading strategies with varying reallocation periods,
applied on the STOXX Europe 600 dataset with a logarithmic scale. The
depicted ’ML Selection’ strategies have a threshold of p ≥ 0.
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