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Abstract. We consider compressible pressureless fluid flows in Lagrangian coordinates in one space dimen-
sion. We assume that the fluid self-interacts through a force field generated by the fluid itself. We explain
how this flow can be described by a differential inclusion on the space of transport maps, in particular when
a sticky particle dynamics is assumed. We study a discrete particle approximation and we prove global
existence and stability results for solutions of this system. In the particular case of the Euler-Poisson system
in the attractive regime our approach yields an explicit representation formula for the solutions.
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1. Introduction

In this paper, we consider a simple model for one-dimensional compressible fluid flows under the influence
of a force field that is generated by the fluid itself. It takes the form of a hyperbolic conservation law for
the density ϱ, which is a nonnegative measure in time and space and describes the distribution of mass or
electric charge, and the real-valued Eulerian velocity field v. For suitable initial data (ϱ, v)(t = 0, ·) =: (ϱ̄, v̄),
the unknowns (ϱ, v) satisfy

∂tϱ+ ∂x(ϱv) = 0

∂t(ϱv) + ∂x(ϱv
2) = f [ϱ]

}
in [0,∞)× R. (1.1)

The first equation in (1.1), called the continuity equation, describes the local conservation of mass or
electric charge. Without loss of generality, we will assume in the following that the total mass/charge is
equal to one initially and that the quadratic moment is finite so that ϱ(t, ·) ∈ P2(R) for all t > 0, with P(R)
the space of probability measures with finite quadratic moment. The second equation in (1.1) describes the
conservation of momentum. We will assume in the following that v(t, ·) ∈ L 2(R, ϱ(t, ·)) for all t > 0 so the
kinetic energy is finite.

The continuous map f : P2(R) −→ M (R) in (1.1) describes the force field, with M (R) the space of all
signed Borel measures with finite total variation. The force depends on the distribution of mass or electric
charge and we will assume that f [ϱ] is absolutely continuous with respect to ϱ. For further assumptions see
Section 6. The typical (simplest) form of f is

f [ϱ] = −ϱ ∂xqϱ with qϱ(x) = V (x) +

ˆ
R
W (x− y) dϱ(y) (1.2)

for suitable C1 potential functions V,W with (at most) linearly growing derivatives.
Another relevant example we have in mind is the Euler-Poisson system, for which

f [ϱ] = −ϱ ∂xqϱ with qϱ solution of − ∂2xxqϱ = λ(ϱ− σ). (1.3)

When ϱ is absolutely continuous with respect to the one-dimensional Lebesgue measure L1, then the function
qϱ admits a representation similar to (1.2), with

V (x) := −λ
2

ˆ
R
|x− y| dσ(y), W (x) :=

λ

2
|x|. (1.4)

If ρ is not absolutely continuous with respect to L1, then we have a similar representation with a nondiffer-
entiable W , so that f [ρ] must be defined by a suitable approximation process.

The Euler-Poisson equations in the repulsive regime (with λ < 0 and negative concave potential W ) is a
simple model for semiconductors. In this case, ϱ describes the electron or hole distribution and the scalar
function qϱ represents the electric potential generated by the distribution of charges in the material. Here σ
is the concentration of ionized impurities. The Euler-Poisson equations in the attractive regime (with λ > 0
and positive convex potential W ) is the one-dimensional version of a cosmological model for the universe
at an early stage, describing the formation of galaxies. Now qϱ represents the gravitational potential and
σ = 0.

1.1. Singular solutions and particle models. Since there is no pressure in (1.1), there is no mechanism
that forces the density ϱ to be absolutely continuous with respect to the Lebesgue measure. In fact, the
system (1.1) admits solutions that are singular measures. Assume that we are given initial data in the form
of a finite linear combination of Dirac measures:

ϱ̄ =
N∑
i=1

m̄iδx̄i and ϱ̄v̄ =
N∑
i=1

m̄iv̄iδx̄i , (1.5)

where x̄ = (x̄1, · · · , x̄N ) ∈ RN are the initial locations of N particles denoted P1, · · · , PN , with corresponding
masses m̄ = (m̄1, · · · , m̄N ) and initial velocities v̄ = (v̄1, · · · , v̄N ). We require that m̄i > 0 and

∑
i m̄i = 1

so that ϱ̄ ∈ P(R). For all times t > 0, we can assume that the positions x(t) = (x1(t), · · · , xN (t)) are
monotonically ordered, so that they are unambiguously determined and attached to the particles. Then (at
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least formally) there is a solution of (1.1) in the form of a linear combination of Dirac measures:

ϱ(t, ·) =
N∑
i=1

miδxi(t) and (ϱv)(t, ·) =
N∑
i=1

mivi(t)δxi(t), (1.6)

where the functions (xi, vi) solve the system of ordinary differential equations

ẋi(t) = vi(t), v̇i(t) = am̄,i(x(t)) and (xi, vi)(t = 0) = (x̄i, v̄i) (1.7)

between particle collisions. Here am,i(x) is the value in the point xi(t) of the Radon-Nikodym derivative of
the force f [ϱ] with respect to the measure ϱ, so that

f [ϱ] =

N∑
i=1

am,i(x)miδxi if ϱ =

N∑
i=1

mi δxi , (1.8)

which is well defined when all N particles are distinct.
Upon collision of, say, two particles with masses mk and mk+1 at some time t > 0, the velocities of each

one of them are changed to

vk(t+) = vk+1(t+) =
mkvk(t−) +mk+1vk+1(t−)

mk +mk+1
, (1.9)

so that the momentum is preserved during the collision. Since both particles continue their journey with the
same velocity, they may be considered as one bigger particle with mass mk +mk+1. Collisions of more than
two particles can be handled in a similar fashion. We will refer to any solution of (1.1) in the form (1.6) as
a discrete particle solution and we will say that it satisfies a global sticky condition if particles after collision
are not allowed to split. In this case, after each collision, one could relabel the particles so that the system
(1.7) still makes sense (with N reduced in each particle collision) and induces a global in time evolution.

Let us denote by KN the closed cone

KN :=
{
x ∈ RN : x1 6 x2 6 · · · 6 xN

}
, (1.10)

whose interior is intKN =
{
x ∈ RN : x1 < x2 < · · · < xN

}
. The construction of discrete particle solutions as

outlined above can be done rigorously whenever the functions am,i : intKN → RN are uniformly continuous
in each bounded set (so that they admit a continuous extension to KN still denoted by am,i) and satisfies
the compatibility condition

am,k(x) = am,k+1(x) if xk = xk+1 for some 1 6 k < N . (1.11)

This is certainly the case when the potentials V,W considered in (1.2) are of class C1. On the other hand,
the case of the Euler-Poisson system is much more subtle and presents different features in the attractive or
the repulsive case.

The Euler-Poisson case in the repulsive regime: splitting and collapsing of masses. Let us consider the
simplest situation of N distinct particles with equal initial velocities v̄, in the repulsive regime λ = −1 with

σ = 0. Let M0 := 0, Mi :=
∑i

j=1mj for i = 1, . . . , N and set Ai := 1
2 (Mi−1 +Mi − 1). Then it is not

difficult to check (see Example 6.9) that in the repulsive regime

am,i(x) = Ai for all i if x ∈ intKN , (1.12)

and so there is no continuous extension satisfying (1.11). Starting from distinct initial positions, particles
follow (at least for a small time interval) the free motion paths

xi(t) = x̄i + tv̄ +
1

2
Ait

2. (1.13)

Since Ai 6 Ai+1 for all i, there are no collisions. Taking the limit as the initial positions of two or more
particles coincide we obtain the same representation for every x ∈ KN . On the other hand, if two particles
Pk, Pk+1 coincide at the time t = 0, i.e. x̄k = x̄k+1 = x̄ with the same initial velocity v̄, then the “sticky”
solution xk(t) = xk+1(t) = x̄ + tv̄ + 1

4 (Ak + Ak+1)t
2 gives raise to an admissible solution to (1.1) which is

different from the previous one. One could also consider a solution where Pk, Pk+1 stick in a small initial
time interval [0, s] and then evolve according to (1.13).

Considering a situation where the number N of admissible particles grows to infinity with a uniform initial
mass distribution concentrating at the origin, one can guess that a “repulsive” solution arising from a unit
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mass concentrated at x̄ should istantaneously diffuse, becoming absolutely continuous with respect to the
Lebesgue measure L1: the explicit formula is

ϱ(t, ·) = u(t, ·)L1 with u(t, x) =
1

2t2
χ
(x̄+v̄t− 1

4 t
2,x̄+v̄t+ 1

4 t
2)(x) for all x ∈ R and t > 0. (1.14)

An even more complicated situation occurs e.g. if v̄i = 0 for i ̸= k, k + 1, but v̄k > 0 > v̄k+1 in such a way
that a collision occurs between Pk and Pk+1 at some time t = r, after which the particles could stick or wait
for some time and then evolve as in the previous example.

It would be important to find a selection mechanism that gives raise to a stable notion of solution and
to obtain a continuous model by passing to the limit in the number of particles. In this paper we study a
criterium of the following type : Assume that two particle Pk, Pk+1 collide at some time r > 0 with incoming
velocities vk(r−) > vk+1(r−). Then the particles will stick together for all times r < t < s provided that s
is small enough so that

vk(r−) +

ˆ t

r

am,k(x(τ)) dτ > vk(t) = vk+1(t) > vk+1(r−) +

ˆ t

r

am,k+1(x(τ)) dτ (1.15)

for all r < t < s. Conversely, if (1.15) becomes false for some time s > r, then the particles may separate
again. A rigorous formulation of condition (1.15) in the case of a simultaneous collision or separation of more
than two particles, or of a continuous distribution of masses, can be better understood in the famework of
differential inclusions in a Lagrangian setting, which we will describe in Section 5.1. Before giving an idea
of this approach, let us brefly consider how (1.15) greatly simplifies in the attractive regime.

The attractive Euler-Poisson system and the sticky condition. In the attractive case, we can simply invert
the signs in (1.12). It turns out, however, that the behaviour of the two-particles example considered in the
previous paragraph changes completely, since the limit when two particles collapse exhibit a strong stability:
after a collision, two or more particles stick together and do not split ever again, giving raise to a global
sticky solution.

This reflects the fact that the sticky condition in the attractive regime implies (1.15) for all s > r: the
functions am,i defined by the negative of (1.12) always satisfy am,k(x) > am,k+1(x) and the incoming
velocities of two particles Pk, Pk+1 colliding at some time r satisfies vk(r−) > vk+1(r−), so that any sticky
evolution corresponding to xk(t) = xk+1(t) for t > r will satisfy (1.15).

As we shall see, the differential description in the Lagrangian setting we will adopt encodes (1.15) and
corresponds to a sticky condition whenever the acceleration field is continuous (as in (1.11)) or it is of
attractive type. In the repulsive case it will model a suitable relaxation mechanism allowing for separation
of particles after collision, still preserving the stability of the evolution.

1.2. Lagrangian description and differential inclusions. In this paper, we will give an interpretation
of system (1.1) in the framework of differential inclusions. As before, let us first consider the simpler case
of the dynamic of a finite number of particles. We can identify the positions of a collection of particles
P1, · · · , PN with a vector x = (x1, · · · , xN ) ∈ RN : since we labeled the particles in a monotone way, it is
not admissible for particles to pass by one another, so the order of the locations must be preserved and the
vector x is confined in the closed convex cone KN defined by (1.10). Denoting by v = (v1, · · · , vN ) ∈ RN

the vector of the velocities of the particles, their trajectories between collisions are mostly determined by a
system of differential equation

ẋ(t) = v(t), v̇(t) = am(x(t)), (1.16)

where am(x) := (am,1(x), · · · , am,N (x)) is a vector field defined for x ∈ KN as in (1.7), which in the
simplest case is continuous. Whenever the vector x(t) hits the boundary of the domain

∂KN :=
{
x ∈ KN : Ωx ̸= ∅

}
, Ωx :=

{
j : xj = xj+1, j = 1 . . . N − 1

}
, (1.17)

however, an instantaneous force changes its velocity in such a way that it stays inside of KN .
In order to find a mathematical model that describes this situation, we must first identify the set of

admissible velocities at each point x ∈ KN , which is called the tangent cone of KN at x. It is defined by

TxKN := cl
{
θ(y − x) : y ∈ KN , θ > 0

}
. (1.18)
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K

particle velocity after collision

particle trajectory

Figure 1. Projection of velocities onto the tangent cone.

In our situation, it is not difficult to check that

TxKN =
{
v ∈ RN : vj 6 vj+1 for all j ∈ Ωx

}
. (1.19)

Identity (1.19) shows that when two particles collide, then the velocity of the left particle cannot be greater
than the velocity of the right particle, so the left particle cannot pass.

Assume now that x(t) ∈ ∂KN at some time t and let v(t−) be the velocity immediately before the impact.
That is, let v(t−) be the left-derivative of the curve t 7→ x(t) at time t. The instantaneous force that is active
on impact must change the velocity to a new value in the tangent cone Tx(t)KN of admissible velocities.
Typically, there are many possibilities. Assuming inelastic collisions, we impose the impact law:

v(t+) := PTx(t)KNv(t−), (1.20)

where v(t+) is the velocity immediately after impact (the right-derivative of x(t)). We denote by PTx(t)KN

the metric projection onto Tx(t)KN so that

∥v(t−)− v(t+)∥ = min
{
∥v(t−)− u∥m : u ∈ Tx(t)KN

}
.

Hence v(t+) is the element in Tx(t)KN closest to v(t−) with respect to the weighted Euclidean distance
induced by the norm

∥v∥m :=

√√√√ N∑
i=1

miv2i for all v ∈ Tx(t)KN ⊂ RN , (1.21)

and therefore unique: see Figure 1 for a graphic representation of this rule.
It is well-known that the metric projection onto closed convex cones admits a variational characterization

of its minimizers; see [24]. In particular, we have(
v(t−)− v(t+)

)
· u 6 0 for all u ∈ Tx(t)KN .

We deduce that the instantaneous force that changes the velocity upon impact onto the boundary ∂KN ,
must be an element of the normal cone Nx(t)KN , which is defined as

NxKN :=
{
n ∈ RN : n · (y − x) 6 0 for all y ∈ KN

}
. (1.22)

Note that the normal cone NxKN equals the subdifferential ∂IKN (x) of the indicator function IKN of KN at
the point x. This follows immediately from the definition of the subdifferential.

This suggests to consider the second-order differential inclusion

ẋ = v, v̇ +NxKN ∋ am(x) in [0,∞). (1.23)

Notice that since v can exhibit jumps, solutions to (1.23) should be properly defined in a weak sense in the
framework of functions of bounded variation. Second-order differential inclusion have been studied in the
literature and existence of solutions has been shown in a genuinely finite dimensional setting. We refer the
reader to [5,15,21] and the references therein for further information. Due to the possible nonuniqueness of
solutions to second-order differential inclusions [21] and to the lack of estimates to pass to the limit when
N → ∞, we need a better understanding of the particular features of our setting, in particular of the convex
cones KN .
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The sticky condition and an equivalent formulation of (1.23). It has been shown in [17] that the one-
parameter family of normal cones Nx(t)KN along an evolution curve x : [0,∞) → KN for which a gobal
stickyness condition holds, satisfies the remarkable monotonicity property

Nx(s)KN ⊂ Nx(t)KN for all s < t. (1.24)

Consequently, for any selection ξ : [0,∞) → RN satisfying ξ(t) ∈ Nx(t)KN (such as am(x(t)) − v̇(t) in
(1.23)) we have ˆ t

s

ξ(r) dr ∈ Nx(t)KN for all s < t.

An integration of (1.23) yields, at least formally, that

v(t) +Nx(t)KN ∋ v(s) +

ˆ t

s

a(x(r)) dr

and therefore the system (1.23) can be rewritten in the form

ẋ = v, v +NxKN ∋ y, ẏ = am(x). (1.25)

Introducing new unknowns (x,y), we can rewrite (1.25) as a first order evolution inclusion

ẋ+Nx(t)KN ∋ y

ẏ = am(x)
(1.26)

for which an existence and stability theory is available, at least when am is a Lipschitz map.
We will show that formulation (1.26) enjoys interesting features and always induces a measure-valued

solution to (1.1). When the field am satisfies the compatibility condition (1.11), solutions to (1.26) satisfies
the sticky condition, and the same property holds also for the Euler-Poisson equation in the attractive
regime. In the repulsive case, we will see that (1.26) is a robust formulation of condition (1.15). Let us now
consider the infinite-dimensional case.

1.3. Diffuse measures and differential inclusions for Lagrangian parametrizations. In order to
deal with general measure-valued solutions of (1.1), we had to recourse to Lagrangian coordinates, using
ideas of optimal transport as considered in [17].

Monotone Lagrangian rearrangemens. In this approach, the discrete set of parameters {1, 2, · · · , N} involved
in the representation of discrete particle measures (1.5) will be substituted by Ω = (0, 1). For every particle
labeled by m ∈ Ω, we will denote by X(t,m) ∈ R its position at time t. The map X can be uniquely
characterized in terms of the measure ϱ: it is the uniquely determined nondecreasing and right-continuous
map X : Ω → R such that

X(m) 6 x ⇐⇒ m 6 ϱ
(
(−∞, x]

)
for all x ∈ R. (1.27)

Equivalently, the push-forward X#m of the one-dimensional Lebesgue measure m := L1|Ω under the map X
equals ϱ. Recall that the push-forward measure is defined by

X#m(A) := m(X−1(A)) for all Borel sets A ⊂ R. (1.28)

Therefore the map X is the optimal transport map pushing m forward to ϱ. We refer the reader to Section 2
for further explanation.

In this way, to any solution (ϱ, v) of (1.1), we can associate a map X : [0,∞) × Ω −→ R with X(t, ·)
nondecreasing and a velocity V : [0,+∞)× Ω → R such that

X(t, ·)#m = ϱ(t, ·) for all t > 0, V (t, ·) = v(t,X(t, ·)) = ∂tX(t, ·). (1.29)

Our goal is to show that (1.1) can be associated to a differential inclusion in terms of (X,V ). This observation
allows us to derive existence and stability results (see Sections 3 and 4) for (suitably defined) solutions of
(1.1), which together with the existence of discrete particle solutions (see Section 5) imply a global existence
result for (1.1) for general initial data; see Section 6.
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Differential inclusions. The framework of first-order differential inclusions, analogous to the setting we al-
ready discussed for the discrete case (1.23), serves as a guiding principle for our discussion. The role of the
cone KN is now played by the cone of optimal transport maps

K :=
{
X ∈ L 2(Ω): X is nondecreasing

}
(1.30)

in the Hilbert space H := L 2(Ω). Even if in this infinite dimensional setting the boundary of K is dense,
we can still consider the normal cone NXK for given X ∈ K , which is given by

NXK :=
{
W ∈ L 2(Ω):

ˆ
Ω

W
(
X̃ −X

)
dm 6 0 for all X̃ ∈ K

}
. (1.31)

Again we have that NXK = ∂IK (X). It can be shown that NXK = {0} if and only if the map X is not
strictly increasing in Ω. That is, whenever ΩX ̸= ∅ where

ΩX :=
{
m ∈ Ω: X is constant in a neighborhood of m

}
. (1.32)

Note that ΩX is the complement of the support of the distributional derivative of X.
Consider now a family of densities t 7→ ϱ(t, ·) that satisfies (1.1). Let t 7→ X(t, ·) ∈ K be the associated

family of optimal transport maps; see (1.29). We want to interpret X as a solution of differential inclusions,
similar to (1.23) and (1.26).

Even at the continuous level, the monotonicity property (1.24) for sticky particle evolutions plays a crucial
role. Note that the optimal transport map X ∈ K takes a constant value x ∈ R on some interval (α, β) ⊂ Ω
if the mass β − α (the Lebesgue measure of the interval) is moving to the same location, thereby forming a
Dirac measure at x. Therefore sticky evolutions will be characterized as curves t 7→ X(t, ·) with the property
that

for any t1 6 t2 we have ΩX(t1) ⊂ ΩX(t2). (1.33)

Notice that (1.33) implies that once a Dirac measure is formed, it may accrete more mass over time, but it
can never lose mass. It also implies the following statement: It is not possible for mass to jump from one
side of a Dirac measure to the opposite side. Whenever mass is crossing a Dirac measure, it gets absorbed.

A formulation via differential inclusions needs a Lagrangian expression of the force term in (1.1). That
is, we must find a map F : K −→ L 2(Ω) with the property thatˆ

R
ψ(x) f [ϱ](dx) =

ˆ
Ω

ψ(X(m))F [X](m) dm for all ψ ∈ D(R), (1.34)

whenever X ∈ K and X#m = ϱ. We refer the reader to Section 6 for further discussion about the existence
and properties of maps F satisfying (1.34). In the following, we will assume that F is continuous as a map
of K into L 2(Ω).

We then could expect X to be a solution of a second-order differential inclusion, but arguing as for the
discrete case (1.23) at least in the case of sticky evolutions (1.33) we end up with

Ẋ(t) + ∂IK (X(t)) ∋ V̄ +

ˆ t

0

F [X(s)] ds (1.35)

for a.e. t > 0. This formulation and its consequences is at the heart of our argument.
It is a remarkable fact (see Theorem 3.5) that solutions to (1.35) always parametrize measure-valued

solutions to the partial differential equation (1.1). Provided F satisfies suitable continuity properties, it will
be possible to prove existence (and uniqueness, when F is Lipschitz) of solutions to (1.35) for any initial
data (X̄, V̄ ) ∈ K ×L 2(Ω) by combining the theory of gradient flows of convex functionals in Hilbert spaces
[8] with suitable compactness arguments.

When F satisfies a suitable sticking condition, which is satisfied e.g. in the case of C1 potentials in (1.2)
and of the Euler-Poisson system in the attractive regime, then solutions to (1.35) form a semigroup and have
the sticky evolution property (1.33). Even for general F (and in particular for the Euler-Poisson system
in the repulsive regime) the differential inclusion (1.35) still selects a stable parametrization of solutions to
(1.1). This is somewhat surprising since the reduction from second-order to first-order differential inclusion
was motivated by the monotonicity (1.33), which typically is false without additional assumptions on F . In
this Introduction we refer to such solutions as “robust.”
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Representation formulae for the Euler-Poisson system. In the case of the Euler-Poisson system (1.3) with
σ = 0 one can show that the Lagrangian representation of the force f is given by

F [X](m) = −λA(m) where A(m) := m− 1

2
. (1.36)

Note that the map F [X] is independent of X and (1.35) becomes

Ẋ(t) + ∂IK (X(t)) ∋ V̄ − λtA

In the attractive regime when λ ≥ 0, an explicit representation formula for the Lagrangian solution can be
obtained (see Theorems 6.11). In fact a careful analysis shows that the solution X to (1.35) can be computed
by solving the trivial ODE in X obtained by eliminating the K -constraint:

d

dt
X̃(t) = V̄ − λtA

(whose solution is X̃(t) = X̄ + t V̄ − 1
2λt

2A), and then projecting X̃ on K :

X(t) = PK (X̃(t)) = PK

(
X̄ + t V̄ − 1

2
λt2A

)
.

Applying the characterization given in [17], the metric projection of PK onto K can be found by introducing
the primitive functions

X̄ (m) :=

ˆ m

0

X̄(ℓ) dℓ, V̄(m) :=

ˆ m

0

V̄ (ℓ) dℓ, A(m) :=
1

2
(m2 −m),

and the time evolution

X (t,m) := X̄ (m) + t V̄(m)− 1

2
λt2A(m),

and then taking the derivative with respect to m of the convex envelope X ∗∗(t, ·) of X (t, ·):

X(t,m) =
∂

∂m
X ∗∗(t,m),

which defines a density ϱt = X(t)#m. It is then a simple exercise to recover formula (1.14) in the case
X̄(m) ≡ x̄, V̄ (m) ≡ v̄, since X (t,m) = X ∗∗(t,m) and X(t,m) = x̄+ tv̄ + 1

2 t
2(m− 1

2 ).

1.4. Time discrete schemes. In this section, we show that the first-order differential inclusion (1.35) can
be used to design a stable explicit numerical scheme to compute robust solutions to (1.1). In fact, this
scheme is essentially the same as the one introduced in [7] for “order-preserving vibrating strings” and
“sticky particles”, with just mild modifications. For simplicity, we concentrate on the pressureless repulsive
Euler-Poisson system with a neutralizing background

∂tϱ+ ∂x(ϱv) = 0, (1.37)

∂t(ϱv) + ∂x(ϱv
2) = −ϱ ∂xqϱ − ∂xxqϱ = −(ϱ− 1), (1.38)

(cf. (1.3) with λ = −1 and σ = 1). We assume the initial conditions to be 1-periodic in x and the density
ϱ to have unit mean so that the system is globally neutral and the electric potential qϱ is 1-periodic in x.
Note that we choose the periodic setting only for convenience. In fact, for any non-periodic solution ϱ of
(1.1), one could consider the push-forward of ϱ under the map x 7→ x− [x] for all x ∈ R, with [x] the largest
integer not greater than x. One obtains a new density ϱ∗ that is concentrated on [0, 1) and therefore can be
extended 1-periodically to the whole real line. One can then show that ϱ∗ satisfies the same equation. We
refer the reader to [12] for details.

For smooth solutions without mass concentration, written in mass coordinates

V (t,m) = Ẋ(t,m) = v(t,X(t,m)), ∂mX(t,m)ϱ(t,X(t,m)) = 1

(which requires that ∂mX(t,m) > 0), one can show that the whole system reduces to a collection of inde-
pendent linear pendulums labeled by their equilibrium position m and subject to

Ẋ(t,m) = V (t,m), V̇ (t,m) +X(t,m)−m = 0. (1.39)

(Notice that, due to the spatial periodicity of the initial conditions, the new unknown X(t,m) − m and
V (t,m) are 1-periodic in m.) This reduction is valid as long as the pendulums stay “well-ordered” and do
not cross each other, i.e., as long as X(t,m) stays monotonically nondecreasing in m. This “non-crossing”
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condition is not sustainable for large initial conditions and collision generally occur in finite time. To handle
sticky collisions, the concept of robust solutions introduced in Section 1.3 is a good way to obtain a well-posed
mathematical model beyond collisions.

We are now ready to describe the semi-discrete scheme. Given a time step τ > 0 and suitable initial
data (X̄, V̄ ) =: (Xτ,0, Vτ,0), we denote by (Xτ,n(m), Vτ,n(m)) the approximate solution at time tn := nτ , for
n = 0, 1, 2, . . ., defined in two steps as follows:

(1) Predictor step: we first integrate the ODE (1.39) and get Uτ,n+1 and X̂τ,n+1 accordingly

X̂τ,n+1(m) = m+ (Xτ,n(m)−m) cos(τ) + Vτ,n(m) sin(τ), (1.40)

Vτ,n+1(m) = −(Xτ,n(m)−m) sin(τ) + Vτ,n(m) cos(τ). (1.41)

(2) Corrector step: we rearrange X̂τ,n+1(m) in nondecreasing order with respect to m and obtain
Xτ,n+1(m). Because of the periodic boundary conditions, we have to perform this step with care.
We rely on the existence, for each map m 7→ Y (m) such that Y (m) −m is 1-periodic and locally
Lebesgue integrable, of a unique map m 7→ Y ∗(m) such that Y ∗(m) is nondecreasing in m andˆ 1

0

η(Y ∗(m)) dm =

ˆ 1

0

η(Y (m)) dm

for all continuous 1-periodic function η.

This time discrete scheme becomes a fully discrete scheme, if the initial data Xτ,0(m)−m and Vτ,0(m) are
piecewise constant on a uniform cartesian grid with step h. (We just have to be careful with the corrector
step, by using a suitable sorting algorithm for periodic data.)

To illustrate the scheme, we show the numerical solutions corresponding to initial conditions

X0(m) = m, V0(m) = 4 sin(2πm). (1.42)

We use 400 equally spaced grid points m (which corresonds to 400 “well-ordered” pendulums with m as
equilibrium position) and 5000 time steps (see Figures 2–4):

τ = 0.001, 0.005, 0.01,

so that the final time T of observation is respectively given by

T = 5, 25, 50.

On each picture, we show the space-time trajectories of 50 of the 400 pendulums, with space coordinate on the
horizontal axis and time coordinate on the vertical one. On these pictures, we observe a strong concentration,
with sticky collisions, of the pendulums at a very early stage (up to time t = π/2) around x = 0.5. Later
on, some pendulums start to unstick and detach from each other (which allows new concentrations at later
times t > π around x = 0 and x = 1). Much later, after t = 10π, there is no further dissipation of energy,
and, as pendulums touch each other, they always do so with zero relative speed. Then the corrector step is
no longer active, and the scheme becomes exact (due to the exact integration of the predictor step). At this
late stage, the solution becomes 2π-periodic in time. We study the convergence of the scheme in Section 7.

1.5. Plan of the paper. We collect in Section 2 a few basic results on optimal transport in one dimension,
on convex analysis (concerning in particular the properties of the convex cone K ), and on convex functionals
in L 2(Ω).

In Section 3, after a brief discussion of the basic properties of the Lagrangian force functional F , we
introduce the notion of Lagrangian solutions to the differential inclusion (1.35). Theorem 3.5 collects their
main properties, in particular in connection with measure-valued solutions to (1.1). Sections 3.3 and 3.5
provide the main existence, uniqueness, and stability results for Lagrangian solutions, whereas Section 3.4
is devoted to the particular case of sticky evolutions.

We study in Section 4 a different class of solutions to (1.35), still linked to (1.1), that naturally arise as
limit of sticky particle systems when F does not obey the sticking condition. These solutions exhibit better
semigroup properties than the Lagrangian solutions introduced in Section 3, but lack uniqueness.

Section 5 we carefully study the dynamics of discrete particle systems, which we already briefly discussed
in the Introduction. Discrete Lagrangian solutions associated to systems like (1.26) are treated in Section 5.1,
where we also show that they can be used to approximate any continuous Lagrangian solution, as the one
considered in Section 3. The sticky dynamic at the particle level is considered in §5.2: the main Theorem
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Figure 2. Space-time trajectories of pendulums, with timestep τ = 0.001.

5.2 provides the basic results, which allow us to replace second-order with first-order evolution inclusion at
the discrete level and to get sticky evolutions for sticking forces. The particle approach is a crucial step of
our analysis, since it avoids many technical difficulties arising at the continuous level. The general idea is to
prove fine properties of the solutions (such as the monotonicity (1.33) in the sticking case or a representation
formula) at the discrete level and then to extend them to the general case by applying suitable stability
results with respect to the initial conditions. Those are typically obtained by applying contraction estimates
(in the case when F is Lipschitz) or compactness via Helly’s Theorem, by exploiting higher integrability and
monotonicity of transport maps.

Section 6 applies the Lagrangian formulation to (1.1), presenting some existence and stability results for
solutions in the Eulerian formalism.

In Section 7 we prove the convergence of the time discrete scheme introduced in Section 1.4.

2. Preliminaries

Let us first gather some definitions and results that will be needed later.

2.1. Optimal Transport. We denote by P(Rm) the space of all Borel probability measures on Rm. The
push-forward ν := Y#µ of a given measure µ ∈ P(Rm) under a Borel map Y : Rm −→ Rn is the measure
defined by ν(A) := µ(Y −1(A)) for all Borel sets A ⊂ Rn. We will repeatedly use the change-of-variable
formula ˆ

Rn

ζ(y) (Y#µ)(dy) =

ˆ
Rm

ζ(Y (x))µ(dx), (2.1)

which holds for all Borel maps ζ : Rn −→ [0,∞].
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Figure 3. Space-time trajectories of pendulums, with timestep τ = 0.005.

We denote by P2(Rn) the space of all Borel probability measures ϱ ∈ P(Rn) with finite quadratic
moment:

´
Rn |x|2 ϱ(dx) <∞. The L 2 Kantorovich-Rubinstein-Wasserstein distanceW2(ϱ1, ϱ2) between two

measures ϱ1, ϱ2 ∈ P2(Rn) can be defined in terms of couplings, i.e. of probability measures ϱ ∈ P(Rn×Rn)
satisfying πi

#ϱ = ϱi for i = 1 . . . 2, by the formula

W 2
2 (ϱ1, ϱ2) := min

{ˆ
Rn×Rn

|x− y|2 ϱ(dx,dy) : ϱ ∈ P(Rn × Rn), πi
#ϱ = ϱi

}
. (2.2)

Here πi(x1, x2) := xi is the projection on the ith coordinate. It can be shown that there always exists an
optimal transport plan ϱ for which the inf in (2.2) is in fact attained. We denote by Γopt(ϱ1, ϱ2) the set of
optimal transport plans.

In the one-dimensional case n = 1, there exists a unique coupling ϱ ∈ Γopt(ϱ1, ϱ2) realizing the minimum
of (2.2) (at least when the cost is finite). It can be explicitly characterized by inverting the distribution
functions of ϱ1 and ϱ2: for any ϱ ∈ P(R) we consider its cumulative distribution function, which is defined
as

Mϱ(x) := ϱ
(
(−∞, x]

)
for all x ∈ R. (2.3)

Note that then ϱ = ∂xMϱ in D ′(R). Its monotone rearrangement is given by

Xϱ(m) := inf
{
x : Mϱ(x) > m

}
for all m ∈ Ω, (2.4)

where Ω := (0, 1). The map Xϱ is right-continuous and nondecreasing. We have

m := L1
|Ω, (Xϱ)#m = ϱ and

ˆ
R
ζ(x) ϱ(dx) =

ˆ
Ω

ζ(Xϱ(m)) dm (2.5)
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Figure 4. Space-time trajectories of pendulums, with timestep τ = 0.01.

for all Borel maps ζ : R −→ [0,∞]. In particular, we have that ϱ ∈ P2(R) if and only if Xϱ ∈ L 2(Ω). The
Hoeffding-Fréchet theorem [18, Section 3.1] shows that the joint map Xϱ1,ϱ2 : Ω −→ R× R defined by

Xϱ1,ϱ2(m) :=
(
Xϱ1(m), Xϱ2(m)

)
for all m ∈ Ω,

characterizes the optimal coupling ϱ ∈ Γopt(ϱ1, ϱ2) by the formula

ϱ = (Xϱ1,ϱ2

)
#
m; (2.6)

see [9, 18,23] for further information. As a consequence, we obtain that

W 2
2 (ϱ1, ϱ2) =

ˆ
Ω

|Xϱ1(m)−Xϱ2(m)|2 dm = ∥Xϱ1 −Xϱ2∥2L 2(Ω). (2.7)

The map ϱ 7→ Xϱ is an isometry between P2(R) and K , where K ⊂ L 2(Ω) is the set of nondecreasing
functions. Without loss of generality, we may consider precise representatives of nondecreasing functions
only, which are defined everywhere.

2.2. Some Tools of Convex Analysis for K . Let K be the collection of right-continuous nondecreasing
functions in L 2(Ω) introduced in (1.30). Then one can check that K is a closed convex cone in the Hilbert
space L 2(Ω).

Metric Projection and Indicator Function. It is well-known that the metric projection onto a nonempty
closed convex set of an Hilbert space is a well defined Lipstchitz map (see e.g. [24]): we denote it by
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PK : L 2(Ω) −→ K . For all X ∈ L 2(Ω) it is characterized by

Y = PK (X) ⇐⇒ Y ∈ K , ∥Y −X∥L 2(Ω) 6 ∥Ỹ −X∥L 2(Ω) for every Ỹ ∈ K ,

or, equivalently, by the following families of variational inequalities

Y = PK (X) ⇐⇒ Y ∈ K ,

ˆ
Ω

(X − Y )(Ỹ − Y ) 6 0 for all Ỹ ∈ K . (2.8)

PK (X) admits a more explicit characterization in terms of the convex envelope of the primitive of X
[17, Theorem 3.1]:

Y = PK (X) =
d+

dm
X ∗∗(m), X (m) :=

ˆ m

0

X(ℓ) dℓ, (2.9)

where d+

dm denotes the right derivative and

X ∗∗(m) := sup
{
a+ bm : a, b ∈ R, a+ bm 6 X (m) ∀m ∈ (0, 1)

}
(2.10)

is the greatest convex and l.s.c. function below X .
Let now IK : L 2(Ω) −→ [0,+∞] be the indicator function of K , defined as

IK (X) :=

{
0 if X ∈ K ,

+∞ otherwise,

which is convex and lower semicontinuous. Its subdifferential is given by

∂IK (X) :=

{
Z ∈ L 2(Ω): IK (X) > IK (X) +

ˆ
Ω

Z(X −X) for all X ∈ L 2(Ω)
}

(2.11)

and it is a maximal monotone operator in L 2(Ω); in particular its graph is strongly-weakly closed in
L 2(Ω)×L 2(Ω). Notice that ∂IK (X) = ∅ for all X ̸∈ K since in this case IK (X) = ∞; whenever X ∈ K
we find that

∂IK (X) =

{
Z ∈ L 2(Ω): 0 >

ˆ
Ω

Z(X −X) for all X ∈ K
}
, (2.12)

so that ∂IK (X) coincides with the normal cone NXK defined by (1.31).
(2.8) implies the following equivalence: For all X,Y ∈ L 2(Ω) we have

Y = PK (X) ⇐⇒ X − Y ∈ ∂IK (Y ). (2.13)

Decomposing X = Y + Z in (2.13) with Y, Z ∈ L 2(Ω), we find that

Z ∈ ∂IK (Y ) ⇐⇒ Y = PK (Y + Z). (2.14)

Lemma 2.1 (Contraction). Let ψ : R −→ (−∞,+∞] be a convex, lower semicontinuous function. For all
X1, X2 ∈ L 2(Ω) we then have ˆ

Ω

ψ(PK (X1)− PK (X2)) 6
ˆ
Ω

ψ(X1 −X2).

In particular, the metric projection PK is a contraction with respect to the L p(Ω)-norm with p ∈ [1,∞] and
for all X1, X2 ∈ L 2(Ω) we can estimate

∥PK (X1)− PK (X2)∥L p(Ω) 6 ∥X1 −X2∥L p(Ω). (2.15)

We refer the reader to Theorem 3.1 in [17] for a proof. Notice that by choosing X2 = 0 in Lemma 2.1,
for which PK (X2) = 0, we obtain the inequalitiesˆ

Ω

ψ(PK (X)) 6
ˆ
Ω

ψ(X) for all X ∈ L 2(Ω), (2.16)

∥PK (X)∥L p(Ω) 6 ∥X∥L p(Ω) for all X ∈ L 2(Ω). (2.17)

A similar result holds for the L 2-orthogonal projection PHX
onto the closed subspace HX , X ∈ K , defined

by

HX :=
{
U ∈ L 2(Ω): U is constant in each interval (α, β) ⊂ ΩX

}
. (2.18)
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Notice that we have PHX
(V ) = V a.e. in Ω \ ΩX and

PHX
(V ) =

 β

α

V (s) ds in any maximal interval (α, β) ⊂ ΩX , (2.19)

for all V ∈ L 2(Ω). Jensen’s inequality then easily yields

Lemma 2.2 (HX–Contraction). Let ψ : R → [0,∞] be a convex l.s.c. function. Then for all X ∈ K we
have ˆ

Ω

ψ(PHX (X)) dm 6
ˆ
Ω

ψ(X) dm.

For any pair of functions X,Y ∈ L 1(Ω) we say that Y is dominated by X and we write Y ≺ X if the
value of each convex integral functional on Y is less than the corresponding value on X, i.e.

Y ≺ X ⇔
ˆ
Ω

ψ(Y ) dm 6
ˆ
Ω

ψ(X) dm

for all convex, lower semicontinuous ψ : R −→ [0,∞]. Estimate (2.16) shows that PK (X) ≺ X for all
X ∈ L 2(Ω).

Normal and Tangent Cones. It is immediate to check that the subdifferential (2.11) of the indicator function
IK coincides with the normal cone NXK of K at X ∈ K defined by (1.31). Applying [17, Thm. 3.9] we
get the following useful characterization:

Lemma 2.3. Let X ∈ K be given. For given W ∈ L 2(Ω) we denote by

ΞW (m) :=

ˆ m

0

W (s) ds for all m ∈ [0, 1],

its primitive. Then W ∈ NXK if and only if ΞW ∈ NX , where

NX :=
{
Ξ ∈ C([0, 1]) : Ξ > 0 in [0, 1] and Ξ = 0 in Ω \ ΩX

}
.

That is, a function W is in the normal cone NXK if and only if it is the derivative of a nonnegative
function Ξ that vanishes in Ω \ ΩX . This implies in particular that W vanishes a.e. in Ω \ ΩX . Moreover,
for any maximal interval (α, β) in the open set ΩX we have that Ξ(α) = Ξ(β) = 0, by continuity of Ξ. Thus

ˆ β

α

W (s) ds = 0 for any maximal interval (α, β) ⊂ ΩX . (2.20)

For later use, we also highlight the following fact: Let X1, X2 ∈ K . Then

ΩX1 ⊂ ΩX2 =⇒ NX1K ⊂ NX2K . (2.21)

This follows immediately from the corresponding monotonicity for NX .
Let us now consider the Tangent cone TXK to K at X ∈ K : it can be defined as in (1.18) by

TXK := cl
( ∪

θ≥0

θ(K −X)
)
= cl

{
θ(X̃ −X) : X̃ ∈ K , θ ≥ 0

}
, (2.22)

or, equivalently, as the polar cone of NXK , i.e.

TXK :=
{
U ∈ L 2(Ω):

ˆ
Ω

U(m)W (m) dm 6 0 for all W ∈ NXK
}
. (2.23)

Lemma 2.4. Let X ∈ K be given. Then

TXK =
{
U ∈ L 2(Ω): U is nondecreasing in each interval (α, β) ⊂ ΩX

}
.

More precisely, the map U ∈ TXK must be nondecreasing up to Lebesgue null sets. We may assume
that U is right-continuous in each (α, β) ⊂ ΩX .
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Proof of Lemma 2.4. Let U ∈ TXK be given and fix some interval (α, β) ⊂ ΩX . For all nonnegative
φ ∈ D(Ω) with sptφ ⊂ (α, β) we have φ′ ∈ NXK because of Lemma 2.3. By definition of the tangent cone
TXK we find thatˆ β

α

U(m)φ′(m) dm 6 0 for all nonnegative φ ∈ D(Ω) with sptφ ⊂ (α, β).

This shows that the distributional derivative of U in (α, β) is a nonnegative Radon measure, and so U is
nondecreasing in the interval.

Conversely, assume that U ∈ L 2(Ω) is nondecreasing in each interval (α, β) that is contained in ΩX . For
any W ∈ NXK we then decompose the integralˆ

Ω

U(m)W (m) dm =

ˆ
Ω\ΩX

U(m)W (m) dm+
∑
n

ˆ βn

αn

U(m)W (m) dm, (2.24)

where the sum is over all maximal intervals (αn, βn) ⊂ ΩX (at most countably many). Then the first integral
on the right-hand side vanishes because W (m) = 0 for a.e. m ∈ Ω \ ΩX . For each integral in the sum, an
approximation argument (see again Lemma 3.10 in [17]) allows us to integrate by parts to obtainˆ βn

αn

U(m)W (m) dm = −
ˆ βn

αn

ΞW (s)γ(ds),

where γ is the distributional derivative of U in (αn, βn). Since U is assumed nondecreasing and ΞW is
nonnegative, we conclude that U ∈ TXK . �

Recalling Lemma 2.4 it is immediate to check that

U ∈ HX ⇐⇒ U and − U ∈ TXK . (2.25)

Observe that if X1, X2 ∈ K then

ΩX1
⊂ ΩX2

=⇒ HX2
⊂ HX1

. (2.26)

Whenever U ∈ HX , then (2.24) equals zero because every term in the sum vanishes since U is constant and
W has vanishing average. Thus

NXK ⊂ H ⊥
X for all X ∈ K , (2.27)

with H ⊥
X the orthogonal complement of HX . In particular

Y = PK (X) =⇒ Y = PHY
(X), HY ⊂ HX . (2.28)

We have in fact a more precise characterization of H ⊥
X in terms of NXK : in the following, let us denote

by I (ΩX) the collection of all maximal intervals (α, β) (the connected components) of ΩX .

Lemma 2.5. For every X ∈ K the closed subspace H ⊥
X is

H ⊥
X =

{
W ∈ L 2(Ω) :W = 0 a.e. in Ω \ ΩX ,

ˆ β

α

W (m) dm = 0 for every (α, β) ∈ I (ΩX)
}
,

(2.29)

and it is the closed linear subspace of L 2(Ω) generated by NXK . Moreover, it admits the equivalent
characterization

H ⊥
X =

{
W ∈ L 2(Ω):

ˆ
Ω

W (m)φ(X(m)) dm = 0 for all φ ∈ Cb(R)
}
. (2.30)

Proof. (2.29) follows immediately by the definition (2.18) of HX . (2.27) shows that the linear subspace
generated by NXK is contained in H ⊥

X ; to prove the converse inclusion it is sufficient to check that any
U ∈ L 2(Ω) orthogonal to all the elements of K is also orthogonal to H ⊥

X , i.e. it belongs to HX . This is
true, since if U is orthogonal to NXK then both U and −U belongs to the polar cone to NXK which is
TXK : by (2.25) we deduce that U ∈ HX .

Concerning (2.30) we simply notice that all U ∈ HX can be written as U = u◦X for a map u ∈ L 2(R, ϱ),
where ϱ = X#m. Approximating u in L2(R, ϱ) by a family of functions φ ∈ Cb(R) we obtain (2.30). �
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Lemma 2.6. For any X ∈ K and U ∈ TXK we have that

(PHX − id)U ∈ NXK . (2.31)

Proof. Lemma 3.11 in [17] shows that (2.31) holds if U ∈ K . Since PHXX −X = 0, (2.31) holds for U −X
and, since NXK is a cone, for arbitrary θ(U −X), θ ≥ 0 and U ∈ K . We conclude recalling (2.22). �

Remark 2.7. If C is a closed convex subset of L 2(Ω) and X ∈ L1((0, T );X) with X(t) ∈ C for a.e. t ∈ (0, T )
then it is easy to check that T

0

X(t)dt ∈ C ; moreover

ˆ T

0

X(t)dt ∈ C if C is a cone. (2.32)

In fact, applying Jensen’s inequality to the indicator function of C we get

IC

( T

0

X(t) dt
)
≤
 T

0

IC (X(t)) dt = 0.

If in addition C is a cone then IC (TX) = IC (X) for every X ∈ L 2(Ω) and we deduce the second implication
of (2.32).

2.3. Convex Functions. In this section we recall some auxiliary results on convex functions. We are
interested in functions ψ : R −→ [0,∞) that are

even, convex, of class C1(R), with ψ(0) = 0, (2.33)

and for which the homogeneous doubling condition holds:

there exists q > 1 such that ψ(λr) 6 λqψ(r) for all r ∈ R, λ > 1. (2.34)

Notice that if condition (2.34) holds for ψ, then it also holds for the map r 7→ ψ2(r), with exponent qp.
Combining (2.33) and (2.34), we obtain the inequality

ψ(r1 + r2) 6 2q−1(ψ(r1) + ψ(r2)) for all r1, r2 ∈ R. (2.35)

We will denote by Ψ: L 1(Ω) −→ [0,∞] the associated convex functional

Ψ[X] :=

ˆ
Ω

ψ(X(m)) dm for all X ∈ L 1(Ω). (2.36)

Lemma 2.8. Suppose ψ : R −→ [0,∞) satisfies (2.33). Then the doubling condition (2.34) holds if and only
if ψ has one of the following, equivalent properties:

rψ′(r) 6 qψ(r) for all r > 0; (2.37)

there exists C > 0 such that ψ(2r) 6 Cψ(r) for all r > 0. (2.38)

Proof. Property (2.38) is a consequence of (2.34), and (2.37) follows from

rψ′(r) = lim
λ→1+

ψ(λr)− ψ(r)

λ− 1
6 lim

λ→1+

λq − 1

λ− 1
ψ(r) = qψ(r)

for all r > 0 and q > 1.
To prove the converse statement, we notice first that since ψ is an even, smooth function, we have that

ψ′(0) = 0 and so ψ is nonnegative and nondecreasing for all r > 0, by convexity. Moreover, if (2.38) holds,
then again by convexity we find

ψ′(r) 6 ψ(2r)− ψ(r)

r
6 (C − 1)

ψ(r)

r
for all r > 0.

Thus (2.37) holds with q := C − 1, which must not only be a nonnegative number but must be greater than
or equal to 1.

Assuming now that (2.37) is true, we consider the Cauchy problem

η′(s) = q
η(s)

s
for s ∈ [r,∞), with η(r) = ψ(r), (2.39)
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which admits a unique solution η(s) = ψ(r)(r−1s)q for all s > r > 0. A standard comparison estimate for
solutions of ordinary differential equation yields

ψ(s) 6 η(s) =
(s
r

)q

ψ(r) for all s > r > 0. (2.40)

Since ψ is nondecreasing, we conclude that q > 1 and then (2.34) follows for r > 0. By evenness of ψ and
since ψ(0) = 0, the inequality extends to r 6 0 as well. �
Lemma 2.9. Let p ∈ [1,∞) be given and supppose that the function η : R −→ [0,∞) satisfies (2.33) and the
p-coercivity condition

0 < lim inf
r→0+

η(r)

r2
and lim

r→∞

η(r)

r2
= ∞. (2.41)

For every q > p, there exists a map ψ : R −→ [0,∞) satisfying (2.33)/ (2.34) with

ψ(r) 6 η(r) for all r ∈ R and lim
r→∞

ψ(r)

r2
= ∞. (2.42)

Proof. By [19, Lemma 3.7] it is not restrictive to assume that η is of the form η̄2 for a suitable convex function
η̄ with superlinear growth, and so we may just consider the case p = 1 (see the remark following (2.34)). By
convolution, we can assume that η is smooth in the open interval (0,∞), with δ := infr>0 η

′(r) > 0.
We then choose q > 1 and we set ψ(r) := δrq/q for all r ∈ [0, 1], so that

ψ(r) 6 η(r) in [0, 1] and ψ′(1) = δ 6 η′(1).

For r > 1 we define ψ to be the solution of the Cauchy problem

ψ′(r) = min

{
η′(r), q

ψ(r)

r

}
for r ∈ [1,∞), with ψ(1) = δ/q. (2.43)

Then ψ(r) 6 η(r) for all r > 0 and ψ satisfies (2.37) of the previous lemma.
To prove that ψ also satisfies (2.33), notice first that ψ′(0) = 0 since q > 1, and that ψ′ is continuous at

r = 1. Hence ψ can be extended to an even C1(R)-function. In order to check that ψ′ is nondecreasing, let us
first observe as a general fact that if a continuous function β is nondecreasing in each connected component
of an open set A ⊂ R that is dense in [1,+∞), then β is nondecreasing in [1,+∞). We apply this observation
to β := ψ′ and we set A := A0 ∪A1, where

A0 :=

{
r ∈ (1,∞) : q

ψ(r)

r
< η′(r)

}
,

A1 := interior of

{
r ∈ (1,∞) : η′(r) 6 q

ψ(r)

r

}
.

In each connected component of A0, the function ψ solves the differential equation ψ′(r) = qψ(r)/r, and so
ψ is of the form crq for a suitable constant c > 0. Therefore ψ′ is nondecreasing in A0. On the other hand,
in each connected component of A1, we have that ψ′(r) = η′(r) and η′ is nondecreasing, by assumption.
Finally, notice that ψ is nondecreasing on the interval [0, 1] since ψ(r) = δrq/q there. We can now apply
Lemma 2.8 to conclude that ψ has the doubling property (2.34).

It only remains to prove the second statement in (2.42). Since η has superlinear growth, its derivative
η′(r) −→ ∞ as r → ∞. Assume now that ψ(r)/r remains bounded as r → ∞. Then there exists a number
r1 > 1 such that

ψ′(r) = q
ψ(r)

r
for all r ∈ [r1,∞);

see (2.43). But this implies that ψ′(r) = crq+c0 for all r ∈ [r1,∞) and suitable constant c > 0 and therefore
is unbounded as r → ∞. This is a contradiction. �
Lemma 2.10 (Compactness in K ). Let Ψ be the integral functional defined in (2.36) corresponding to an
even, convex function ψ : R −→ [0,∞) with

lim
|r|→∞

ψ(r)

|r|2
= ∞. (2.44)

Then each sublsevel of Ψ

K (Ψ, α) := {X ∈ K : Ψ[X] 6 α} is compact in L 2(Ω) for every α ≥ 0.
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Proof. Because of (2.44), the L 2(Ω)-norm of elements of K (Ψ, α) is bounded by some constant A that
depends on α and ψ only. By monotonicity, we find that

X(w) 6 1

1− w

ˆ 1

w

X(m) dm 6
(

1

1− w

ˆ 1

w

|X(m)|2 dm
)1/2

6 A

(1− w)1/2
for all w ∈ Ω,

for all X ∈ K (Ψ, α). Analogously, we obtain a lower bound

X(w) > − A

w1/p
for all w ∈ Ω.

Any sequence {Xn} in K (Ψ, α) is therefore uniformly bounded in each compact interval [δ, 1 − δ] where
δ > 0. Applying Helly’s theorem and a standard diagonal argument we can find a subsequence (still denoted
by {Xn} for simplicity) that converges pointwise to an element X ∈ K . Since ψ satisfies (2.44), the sequence
{|Xn −X|2} is uniformly integrable and thus Xn −→ X in L 2(Ω). �

3. Lagrangian solutions

As explained in the Introduction, when studying system (1.1), one is lead to consider solutions to the
Cauchy problem for the first-order differential inclusion in L 2(Ω)

Ẋ(t) + ∂IK (X(t)) ∋ V̄ +

ˆ t

0

F [X(s)] ds for t > 0, X(0) = lim
t↓0

X(t) = X̄, (3.1)

and, possibly, satisfying further properties.
Before discussing (3.1), we will state below the precise assumptions on the force operator F ; examples,

covering the case of (1.2) or (1.3), are detailed in Section 6.

3.1. The force operator F . Let us first recall the link of the map F : K → L 2(Ω) with the force
distribution f : P(R) −→ M (R) in (1.1): as in (1.34) we will assume thatˆ

R
ψ(x) f [ϱ](dx) =

ˆ
Ω

ψ(Xϱ(m))F [X](m) dm for all ψ ∈ D(R), ϱ ∈ P(R) (3.2)

recalling (2.30) one immediately sees that F [X] is uniquely characterized by (3.2) only when H ⊥
X = {0} or,

equivalently, when HX = L 2(Ω) i.e. ΩX = ∅: this is precisely the case when X is (essentially) strictly
increasing.

One could, of course, always take the orthogonal projection of F [X] onto HX in order to characterize it
starting from (3.2). This procedure, however, could lead to a discontinuous operator which would be hard to
treat by the theory of first order differential inclusions. This happens, e.g., for the (attractive or repulsive)
Euler-Poisson system. We thus prefer to allow for a greater flexibility in the choice of F complying with (3.2),
asking that it is everywhere defined on K and satisfies suitable boundedness and continuity properties.

Definition 3.1 (Boundedness). An operator F : K −→ L 2(Ω) is bounded if there exists a constant C > 0
such that

∥F [X]∥L 2(Ω) 6 C2

(
1 + ∥X∥L 2(Ω)

)
for all X ∈ K . (3.3)

We say that F is pointwise linearly bounded if there exists a constant Cp > 0 such that∣∣F [X](m)
∣∣ 6 Cp

(
1 + |X(m)|+ ∥X∥L 1(Ω)

)
for a.e. m ∈ Ω and all X ∈ K . (3.4)

Note that if F is pointwise linearly bounded, then F is bounded and satisfies (3.3) with the constant
C2 := 2Cp.

Let us recall that a modulus of continuity is a concave continuous function ω : [0,∞) −→ [0,∞) with the
property that 0 = ω(0) < ω(r) for all r > 0.
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Definition 3.2 (Uniform continuity). We say that an operator F : K −→ L 2(Ω) is uniformly continuous
if it is bounded as in Definition 3.1 and there exists a modulus of continuity ω with the property that∥∥F [X1]− F [X2]

∥∥
L 2(Ω)

6 ω
(
∥X1 −X2∥L 2(Ω)

)
for all X1, X2 ∈ K . (3.5)

We say that F is Lipschitz continuous if it is uniformly continuous and (3.5) holds with ω(r) = Lr for all
r > 0, where L > 0 is some constant.

Notice that if F is uniformly continuous then it is also bounded. Whenever a uniformly continuous F is
defined by (3.2) on the convex subset Ksi of all the strictly increasing maps and satisfies (3.5) in Ksi, then
it admits a unique extension to K preserving the continuity property (3.5) and the compatibility condition
(3.2).

As we observed at the beginning of this section, a last property of F which will play a crucial role concerns
its behaviour on the subset ΩX where the map X is constant. Since the force functional determines the
change in velocity, in the framework of sticky evolution it would be natural to assume that

F [X] ∈ HX for every X ∈ K .

We shall see that a weaker peroperty is still sufficient to preserve the sticky condition: it will turn particularly
useful when the attractive Euler-Poisson equation will be considered.

Definition 3.3 (Sticking). The map F : K −→ L 2(Ω) is called sticking if for all transport maps X,Y ∈ K
with Y ∈ HX we have

F [X]− PHX
(F [X]) ∈ ∂IK (Y ).

3.2. Lagrangian Solutions. Let us start by giving a suitable notion of solutions to (3.1).

Definition 3.4 (Lagrangian solutions to the differential inclusion (3.1)). Let F : K −→ L2(Ω) be a
uniformly continuous operator and let X̄ ∈ K and V̄ ∈ H = L 2(Ω) be given. A Lagrangian solution
to (3.1) with initial data (X̄, V̄ ) is a curve X ∈ Liploc([0,∞);K ) satisfying X(0) = X̄ and (3.1) for a.e.
t ∈ (0,∞).

By introducing the new variable

Y (t) := V̄ +

ˆ t

0

F [X(s)] ds

we immediately see that (4.1) is equivalent to the evolution system{
Ẋ(t) + ∂IK (X(t)) ∋ Y (t),

Ẏ (t) = F [X(t)],
for t > 0, (X(0), Y (0)) = (X̄, V̄ ), (3.6)

Notice that the continuity of F yields Y ∈ C1([0,∞);L 2(Ω)). We state in the following Theorem the main
properties of the solution X to (3.1)

Theorem 3.5. Let F : L 2(Ω) → K be a uniformly continuous operator and let (X,Y ) be a solution to
(3.6). Then the following properties hold:

• Right-Derivative:

The right-derivative V :=
d+

dt
X exists for all t > 0. (3.7)

• Minimal Selection:

V (t) =
(
Y (t)− ∂IK (X(t))

)◦
for all t > 0, (3.8)

where A◦ denotes the unique element of minimal norm in any closed convex set of A ⊂ L 2(Ω). In

particular if we replace Ẋ(t) by V (t) then (3.1) and (3.6) hold for all t > 0.
• Projection on the tangent cone:

V (t) = PTX(t)K

(
Y (t)

)
for all t > 0. (3.9)
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• Continuity of the velocity:

V is right-continuous for all t > 0; (3.10)

in particular

lim
t↓0

V (t) = V̄ if and only if V̄ ∈ TX̄K . (3.11)

If T 0 ⊂ (0,∞) is the subset of all times at which the map s 7→ ∥V (s)∥L 2(Ω) is continuous, then

(0,∞) \ T 0 is negligible and at every point of T 0 V is continuous and X is differentiable in L 2(Ω).
Setting ϱt := X(t)#m there exists a unique map vt ∈ L2(R, ϱt) such that

Ẋ(t) = V (t) = PHX(t)
(Y (t)) = vt ◦Xt ∈ HX(t) for every t ∈ T 0. (3.12)

• Solution to (1.1): If moreover F is linked to f by (3.2), ϱ̄ = X̄#m and V̄ = v̄ ◦ X̄, then the couple
(ϱ, v) defined as above is a distributional solution to (1.1) such that

lim
t↓0

ϱ(t, ·) = ϱ̄ in P2(R), lim
t↓0

ϱ(t, ·)v(t, ·) = ϱ̄ v̄ in M (R). (3.13)

Proof. (3.7), (3.8), and (3.10) are consequence of the general theory of [8], Theorem 3.5; (3.9) follows
immediately by (3.8) since V (t) ∈ TX(t)K by (3.7) and V (t) +NX(t)K ∋ Y (t).

Concerning (3.12) we can apply the Remark 3.9 (but see also Remark 3.4) of [8], which shows that at
each differentiability point t of X its derivative is the projection of 0 onto the affine space generated by
Y (t) − ∂IK (X(t)), i.e. the orthogonal projection of Y (t) onto the orthogonal complement of the space
generated by ∂IK (X(t)). Recalling Lemma 2.5 we get (3.12).

In order to prove the last statement, we use the crucial information of (3.12) that V (t) ∈ HX(t) for a.e.
t > 0, a fact which may have been noticed for the first time in[11]. In particular, the projected velocities

V ∗(t) = PHX(t)
V (t) t ≥ 0, (3.14)

concide with V (t) for every t ∈ T 0, where T 0 is a set of full measure in (0,∞). Since any element V of
HX(t) can be written as v ◦X for a suitable Borel map v ∈ L 2(Ω) we deduce that there exists a Borel map

v : [0,∞)× R → R such that v(t, ·) ∈ L 2(R, ϱ(t, ·)) and

V ∗(t, ·) = v(t,X(t, ·)) a.e. in Ω, for every t > 0. (3.15)

From Equation (3.14) we also have V (t) = v(t,X(t)) for t ∈ T 0. We then argue as follows: For all test
functions φ ∈ D((0, T )× R) we haveˆ ∞

0

ˆ
R

(
∂tφ(t, x)v(t, x) + ∂xφ(t, x)v

2(t, x)

)
ϱ(t, dx) dt

=

ˆ ∞

0

ˆ
Ω

(
∂tφ(t,X(t,m)) + ∂xφ(t,X(t,m))v(t,X(t,m))

)
V (t,m) dmdt

=

ˆ ∞

0

ˆ
Ω

(
∂tφ(t,X(t,m)) + ∂xφ(t,X(t,m))v(t,X(t,m))

)
Y (t,m) dm dt

=

ˆ ∞

0

ˆ
Ω

(
d

dt
[φ(t,X(t,m))]

)
Y (t,m) dm dt

= −
ˆ ∞

0

ˆ
Ω

φ(t,X(t,m))F [X(t, ·)](m) dm dt (3.16)

Applying formula (3.2) in (3.16), we obtainˆ ∞

0

ˆ
R

(
∂tφ(t, x)v(t, x) + ∂xφ(t, x)v

2(t, x)

)
ϱ(t, dx) dt

= −
ˆ 1

0

ˆ
R
φ(t, x) f [ϱ(t, ·)](dx) dt, (3.17)

which yields the momentum equation in (1.1) in distributional sense. An (even easier) analogous argument
holds for the continuity equation. This shows that the pair (ϱ, v) defined by (3.14) and (3.15) is a solution
of (1.1).
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The first limit of (3.13) follows since limt↓0X(t) = X̄ in L 2(Ω) and X̄#m =: ϱ̄. Concerning the second
limit of (3.13) we have to show that

ˆ
Ω

φv̄(x)ϱ̄(dx) = lim
t→0

ˆ
Ω

φv(t, x)ϱ(t, dx) (3.18)

for every φ ∈ Cb(R). Since V̄ = v̄ ◦ X̄ we have V̄ ∈ HX̄ ⊂ TX̄K so that limt↓0 V (t) = V̄ in L 2(Ω) and
therefore ˆ

R
φ(x)v̄(x)ϱ̄(dx) =

ˆ
Ω

φ(X̄)V̄ dm = lim
t↓0

ˆ
φ(X(t))V (t) dm

= lim
t↓0

ˆ
φ(X(t))V ∗(t) dm = lim

t↓0

ˆ
φ(x)v(t, x)ϱ(t, dx),

where we used the fact that V (t)− V ∗(t) is perpendicular to HX(t). �

As we already observed in the previous proof, notice that (3.11) surely holds if V̄ ∈ HX̄ .

3.3. Existence, uniqueness, and stability of Lagrangian solutions for Lipschitz forces. Applying
the general results of [8] is not difficult to prove

Theorem 3.6. Let us suppose that F : K → L 2(Ω) is Lipschitz. Then for every (X̄, V̄ ) ∈ K × L 2(Ω)
there exists a unique Lagrangian solution X to (3.1) and for every T > 0 there exists a constant CT > 0
independent of the initial data such that for every t ∈ [0, T ]

∥X(t)∥L 2(Ω) + ∥V (t)∥L 2(Ω) 6 CT

(
1 + ∥X̄∥L 2(Ω) + ∥V̄ ∥L 2(Ω)

)
. (3.19)

Moreover, for any T > 0 there exists a constant CT > 0 with the following property: For any pair of strong
Lagrangian solutions Xi with initial data (X̄i, V̄i) for i = 1, 2 we have that for all t ∈ [0, T ] it holds

∥X1(t)−X2(t)∥L 2(Ω) 6 CT

(
∥X̄1 − X̄2∥L 2(Ω) + ∥V̄1 − V̄2∥L 2(Ω)

)
(3.20)

ˆ T

0

∥V1(t)− V2(t)∥2L 2(Ω) dt 6 CT

∑
i=1...2

(
∥X̄i∥L 2(Ω) + ∥V̄i∥L 2(Ω)

)
×
(
∥X̄1 − X̄2∥L 2(Ω) + ∥V̄1 − V̄2∥L 2(Ω)

)
. (3.21)

Proof. Recalling the equivalent formulation (3.6), we introduce the Hilbert space H : L 2(Ω) × L2(Ω) and
the (multivalued) operator A(X,Y ) := (∂IK (X) − Y, F [X]). It is easy to check that A is a Lipschitz
perturbation of the subdifferential of the proper, convex, and l.s.c. functional Φ(X,Y ) := IK (X). Thus
existence, uniqueness, and the estimates (3.19), (3.20) follow by [8, Theorem 3.17].

The same estimate also yields for the second component Yi(t) = V̄i +
´ t

0
F [Xi(s)] ds

∥Y1(t)− Y2(t)∥L 2(Ω) 6 CT

(
∥X̄1 − X̄2∥L 2(Ω) + ∥V̄1 − V̄2∥L 2(Ω)

)
(3.22)

and, by the boundedness of F ,

ˆ T

0

∥Ẏi(t)∥2L 2(Ω) dt 6 C2
T

(
1 + ∥X̄i∥2L 2(Ω) + ∥V̄i∥2L 2(Ω)

)
.

Applying Theorem 2 in [20] to the first equation of (3.6) we get (3.21). �

A straightforward application of the previous Theorem shows that Lagrangian solutions are stable if F
is Lipschitz: a sequence of Lagrangian solutions with strongly converging initial data converges to another
Lagrangian solution.
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3.4. Sticky lagrangian solutions and the semigroup property. We consider here an important class
of Lagrangian solutions.

Definition 3.7 (Sticky lagrangian solutions). We say that a Lagrangian solution X is sticky if

for any t1 6 t2 we have ΩX(t1) ⊂ ΩX(t2). (3.23)

By (2.21) and (2.26) any sticky Lagrangian solution satisfies the monotonicity condition

∂IK (X(t1)) ⊂ ∂IK (X(t2)), HX(t2) ⊂ HX(t1) for any t1 6 t2. (3.24)

The nice features of sticky Lagrangian solutions are summarized in the next results.

Proposition 3.8 (Projection formula). If X is a sticky Lagrangian solution then

V (t) ∈ HX(t) for all times t > 0 (3.25)

and it satisfies

X(t) = PK

(
X̄ +

ˆ t

0

Y (s) ds

)
= PK

(
X̄ + tV̄ +

ˆ t

0

(t− s)F [X(s)] ds

)
, (3.26)

V (t) = PHX(t)

(
Y (t)

)
= PHX(t)

(
V̄ +

ˆ t

0

F [X(s)] ds

)
. (3.27)

Proof. (3.25) follows easily by (3.10) and (3.12), thanks to the monotonicity property (3.24). Equation (3.27)

then follows from (3.6) (where Ẋ is replaced by V ) and (2.27).
In order to prove (3.26), we set for s > 0

Ξ(s) := Y (s)− V (s) ∈ ∂IK (X(s)) ⊂ ∂IK (X(t)) if t > s, (3.28)

and we integrate (3.28) w.r.t. s from 0 to t to obtainˆ t

0

Ξ(s) ds = X̄ −X(t) +

ˆ t

0

Y (s) ds ∈ ∂IK (X(t))

Recalling (2.13) we get (3.26). �
Lemma 3.9 (Concatenation property). Let X1, X2 be Lagrangian solutions with initial data X̄1, V̄1 and
X̄2, V̄2 respectively and let us suppose that

ΩX̄2
⊂ ΩX2(t) for every t ≥ 0. (3.29)

If for some τ > 0
X̄2 = X1(τ), Y1(τ)− V̄2 = Ξ̄2 ∈ ∂IK (X̄2), (3.30)

then the curve

X̃ :=

{
X1(t) if 0 6 t 6 τ,

X2(t− τ) if t > τ,
(3.31)

is a Lagrangian solution with initial data (X̄1, V̄1). In particular, if X1, X2 are sticky Lagrangian solutions,

then X̃ is also sticky.

Notice that
the choice V̄2 := V (τ1) always satisfies (3.30). (3.32)

Proof. It is easy to check that

Ỹ (t) :=

{
Y1(t) if 0 6 t 6 τ,

Y1(τ)− V̄2 + Y2(t− τ) if t > τ,

is Lipschitz continuous and satisfies d
dt Ỹ (t) = F [X̃(t)] a.e. in (0,∞). We have to check that X̃ satisfies the

first differential inclusion of (3.6) for t > τ w.r.t. Ỹ . By definition of X̃ we have for t > τ

Ỹ (t)− d

dt
X̃(t) = Y1(τ)− V̄2 + Y2(t− τ)− V2(t− τ)

= Ξ̄2 + Ξ2(t− τ) ∈ ∂IK (X2(t− τ)) = ∂IK (X̃(t))

since by (3.30) and (3.29) Ξ̄2 ∈ ∂IK (X2(t− τ)). �
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It would not be difficult to show that Lagrangian solutions in general do not satisfy the sticky property
nor the semigroup property. If the force is sticking then the next property shows that these properties are
strictly related.

Theorem 3.10 (Semigroup property). If the force operator F is Lipschitz and sticking and

ΩX̄ ⊂ ΩX(t) for every Lagrangian solution X starting from (X̄, V̄ ) ∈ K × HX̄ (3.33)

then every Lagrangian solution X starting from (X̄, V̄ ) ∈ K × HX̄ is sticky and satisfies the following

semigroup property: for every τ > 0 the curve X̃(t) := X(t − τ) is the unique Lagrangian solution with
initial data X(τ), V (τ).

In particular, for all t > t1 ≥ 0 we have

X(t) = PK

(
X(t1) + (t− t1)V (t1) +

ˆ t

t1

(t− s)F [X(s)] ds

)
(3.34)

V (t) = PHX(t)

(
V (t1) +

ˆ t

t1

F [X(s)] ds

)
. (3.35)

Proof. Let T 0 ∈ [0,∞) as in (3.12) ((0,∞) \ T 0 is negligible). For every τ ∈ T 0 consider the Lagrangian
solution X2 with initial datum (X(τ), V (τ)): by the concatenation property (with the choice (3.32)) the

map X̃ defined as in (3.31) (with X1 := X) is a Lagrangian solution and therefore coincides with X, since
F is Lipschitz. (3.33) yields that

ΩX(τ) ⊂ ΩX(t) for every 0 6 τ < t, τ ∈ T 0 ∪ {0}. (3.36)

Let us now fix s > 0 and consider a sequence hn ↓ 0 such that

1

hn

(
X(s)−X(s− hn)

)
−⇀ V− in L2(Ω).

Since TX(s)K is a closed convex cone, it is also weakly closed, so that by its very definition definition we
have −V− ∈ TX(s)K .

We set Ξ(t) := Y (t) − Ẋ(t) ∈ ∂IK (X(t)) thanks to the differential inclusion of (3.6); an integration in
time from s− hn to s and (3.36) yield s

s−hn

Y (r) dr − 1

hn

(
X(s)−X(s− hn)) =

 s

s−hn

Ξ(r) dr ∈ ∂IK (X(s)).

Passing to the limit as n→ ∞ we obtain

Ξ− := Y (s)− V− ∈ ∂IK (X(s))

and therefore by (2.27)

V̄ := PXX(s)
(V−) = PXX(s)

(Y (s)).

Since

Y (s)− V̄ = Y − V− +
(
− V̄ − (−V−)

)
= Ξ− +

(
− V̄ − (−V−)) ∈ ∂IK (X(s))

by (2.31) and the fact that −V− ∈ TX(s)K , we can apply the concatenation property as before, joining at
the time s the Lagrangian solution X1 := X with the Lagrangian solution X2 arising from the initial data
X̄ := X(s) and V̄ . The uniqueness theorem shows that this map coincides with X and therefore (3.29)
yields ΩX(s) ⊂ ΩX(t) for every t > s.

In particular we have V (t) ∈ XX(t) for every t ≥ 0 so that a further application of the concatenation
Lemma 3.9 yields the semigroup property. (3.34) and (3.35) follow then by the corresponding (3.26) and
(3.27) �

We conclude this section with our main result conerning the existence of sticky Lagrangian solution; the
proof will require a careful analysis of the discrete particle models and therefore will be postponed at the
end of Section 5, see Remark 5.4.

Theorem 3.11 (Sticking forces yields sticky Lagrangian solutions). If the force operator F is Lipschitz and
sticking (according to Defintion 3.3) then every Lagrangian solution to (3.1) with X̄ ∈ K and V̄ ∈ HX̄ is
sticky.
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Remark 3.12. We have seen that the right-derivative V of a sticky Lagrangian solution is right-continuous
everywhere. It is continuous for all t > 0 for which the function t 7→ ∥V (t)∥L 2(Ω) (which represents the
kinetic energy) is continuous; see Proposition 3.3 in [8]. At such times the map t 7→ X(t) is differentiable.
We do not know whether the velocity is of bounded variation. But (3.35) and (3.9) show the following
statement: For any t > 0 let V− ∈ L 2(Ω) be any weak accumulation point of V (s) as s ↑ t. Then
V (t) = PTX(t)K (V−) = PHX(t)

(V−). This is the analogue of the impact law (1.20) we discussed in the

Introduction. It follows easily from (3.35).

3.5. Lagrangian solutions for continuous force fields. The goal of this section is to extend the existence
Theorem 3.6 to the case of (uniformly) continuous force operators.

Theorem 3.13. Suppose that F : K → L 2(Ω) satisfies the pointwise linear condition (3.4) and it is
uniformly continuous according to (3.5). Then for every (X̄, V̄ ) ∈ K × L 2(Ω) there exists a Lagrangian
solution (X,Y ) of (3.6).
Moreover, for any T > 0 there exists a constant CT > 0 such that any Lagrangian solution X with velocity

V := d+

dt X satisfy

∥X(t)∥L 2(Ω) + ∥V (t)∥L 2(Ω) 6 CT

(
1 + ∥X̄∥L 2(Ω) + ∥V̄ ∥L 2(Ω)

)
(3.37)

for all t ∈ [0, T ]. If ψ : R −→ [0,+∞) is an integrand satisfying (2.33) and (2.34) for some q > 1, then there
exists a constant Cq,T > 0 such that

Ψ[X(t)] + Ψ[V (t)] 6 Cq,T

(
1 + Ψ[X̄] + Ψ[V̄ ]

)
(3.38)

for all t ∈ [0, T ], with functional Ψ defined in (2.36).

Proof. It suffices to show that there exists a solution to (3.6) in a bounded interval [0, T ] with T independent
of the initial condition. We will choose

T :=
1

2Cp
< 1.

where Cp is the constant of (3.4), which is not restrictive to assume greater than 1.
We consider the following operators defined in C([0, T ];L 2(Ω)): the first oneO1 mapsW ∈ C([0, T ];L 2(Ω))

into Y := O1(W ) defined by

Y (t) := V̄ +

ˆ t

0

F [W (s)] ds; (3.39)

the second one, O2, maps Y ∈ C([0, T ];L2(Ω)) into the solution X = O2(Y ) of the differential inclusion

Ẋ + ∂IK (X) ∋ Y, X(0) = X̄. (3.40)

Both of them are continuous, since

∥O1(W1)−O2(W2)∥∞ 6 Tω
(
∥W1 −W2∥∞

)
(3.41)

(where we denoted by ∥ · ∥∞ the usual sup norm in C([0, T ];L 2(Ω))) and

∥O2(Y1)−O2(Y2)∥∞ 6 T∥Y1 − Y2∥∞. (3.42)

We want to show that O := O2 ◦ O1 has a fixed point X, which is a Lagrangian solution with initial data
(X̄, V̄ ). We may use de la Vallée Poussin Theorem and Lemma 2.9 to obtain ψ : R −→ [0,∞) satisfying
(2.33)/(2.34) for some q > 2 and (using the notation (2.36))

lim
r→∞

ψ(r)

r2
= ∞, Ψ[X̄] + Ψ[V̄ ] <∞. (3.43)

Choose m large enough so that (
||V̄ ||2 + 2Cp(1 +m+ ||V̄ ||2)

)
T ≤ m, (3.44)

and let

K (Ψ) = {W ∈ K : ||W − X̄||L 2(Ω) ≤ m, Ψ
(
W − X̄

)
≤ D}

where

D = T q−1
[
Λ(T ) + (12CpT )

qT
(
ψ(m) + Ψ(X̄)

)]
.
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and

Λ(t) := 2q−1
(
tΨ(V̄ ) + (3T )q−1Cqψ(1)

t2

2

)
.

We eventually set

C =
{
X ∈ C([0, T ];L 2(Ω)) : X(t) ∈ K (Ψ) ∀ t ∈ [0, T ],

∥X(s)−X(r)∥L 2(Ω) 6
m

T
|r − s| ∀ r, s ∈ [0, T ]

}
,

which by Arzelà-Ascoli Theorem is a nonempty, compact, and convex subset of C([0, T ];L 2(Ω)). In light of
the Schauder Fixed Point Theorem it suffices to show that O maps C into itself.

Let W ∈ C and set Y = O1(W ), X = O2(Y ) = O(W ) with V = d+

dt X. We exploit Lemma 3.14 and
equation (3.53) below with Jensen’s inequality to obtain

Ψ
(
X(t)− X̄

)
= Ψ

(ˆ t

0

V (s)ds
)

≤ T q−1
[
Λ(t) + (6CpT

2)q
ˆ t

0

Ψ(W (l))dl
]

≤ T q−1
[
Λ(t) + (12CpT )

q

ˆ t

0

(
Ψ(W (l)− X̄) + Ψ(X̄)

)
dl
]

≤ T q−1
[
Λ(t) + (12CpT )

qT
(
Ψ(m) + Ψ(X̄)

)]
≤ D. (3.45)

Using ψ(r) = r2 in (3.48) we have

∥V (t)∥2 ≤
∥∥V̄ +

ˆ t

0

F [W (s)]ds
∥∥
2
≤ ∥V̄ ∥2 +

ˆ t

0

∥∥F [W (s)]
∥∥
2
ds,

where we have used the HX–Contraction property in Lemma 2.2. We use that F is also bounded with
constant C2 = 2Cp and that Y ∈ C to conclude that

∥V (t)∥2 ≤ ∥V̄ ∥2 + 2Cp(1 + |m|+ ∥X̄∥2) ≤
m

T
. (3.46)

Thus, for every 0 6 r 6 s 6 T

∥X(r)−X(s)∥2 6
ˆ s

r

∥V (s)∥ds 6 m

T
|r − s|, ∥X(s)− X̄∥2 6 m.

These prove that X ∈ C .
Concerning the estimates (3.37) and (3.38) we simply set W = X in the next Lemma 3.14 and apply

Gronwall’s lemma. �
We conclude this section with the uniform bounds for solutions to differential inclusions invoked by the

previous fixed point argument. In view of the next applications, we state them in a slightly more general
form.

Lemma 3.14 (A priori bounds). Let F : K −→ L 2(Ω) be pointwise linearly bounded so that there exists
Cp > 0 such that (3.4) holds. Let ψ : R −→ [0,+∞) be an integrand satisfying (2.33) and (2.34) for some
q > 1. Let X ∈ Lip(0, T ;L 2(Ω)) and Z,W ∈ L ∞(0, T ;L 2(Ω)) be such that X(0) = X̄ and

V (t) + ∂IK (X(t)) ∋ V̄ +

ˆ t

0

Z(s) ds ∀t ∈ [0, T ) (3.47)

where

V (t) =
d+X

dt
(t) and Z(s) ≺ F [W (s)].

Then for a.e. t ∈ (0, T )

Ψ(V (t)) ≤ Ψ
(
V̄ +

ˆ t

0

Z(s)ds
)
, (3.48)

Ψ(V (t)) ≤ 2q−1

(
Ψ(V̄ ) + (3t)q−1Cq

p

(
ψ(1)t+ 2

ˆ t

0

Ψ(W (s))ds
))

(3.49)
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and

Ψ(X(t)) ≤ 2q−1

(
Ψ(X̄) + T qΛ(T ) + (6CpT

2)q
ˆ t

0

Ψ(W (s))ds

)
(3.50)

Proof. Recalling Theorem 3.5 and (3.12), equation (3.47) yields

V (t) = PHX(t)

(
V̄ +

ˆ t

0

Z(s)ds
)

for every t ∈ T 0,

where T 0 has full measure in (0, T ). Hence, by Lemma 2.2

Ψ(V (t)) = Ψ

(
PHX(t)

(
V̄ +

ˆ t

0

Z(s)ds
))

≤ Ψ
(
V̄ +

ˆ t

0

Z(s)ds
)
,

which proves (3.48).
Using (2.35) and Jensen’s inequality we obtain

Ψ(V (t)) ≤ 2q−1
(
Ψ(V̄ ) + Ψ(

ˆ t

0

Z(s)ds)
)
≤ 2q−1

(
Ψ(V̄ ) + tq−1

ˆ t

0

Ψ(Z(s))ds
)
. (3.51)

We use the fact that F is linearly bounded, ψ is even, and ψ(∥W∥1) 6 Ψ(W ) by Jensen’s inequality, to find
to obtain that for all s > 0

Ψ(Z(s)) ≤ Ψ[F (W (s))] 6 Ψ[Cp(1 + |W (s)|+ ∥W∥1)] 6 3q−1Cq
p

(
ψ(1) + 2Ψ[W (s)]

)
. (3.52)

The first inequality in Equation (3.52) was obtained via Lemma 2.2. We combine Equations (3.51, 3.52) to
obtain Equation (3.49). By Equation (3.49)

ˆ t

0

Ψ(V (s))ds ≤ 2q−1

(
tΨ(V̄ ) + (3T )q−1Cq

p

(
ψ(1)

t2

2
+ 2

ˆ t

0

ˆ s

0

Ψ(W (l))dl
))

= Λ(t) + 2(6T )q−1Cq
p

ˆ t

0

(t− l)Ψ(W (l))dl

≤ Λ(t) + (6TCp)
q

ˆ t

0

Ψ(W (l))dl (3.53)

where

Λ(t) := 2q−1
(
tΨ(V̄ ) + (3T )q−1Cq

pψ(1)
t2

2

)
We have

Ψ(X(t)) = Ψ
(
X̄ +

ˆ t

0

V (s)ds
)
≤ 2q−1

(
Ψ(X̄) + tq−1

ˆ t

0

Ψ(V (s))ds
)
,

where have used (2.35) and then Jensen’s inequality. This, together with (3.53) yields (3.50). �

4. The semigroup property and generalized Lagrangian solutions

We have seen that Lagrangian solution may fail to satisfy the semigroup property in the natural phase
space for the variables (X,V ), V = Ẋ (stated in Proposition (3.10) for sticky Lagrangian solutions). In fact,
the formulation given by the system (3.6) shows that the natural variables for the semigroup property are
the couple (X,Y ).

This motivates an alternate notion of solution (still linked to (1.1)) which tries to recover a mild semigroup
property, at the price of loosing uniqueness with respect to initial data.

Recall that for any transport map X ∈ K the orthogonal projection PHX
onto the closed subspace

HX ⊂ L 2(Ω) leaves the given function unchanged in Ω \ ΩX and replaces it with its average in every
maximal interval (α, β) ⊂ ΩX ; see (2.19). As a consequence, the function PHX

(F [X]) is constant wherever
X is.

Definition 4.1. A generalized solution to (3.1) is a curve X ∈ Liploc([0,∞);K ) such that
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(1) Differential inclusion:

Ẋ(t) + ∂IK (X(t)) ∋ V̄ +

ˆ t

0

Z(s) ds for a.e. t ∈ (0,∞), (4.1)

for some map Z ∈ L∞
loc([0,∞);L 2(Ω)) with

Z − F [X(t)] ∈ H ⊥
X(t) and Z ≺ F [X(t)] for a.e. t ∈ (0,∞). (4.2)

(2) Semigroup property: For all t > t1 > 0 the right derivative V = d+

dt X satisfies

V (t) + ∂IK (X(t)) ∋ V (t1) +

ˆ t

t1

Z(s) ds, (4.3)

(3) Projection formula: For all t > t1 > 0

X(t2) = PK

(
X(t1) + (t2 − t1)V (t1) +

ˆ t2

t1

(t2 − s)Z(s) ds

)
, (4.4)

Note that for generalized Lagrangian solutions the semigroup property and the projection one (4.4)
are part of the definition, while for sticky Lagrangian solutions (3.34) and (3.35) are consequences of the
monotonicity property (3.23). The obvious choice in (4.2) is Z(t) := F [X(t)] for all times t > 0, which also
shows that any sticky Lagrangian solution is a weak solution.

Remark 4.2. If one is ultimately interested only in the existence of solutions to the conservation law (1.1), for
this purpose any Z stisfying (4.2) is sufficient. In fact, we proved in Theorem 3.5 that if the force functional
F [X] is induced by an Eulerian force field f [ϱ], so that (3.2) holds whenever X ∈ K and X#(m) = ϱ, then
any strong Lagrangian solution yields a solution of the conservation law (1.1). The same argument works
for weak Lagrangian solutions. Because of (4.2) we have that PHX(t)

(Z(t)) = PHX(t)
(F [X(t)]). On the other

hand, it holds ˆ
Ω

φ(X(m))F [X](m) dm =

ˆ
Ω

φ(X(m))PHX
(F [X])(m) dm

for all φ ∈ D(R), with a similar formula for Z in place of F [X]. Then the argument on page 20 can be
adapted to prove the claim; see in particular (3.17).

Since X is everywhere right differentiable, we have V (t) ∈ TX(t)K for every t > 0, so that (4.3) yields

V (t) = PTX(t)K

(
V (t1) +

ˆ t2

t1

F [X(s)] ds

)
for every t > t1 ≥ 0, (4.5)

which also yields

V (t) = PHX(t)

(
V (t1) +

ˆ t2

t1

F [X(s)] ds

)
for almost every t > t1 ≥ 0. (4.6)

It is immediate to check that any solution is also a generalized solution, corresponding to the choiceH(t) := 0.
By introducing the new variable

Y (t) := V̄ +

ˆ t

0

Z(s) ds

we easily see that (4.1) is equivalent to the evolution system
Ẋ(t) + ∂IK (X(t)) ∋ Y (t),

Ẏ (t) = Z(t),

Z(t)− F [X(t)] ∈ H ⊥
X(t),

Z(t) ≺ F [X(t)]

for t > 0, (X(0), Y (0)) = (X̄, V̄ ), (4.7)

where H ≡ 0 in the case of (3.1).
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4.1. Stability of generalized Lagrangian solutions. In this section, we will prove a stability result
for generalized Lagrangian solutions. Instead of relying on a semigroup estimate, strong compactness now
follows from an argument based on Helly’s theorem (recall Lemma 2.10) and on the closure properties of the
map X 7→ PHX

(F [X]) for X ∈ K .

Lemma 4.3. Consider {(Xn, Zn, Fn)} ⊂ L 2(Ω) with

Xn ∈ K , Zn − Fn ∈ H ⊥
Xn
,

If Xn −→ X strongly and (Zn, Fn) −⇀ (Z,F ) weakly in L 2(Ω), then

Z − F ∈ H ⊥
X , (4.8)

Z ≺ F if Fn −→ F strongly in L 1(Ω) and Zn ≺ Fn. (4.9)

Analogously, for any T > 0 consider {(Xn, Zn, Fn)} ⊂ L 2((0, T ),L 2(Ω)) with

Xn(t) ∈ K , Zn(t)− Fn(t) ∈ H ⊥
Xn(t)

, Zn(t) ≺ Fn(t) for a.e. t ∈ (0, T ).

If Xn −→ X strongly and (Zn, Fn) −⇀ (Z,F ) weakly in L 2((0, T ),L 2(Ω)), then

Z(t)− F (t) ∈ H ⊥
X(t) a.e.,

Z(t) ≺ F (t) a.e. if Fn −→ F strongly in L 1((0, T ),L 1(Ω)), Zn(t) ≺ Fn(t) a.e.

Proof. By assumption, we know thatˆ
Ω

Zn(m)φ(Xn(m)) dm =

ˆ
Ω

Fn(m)φ(Xn(m)) dm (4.10)

for every φ ∈ Cb(R). Passing to the limit in (4.10) we getˆ
Ω

Z(m)φ(X(m)) dm =

ˆ
Ω

F (m)φ(X(m)) dm,

which yields (4.8) since the set {φ ◦X : φ ∈ Cb(R)} is dense in HX .
In order to prove (4.9) we pass to the limit in the inequalityˆ

Ω

ψ(Zn(m)) dm 6
ˆ
Ω

ψ(Fn(m)) dm

for arbitrary convex functions ψ : R −→ R with linear growth, noticing thatˆ
Ω

ψ(Z(m)) dm 6 lim inf
n→∞

ˆ
Ω

ψ(Zn(m)) dm,

ˆ
Ω

ψ(F (m)) dm = lim
n→∞

ˆ
Ω

ψ(Fn(m)) dm.

(4.11)

The corresponding inequality for convex functions ψ with arbitrary growth at infinity can be obtained from
(4.11) by monotone approximation.

The time-dependent result follows by applying Ioffe’s Theorem. �

Theorem 4.4 (Stability of Generalized Lagrangian Solutions). Suppose that F : K −→ L 2(Ω) is pointwise
linearly bounded and uniformly continuous. Consider a sequence {Xn} of weak Lagrangian solutions with
initial data

X̄n ∈ K and V̄n ∈ HX̄n

that converges strongly in L 2(Ω) to X̄ ∈ K and V̄ ∈ HX̄ . Then there exists a subsequence (still denoted by
{Xn}) with the following properties:

(1) We have Xn(t) −→ X(t) in L 2(Ω) uniformly on compact time intervals.
(2) For any T > 0 we have Vn −→ V in L 2((0, T ),L 2(Ω)).
(3) The limit function X is a generalized Lagrangian solution.
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Proof. Since (X̄n, V̄n) −→ (X̄, V̄ ) strongly in L 2(Ω) we can find a convex function ψ satisfying (2.33) and
limr→∞ ψ(r)/r2 = ∞ such that

[X̄n] + Ψ[V̄n] 6 C for all n.

Here Ψ denotes the functional (2.36) induced by ψ. By Lemma 2.9, it is not restrictive to assume that ψ
satisfies (2.34). The estimates of Lemma 3.14 (with W := X) and Gronwall lemma yields

Ψ[Xn(t)] + Ψ[Vn(t)] 6 CT for all t ∈ [0, T ] and all n. (4.12)

By Lemma 2.10 it then follows that the Xn take values in a fixed compact subset of L 2(Ω) and Xn are
uniformly Lipschitz continuous in L 2(Ω). Recall that pointwise linearly bounded operators F are also
bounded. We can then apply Ascoli-Arzelà theorem to obtain a convergent subsequence, which we still
denote by {Xn} for simplicity. The convergence is uniform in each compact time interval and the limit
function X satisfies the same Lipschitz bound.

Consider now the sequence {Zn} of functions given by Definition 4.1. Since Zn(t) ≺ F [Xn(t)] for a.e.
t and since F is bounded, (4.12) implies that the Zn are uniformly bounded in L ∞((0, T ),L 2(Ω)) for all
T > 0. Extracting another subsequence if necessary, we may therefore assume that

Zn −⇀ Z weak* in L ∞((0, T ),L 2(Ω)).

On the other hand, by uniform continuity of F we have that

Fn := F [Xn] −→ F [X] =: F strongly in L 2((0, T ),L 2(Ω)).

Lemma 4.3 then shows that Z satisfies (4.2).
The uniform bound on Zn implies that the maps

Yn(t) := V̄n +

ˆ t

0

Zn(s) ds for all t > 0

are uniformly Lipschitz continuous in each time interval [0, T ] with values in L 2(Ω). Starting from (4.1)
and applying standard stability results for differential inclusions (cf. Theorem 3.4 in [8], here the strong
convergence of Xn is crucial), we obtain that X solves

Ẋ(t) + ∂IK (X(t)) ∋ V̄ +

ˆ t

0

Z(s) ds for a.e. t > 0. (4.13)

In particular, the mapX is right-differentiable in L 2(Ω) for each t > 0, with right-continuous right-derivative

V ; see Propositions 3.3 and 3.4 in [8]. Therefore (4.13) holds for all t > 0 if Ẋ(t) is replaced by V (t). We
may also assume that

Vn −⇀ V weak* in L ∞((0, T ),L 2(Ω))

for all T > 0 (extracting another subsequence if necessary). To show that Vn −→ V strongly in L 2((0, T ),L 2(Ω)),
we multiply the differential inclusion by

d

dt

(
(T − t)Xn(t)

)
= (T − t)Vn(t)−Xn(t)

and integrate in time over (0, T )×Ω. Now notice that since Xn(t), Vn(t) ∈ HXn(t) and since ∂IK (X) ⊂ H ⊥
X

for all X ∈ K , the subdifferential terms vanish after integration over Ω. Integrating by parts in the force
term, we obtain ˆ T

0

(T − t)∥Vn(t)∥2L 2(Ω) dt−
ˆ T

0

(ˆ
Ω

Vn(t,m)Xn(t,m) dm

)
dt

= −T
ˆ
Ω

V̄n(m)X̄n(m) dm−
ˆ T

0

(T − t)

(ˆ
Ω

Zn(t,m)Xn(t,m) dm

)
dt.

A similar identity holds in the limit. Since the sequence {Xn} converges strongly and the sequence {(Vn, Zn)}
converges weakly, we can pass to the limit and get

lim
n→∞

ˆ T

0

(T − t)∥Vn(t)∥2L 2(Ω) dt =

ˆ T

0

(T − t)∥V (t)∥2L 2(Ω) dt

for every T > 0. This, together with (4.12) yields the desired strong convergence. Therefore there exists an
L1-negligible set N ⊂ [0,∞) such that (up to extraction of a subsequence if necessary) Vn(t) −→ V (t) in
L 2(Ω) for every t ∈ [0,∞) \N . We can then pass to the limit in (4.3) written for (Xn, Vn) and obtain the
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corresponding inclusion for (X,V ) in (t1,∞) for all t1 ∈ [0,∞) \ N . Since V is right-continuous, formula
(4.3) eventually holds for all t1 > 0.

(4.4) follows by the same argument, first passing to the limit for t1 ∈ [0,∞) \ N and recalling that by
(2.8) if Kn = PK (Hn) and Kn −→ K, Hn −⇀ H in L 2(Ω) then K = PK (H). �

We conclude this section with the main existence result for generalized Lagrangian solutions. As for sticky
evolutions, its proof relies on the discrete particle approach we will study in the next section, see Remark
5.3.

Theorem 4.5 (Existence of generalized Lagrangian solutions). Let us assume that the force functional
F : K −→ L 2(Ω) is pointwise linearly bounded and uniformly continuous. Then for every couple X̄ ∈ K
and V̄ ∈ HX̄ there exists a generalized Lagrangian solution with initial data (X̄, V̄ ).

5. Dynamics of Discrete Particles

We discussed in the Introduction that the conservation law (1.1) formally admits particular solutions for
which the density consists of finite linear combinations of Dirac measures; see (1.6) above. In this section,
we will reformulate these solutions in the Lagrangian framework and will prove their global existence. In
fact, they are Lagrangian solutions in the sense of Definitions 3.4 and 4.1.

For every N ∈ N let us introduce the convex sets

MN :=
{
m ∈ RN : mi > 0 and

N∑
i=1

mi = 1
}
,

KN :=
{
x ∈ RN : x1 6 x2 6 . . . 6 xN

}
.

For all times t > 0, a discrete solution to (1.1) of the form (1.6) is therefore determined by a unique number
N ∈ N and a vector (m,x,v) ∈ MN ×KN × RN . To find a Lagrangian representation of (1.6) we consider
a partition of Ω given by

0 =: w0 < w1 < . . . < wN := 1 where wi :=
i∑

j=1

mj (5.1)

for i = 1, . . . , N − 1. Writing Wi := [wi−1, wi) we define functions

X :=
N∑
i=1

xi1Wi and V :=
N∑
i=1

vi1Wi , (5.2)

the (finite dimensional) Hilbert space

Hm :=
{
X =

N∑
i=1

xi1Wi : x = (x1, · · · , xN ) ∈ RN
}
⊂ L 2(Ω) (5.3)

and its closed convex cone

Km :=
{
X =

N∑
i=1

xi1Wi : x = (x1, · · · , xN ) ∈ KN
}
⊂ K ⊂ L 2(Ω) (5.4)

Then clearly X ∈ Km ⊂ K and V ∈ HX , and we easily have

ϱ = X#m =
N∑
i=1

mi δxi , V = v ◦X, (ϱv) =
N∑
i=1

mivi δxi . (5.5)
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5.1. Discrete Lagrangian solutions. We can reproduce at the discrete level the same approach we fol-
lowed in Section 3: we can introduce the projected forces

Fm[X] := PHm(F [X]) =
N∑
i=1

am,i1Wi , am,i =

 
Wi

F [X(t)](m) dm, (5.6)

which satisfies the analogous of (3.2)ˆ
R
ψ(x)f [ϱ](dx) =

ˆ
Ω

ψ(X)Fm dm, if X ∈ Hm, ϱ = X#m as in (5.5), (5.7)

and we can simply solve the differential inclusion

Ẋ(t) + ∂IKm(X) = V̄ +

ˆ t

0

Fm[X(s)] ds, X(0) = X̄ (5.8)

for given initial data (X̄, V̄ ) ∈ Km × HX̄ . Introducing Y (t) := V̄ +
´ t

0
Fm[X(s)] ds =

∑N
i=1 yi(t)1Wi , we

end up with the system{
Ẋ(t) + ∂IKm(X(t)) ∋ Y (t),

Ẏ (t) = Fm[X(t)],
for t > 0, (X(0), Y (0)) = (X̄, V̄ ), (5.9)

which is equivalent to (1.26).
If, e.g., F is Lipschitz, then Fm : Km → Hm is also Lipschitz and the analogous statements of Theorems

3.5 and 3.6 hold at this discrete level. In particular, as in (3.9), we have

V (t) =
d+

dt
X(t) = PTX(t)Km(Y (t)); (5.10)

the discrete analog of Lemma 2.4 thus justifies condition (1.15) we introduced in the simplified situation of
a collision of two particles.

Let us now consider a sequence Xn of discrete Lagrangian solutions of (5.8) corresponding to initial data
(X̄n, V̄n) ∈ Kmn × Hmn strongly converging to (X̄, V̄ ) ∈ K × L 2(Ω). We want to show that Xn −→ X
locally uniformly in C([0,∞);L 2(Ω)) where X is the Lagrangian solution associated to (X̄, V̄ ). To make
the analysis simpler, we will assume that the distributions of masses mn give raise by (5.1) to suffiently fine
partitions of the interval (0, 1), i.e.

for every K ∈ K there exist Kn ∈ Kmn such that Kn −→ K in L 2(Ω). (5.11)

Since Kmn ⊂ K , (5.11) is equivalent to say that the sequence Kmn Mosco-converge to K in the Hilbert
space L 2(Ω) [1, Section 3.3.2]. By first approximating C1([0, 1]) functions (which belong to K − K ) and
then applying a density argument, it is not difficult to show that (5.11) implies a similar property for the
closed subspaces Hmn in L 2(Ω), i.e.

for every H ∈ L 2(Ω) there exist Hn ∈ Hmn such that Hn −→ H in L 2(Ω). (5.12)

Both (5.11) and (5.12) surely holds if, e.g.,

lim
n→∞

∥mn∥∞ = 0,

where for a generic m = (m1, · · · ,mN ) ∈ MN we set ∥m∥∞ = supimi.
It is not surprising that we have the following approximation result:

Theorem 5.1 (Convergence of discrete Lagrangian solutions). Let F : K → L 2(Ω) be Lipschitz and point-
wise linearly bounded, and let mn ∈ MNn be a sequence satisfying (5.11) and let Xn ∈ Liploc([0,∞);Kmn) of
discrete Lagrangian solutions corresponding to the initial data (X̄n, V̄n) ∈ Kmn × Hmn strongly converging
to (X̄, V̄ ) ∈ K × L 2(Ω). Then Xn −→ X locally uniformly in C([0,∞);L 2(Ω)) where X is the unique
Lagrangian solution starting from (X̄, V̄ ).

Proof. We cannot directly apply the stability estimates of Theorem 3.6, since the discrete Lagrangian solu-
tions are associated to convex sets Kmn depending on n, so we combine the compactness argument of the
proof of Theorem 4.4 and a classical stability result for differential inclusion [1, Theorem 3.74] generated by
a Mosco-converging sequence of convex sets.
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In fact, we can choose a convex and superquadratic functional ψ satisfying (2.33) such that

Ψ[X̄n] + Ψ[V̄n] 6 C;

the estimates of Lemma 3.14 (which can be extended to the discrete case) yield

Ψ[Xn(t)] + Ψ[Vn(t)] 6 CT for all t ∈ [0, T ] and all n.

Arguing as in the proof of Theorem 4.4 we can find a subsequence (still denoted by Xn) locally uniformly
converging to a limit X ∈ Liploc([0,∞);L 2(Ω)) which takes its value in K . We easily get that Fmn [Xn] −→
F [X] in L2

loc([0,∞);L 2(Ω)) since for every time t ≥ 0∥∥Fmn [Xn]− F [X]
∥∥

L 2(Ω)
6 C

∥∥Xn −X
∥∥

L 2(Ω)
+
∥∥Fmn [X]− F [X]

∥∥
L 2(Ω)

and Fmn [X] = PHmn

(
F [X]

)
−→ F [X] in L 2(Ω) by (5.12).

It follows that

Yn(t) = V̄n +

ˆ t

0

Fmn [Xn(s)] ds −→ Y (t) := V̄ +

ˆ t

0

F [X(s)] ds

locally uniformly in C([0,∞);L 2(Ω)). We can then apply [1, Theorem 3.74] to show that the limit X also
satisfies the differential inclusion

Ẋ + ∂IK (X) ∋ Y

and therefore it is a Lagrangian solution associated to (X̄, V̄ ). Since the limit is uniquely determined (by
Theorem 3.6) we conclude that the whole sequence Xn converges to X. �

5.2. A sticky evolution dynamic for discrete particles. In this section we will describe a different
discrete procedure to construct evolution of a finite number of particles. In the general case, this approach
will lead to generalized Lagrangian solutions; when F is sticking, we will obtain a sticky evolution which in
in fact will coincide with the construction we considered in the previous section.

We already explained the basic idea in the introduction: at the discrete level, a collision between two or
more particles at some time t′ corresponds to the impact of the vector x with the boundary ∂KN (equivalently,
of the Lagrangian parametrization X with the boundary of Km in Hm): in this case, we relabel the particles
and consider the evolution for t > t′ in a reduced convex cone attached to the new configuration up to the
next collision.

In order to get a precise description of the evolution, let us observe that the boundary ∂KN of the
cone KN in RN consists of vectors whose components are not all distinct. For any x ∈ ∂KN we define
Ii :=

{
k : xk = xi} for all i = 1, . . . , N . Then there exists a interger N ′ < N and an increasing map

σ : {1, · · · , N ′} −→ {1, · · · , N}

with the property that σ(j) = min Iσ(j) for all j = 1, . . . , N ′. We set

m′
j :=

∑
i∈Iσ(j)

mi, x′j := xσ(j), and m′
jv

′
j :=

∑
i∈Iσ(j)

mivi (5.13)

for all j and obtain a new state vector (m′,x′,v′) ∈ MN ′ × KN ′ × RN ′
. In terms of the corresponding

functions X ′ ∈ K and V ′ ∈ HX′ (defined as in (5.2)), this means that X ′ ∈ Km′ , V ′ ∈ HX′ ⊂ Hm′ and

X ′ = X, V ′ = PHX′ (V ). (5.14)

Starting from this remark, we can now introduce the precise evolution algorithm for the Lagrangian parametriza-
tion X. Assume without loss of generality that X̄ does not belong to the boundary of Km̄ in Hm̄. We
construct a map t 7→ X(t) ∈ K as follows: On the time interval [t0, t1), where t0 := 0 and t1 > 0 is to be
determined later so that X(t) does not touch the boundary of ∂Km̄ in [t0, t1), we obtain functions

X(t, ·) =
N∑
i=1

xi(t)1Wi and V (t, ·) =
N∑
i=1

vi(t)1Wi

by solving the system

Ẋ(t) = V (t), V̇ (t) = PHm̄(F [X(t)]). (5.15)
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Since Hm̄ = HX(t) in [t0, t1), we notice that the projection onto Hm̄ returns a function that is piecewise
constant on the same partition on which (X,V ) is constant. More precisely, we find

PHm̄(F [X(t)]) =
N∑
i=1

ai(t)1Wi where ai(t) :=

 
Wi

F [X(t)](m) dm

for i = 1, . . . , N . Hence (5.15) is equivalent to the system

ẋ(t) = v(t), v̇(t) = a(t) for all t ∈ [t0, t1), (5.16)

which is well-defined. The time t1 is taken as the smallest t > 0 for which X(t) hits the boundary of Km̄

in Hm̄. As explained above, at time t1 we can find an integer N ′ < N and compute a new state vector
(m̄′, x̄′, v̄′) ∈ MN ′ ×K N ′ ×RN ′

by (5.13). On the interval [t1, t2), with t2 > t1 to be determined, we obtain

X(t, ·) =
N ′∑
j=1

x′j(t)1W ′
j

and V (t, ·) =
N ′∑
j=1

v′j(t)1W ′
j

by solving (5.15) and (5.16) with m̄ replaced by m̄′, the initial condition (x′,v′)(t1) := (x̄′, v̄′), and the
new subdivision W ′

j := [w′
j−1, w

′
j) defined by

0 =: w′
0 < w′

1 < . . . < w′
N ′ := 1 where w′

j :=

j∑
k=1

m′
k for all j = 1, . . . , N ′.

Again the problem reduces to solving a finite dimensional ordinary differential equation and the time t2 is
taken to be the smallest t > t1 for which X(t) is in the boundary of K N ′

. Then we continue in the same
fashion.

We obtain an integer K ∈ N, a sequence of “collision times”

0 =: t0 < t1 < . . . < tK−1 < tK := ∞,

and a pair of functions (X,V ) such that

HX(t) = HX(tk−1), Ẋ(t) = V (t), V̇ (t) = PHX(t)
(F [X(t)]) (5.17)

for all t ∈ [tk−1, tk) and k = 1, . . . ,K. At collision times the space HX(tk) is strictly smaller than HX(t) for
all t < tk, which implies that K 6 N . We have

X(tk+) = X(tk−), V (tk+) = PHX(tk)
(V (tk−)). (5.18)

It is easy to check that the monotonicity condition (3.23) is satisfied.

5.3. Sticky and generalized Lagrangian solutions for discrete particles. The next Theorem shows
that by the algorithm described in the previous section we will obtain a generalized Lagrangian solution
in the original cone K starting from the discrete data (X̄, V̄ ); when F is sticking, this coincides with the
unique sticky Lagrangian solution.

Theorem 5.2 (Generalized and sticky Lagrangian solutions for discrete particles).
Suppose that F : K −→ L 2(Ω) is uniformly continuous. Consider functions (X̄, V̄ ) of the form (5.2) for
some N ∈ N and (m̄, x̄, v̄) ∈ MN ×KN × RN .

(1) The curve (X,V ) described by the previous section is a generalized Lagrangian solution to (3.1) with
initial data (X̄, V̄ ).

(2) If F is sticking, then (X,V ) is a sticky Lagrangian solution.

Proof. Let us first prove that the map t 7→ X(t) is a generalized Lagrangian solution with respect to the
choice

Z(t) := PHX(t)
(F [X(t)]) for all t > 0.

The fact that V is the right-derivative of X follows immediately from the construction. To prove (4.3) it is
not restrictive to assume t1 = 0. We argue by induction on the collision times. In the first interval [t0, t1)
inclusion (4.3) is satisfied by taking the null selection in the subdifferential ∂IK (X(t)).
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Assume now that (4.3) is satisfied in [tk−1, tk) for some k. Then

Ẋ(t) = V (tk+) +

ˆ t

tk

PHX(s)
(F [X(s)]) ds

=
(
V (tk+)− V (tk−)

)
+ V (tk−) +

ˆ t

tk

PHX(s)
(F [X(s)]) ds (5.19)

for any t ∈ [tk, tk+1), by (5.17). By induction assumption, we have that

V (tk−) + ξ = V̄ +

ˆ tk

0

PHX(s)
(F [X(s)]) ds (5.20)

for some ξ ∈ ∂IK (X(tk)). Combining (5.19) and (5.20), we obtain

Ẋ(t) + ξ +
(
V (tk−)− V (tk+)

)
= V̄ +

ˆ t

0

PHX(s)
(F [X(s)]) ds

Because of (5.17), we have that

V (tk−) = lim
h→0+

h−1
(
X(tk)−X(tk − h)

)
.

Using (5.18), we then obtain

V (tk−)− V (tk+)

= V (tk−)− PHX(tk)
(V (tk−))

= lim
h→0+

h−1
(
X(tk)−X(tk − h)− PHX(tk)

(
X(tk)−X(tk − h)

))
= lim

h→0+
h−1

(
PHX(tk)

(
X(tk − h)

)
−X(tk − h)

)
.

We now use Lemmas 2.4 and 2.6 and conclude that V (tk−)−V (tk+) ∈ ∂IK (X(tk)), noticing that NXK =
∂IK (X) for all X ∈ K . Property (3.23) implies the monotonicity of the subdifferentials, which are closed
convex cones. This yields

ξ +
(
V (tk−)− V (tk+)

)
∈ ∂IK (X(t))

for all t ∈ [tk, tk+1). Identities (4.4) and (4.6) can be proved as in Proposition 3.8. We conclude that X is a
generalized Lagrangian solution.

It remains to show that if F is sticking, then (3.1) holds. Because of (3.23), we have that X(t) ∈ HX(s)

for all s 6 t. Then Definition 3.3 yieldsˆ t

0

(
F [X(s)]− PHX(s)

(F [X(s)])
)
ds ∈ ∂IK (X(t)). (5.21)

Adding (5.21) to either side of

V (t) + ∂IK (X(t)) ∋ V̄ +

ˆ t

0

PHX(s)
(F [X(s)]) ds,

we obtain (3.1). Therefore X is a sticky Lagrangian solution. �

We already know that any (even generalized) Lagrangian solution induces a solution of the conservation
law (1.1). Since for each time t > 0 the transport map X(t, ·) is piecewise constant, it is easy to check that
the corresponding solution is in fact a discrete particle solution: the density/momentum is of the form (1.6).

Remark 5.3. Notice that piecewise constant functions as in (5.2) are dense in L 2(Ω), so we can approximate
any given initial data and then combine the existence result 5.2 with the stability Theorem 4.4 to get the
proof of Theorem 4.5.

Remark 5.4. The proof of Theorem 3.11 follows by a similar approximation argument. By Theorem 3.10 it
is sufficient to show that any Lagrangian solution X with X̄ ∈ K and V̄ ∈ HX̄ satisfies

ΩX̄ ⊂ ΩX(t) for all t > 0.
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That is, if X̄ is constant on some interval (α, β) ⊂ Ω, then X(t) remains constant on (α, β) for all times
t > 0. We approximate (X̄, V̄ ) by a sequence (X̄n, V̄n) of the form (5.2) such that X̄n is constant on (α, β).
Since this property is preserved by the discrete Lagrangian solution constructed in Theorem 5.2, the stability
estimates of Theorem 3.6 show that the limit function X(t) is still constant on (α, β).

6. Global Existence in Eulerian coordinates

Theorems 3.6, 3.11, 3.13, and 4.5 of the previous sections
immediately translate into global existence results for the Euler system of conservation laws (1.1). Before

stating some of the related results, let us explore in more detail the relation between the force functionals
f [ϱ] in (1.1) and their reformulation in the Lagrangian framework.

6.1. The Eulerian description of the force field. Let us first introduce the space

T2(R) :=
{
(ϱ, v) : ϱ ∈ P2(R), v ∈ L 2(R, ϱ)

}
.

For all (ϱi, vi) ∈ T2(R) with i = 1 . . . 2, we then define [17, §2]

D2

(
(ϱ1, v1), (ϱ2, v2)

)
:= max

{
W2(ϱ1, ϱ2), U2

(
(ϱ1, v1), (ϱ2, v2)

)}
,

where W2 is the Wasserstein distance and U2 denotes the semi-distance

U2
2

(
(ϱ1, v1), (ϱ2, v2)

)
:=

ˆ
R×R

|v1(x)− v2(y)|2ϱ(dx, dy)

=

ˆ
Ω

|v1(Xϱ1(m))− v2(Xϱ2(m))|2 dm. (6.1)

Here ϱ ∈ Γopt(ϱ1, ϱ2) is the unique optimal transport map between the measures ϱ1 and ϱ2. It can be
expressed in terms of the transport maps defined in (2.4); see (2.6). The sequence {(ϱn, vn)} converges to
(ϱ, v) in the metric space (T2(R), D2) if and only if W2(ϱn, ϱ) −→ 0, if ϱnvn −⇀ ϱv weak* in M (R), and ifˆ

R
|vn|2 ϱn −→

ˆ
R
|v|2 ϱ.

We refer the reader to [17, Prop. 2.1] and to [4] for further details (see in particular Definition 5.4.3).
We consider a continuous map (with respect to the Wasserstein topology in P2(R) and the weak∗ topology

on M (R) induced by Cb(R))

f : P2(R) −→ M (R), f [ϱ] = fϱ ϱ, fϱ ∈ L 2(R, ϱ), (6.2)

with the property that f [ϱ] is absolutely continuous with respect to ϱ ∈ P2(R): fϱ is the Radon-Nikodym-
derivative of f [ϱ] with respect to ϱ and assume that fϱ ∈ L 2(R, ϱ).

Definition 6.1 (Boundedness). We say that a map f : P2(R) −→ M (R) as in (6.2) is bounded if there
exists a constant C > 0 such that

∥fϱ∥2L 2(R,ϱ) 6 C
(
1 +

ˆ
R
|x|2 dϱ

)
for all ϱ ∈ P2(R).

We say that f is pointwise linearly bounded if there exists a Cp > 0 such that

|fϱ(x)| 6 Cp

(
1 + |x|+

ˆ
R
|x| dϱ

)
for a.e. x ∈ R and all ϱ ∈ P2(R).

Definition 6.2 (Uniform continuity I). We say that a map f : P2(R) −→ M (R) as in (6.2) is uniformly
continuous if there exists a modulus of continuity ω such that

U2

(
(ϱ1, fϱ1), (ϱ2, fϱ2)

)
6 ω

(
W2(ϱ1, ϱ2)

)
for all ϱ1, ϱ2 ∈ P2(R). (6.3)

In the case ω(r) = Lr for some constant L > 0 and all r > 0, we say that f is Lipschitz continuous.
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As discussed in Section 2.1, there is a one-to-one correspondence between measures ϱ ∈ P2(R) and
optimal transport maps X ∈ L 2(Ω), given by

X ∈ K and X#m = ϱ. (6.4)

We now want to construct a functional F : K −→ L 2(Ω) such thatˆ
R
φ(x) f [ϱ](dx) =

ˆ
Ω

φ(X(m))F [X](m) dm for all φ ∈ Cb(R), (6.5)

whenever (X, ϱ) are related by (6.4). One possible choice is to set

F [X] := fϱ ◦X for all (X, ϱ) satisfying (6.4), (6.6)

which easily gives F [X] ∈ L 2(Ω). Then the boundedness and continuity assumptions on the functional f
in Definitions 6.1 and 6.2 translate immediately into the corresponding properties for F in Definitions 3.1
and 3.2. It can be useful, however, to also consider different choices for F .

Definition 6.3 ( Uniform continuity II). We say that a map f : P2(R) −→ M (R) as in (6.2) is densely
uniformly continuous if (6.3) holds for measures that are absolutely continuous with respect to L1 with
bounded densities. We define dense Lipschitz continuity similarly.

Lemma 6.4. If f : P2(R) −→ M (R) is densely uniformly continuous, then there exists a unique uniformly
continuous map F : K −→ L 2(Ω) such that (6.5) holds for all (X, ϱ) satisfying (6.4).

Note that (6.5) imlies that fϱ ◦X = PHX (F [X]) for all (X, ϱ) with (6.4).

Proof. We denote by Kreg the dense subset of K whose elements are C1(Ω̄)-maps with strictly (hence
uniformly) positive derivatives. For every X ∈ Kreg the push-forward ϱ := X#m is absolutely continuous
with respect to the Lebesgue measure L1 and has a bounded density. We can then define

F [X] := fϱ ◦X for all X ∈ Kreg. (6.7)

Applying definition (6.1) and (6.3) we obtain

∥F [X1]− F [X2]∥L 2(Ω) 6 ω
(
∥X1 −X2∥L 2(Ω)

)
for all X1, X2 ∈ Kreg.

Then F can be extended to all of K by density. One can check that this functional satisfies (6.7), therefore
it is uniquely determined by f . �

Definition 6.5 (Sticking). Let f : P2(R) −→ M (R) be densely uniformly continuous and let F be the
functional from Lemma 6.4. We say that f is sticking if F is sticking.

6.2. Existence results and examples. We state here a simple example of possible applications of the
previous Lagrangian results; for the sake of simplicity, we omit to detail all the information which could
be derived by the finer structure properties and by the a priori estimates we obtained for the Lagrangian
formulation. It is worth noticing that all the solutions can be obtained as a suitable limit of discrete particle
evolutions.

The first statement follows by Theorem 4.5, the second one by Theorem 3.6, Theorems 3.10 and 3.11
yields the last assertion.

Theorem 6.6 (Global Existence). Let us fix ϱ̄ ∈ P2(R) and v̄ ∈ L 2(R, ϱ̄)..
(1) Suppose that the force functional f : P2(R) −→ M (R) is pointwise linearly bounded and densely

uniformly continuous. Then there exists a solution (ϱ, v) of the conservation law (1.1) with initial
data (ϱ̄, v̄).

(2) If f : P2(R) −→ M (R) is densely Lipschitz continuous, then there exists a stable selection of a
solution (ϱ, v) of (1.1) with respect to the initial data (ϱ̄, v̄) in (T2(R), D2).

(3) If f : P2(R) −→ M (R) is densely Lipschitz continuous, and sticking, then there exists a stable sticky
solution (ϱ, v) of (1.1) with initial data (ϱ̄, v̄). The map St : (ϱ̄, v̄) 7→ ϱ(t, ·), v(t, ·)) is a semigroup
in (T2(R), D2).

We finish the paper by giving a number of examples of force functionals.
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Example 6.7. Let v : R −→ R be a continuous function satisfying

|v(x)| 6 Cv(1 + |x|) for all x ∈ R, (6.8)

with Cv > 0 some constant. Then the operator defined by

f [ϱ] := ϱv for all ϱ ∈ P2(R)
is pointwise linearly bounded; it is Lipschitz continuous if v is a Lipschitz function. Note that f [ϱ] is the
Wasserstein differential of the potential energy (see [4])

V [ϱ] :=

ˆ
R
V (x) ϱ(dx) where v = V ′.

Example 6.8. Let w : R −→ R be a continuous function satisfying (6.8). Then

f [ϱ] := ϱ(w ⋆ ϱ) = ϱ

(ˆ
R
w(· − y) ϱ(dy)

)
for all ϱ ∈ P2(R)

is pointwise linearly bounded, since∣∣(w ⋆ ϱ)(x)∣∣ 6 Cw

ˆ
R
(1 + |x− y|) ϱ(dy) 6 Cw

(
1 + |x|+

ˆ
R
|y| ϱ(dy)

)
It is Lipschitz continuous if w is a Lipschitz function. In fact, writing fϱ := w ⋆ ϱ for all ϱ ∈ P2(R), we have
that

|fϱ1(x)− fϱ2(y)| =
∣∣∣∣ˆ

R
w(x− x′) ϱ1(dx

′)−
ˆ
R
w(y − y′) ϱ2(dy

′)

∣∣∣∣
=

∣∣∣∣ˆ
R×R

(
w(x− x′)− w(y − y′)

)
ϱ(dx′,dy′)

∣∣∣∣
6 L

(
|x− y|+

ˆ
R×R

|x′ − y′|ϱ(dx′, dy′)
)
,

where L > 0 is the Lipschitz constant of w and ϱ ∈ Γopt(ϱ1, ϱ2). This implies

U2

(
(ϱ1, fϱ1

), (ϱ2, fϱ2
)
)
6 4LW2(ϱ1, ϱ2) for all ϱ1, ϱ2 ∈ P2(R).

Note that f [ϱ] is the Wasserstein differential of the interaction energy (see [4])

W [ϱ] =

ˆ
R×R

W (x− y) ϱ(dx) ϱ(dy) where w =W ′.

Example 6.9. Let us consider the previous example with the Borel function

w(x) :=


1 if x > 0

0 if x = 0

−1 if x < 0

,

which corresponds to W (x) := |x|. To show that f [ϱ] is continuous, note that

fϱ(x) = mϱ(x) +Mϱ(x)− 1 for all x ∈ R,
where mϱ(x) := ϱ

(
(−∞, x)

)
and Mϱ(x) := ϱ

(
(−∞, x]

)
as in (2.3) above. Up to rescaling and adding

constants, the function fϱ is the precise representative of the cumulative distribution function of the measure
ϱ. For convenience, we define

f̃ϱ(x) := fϱ(x) + 1 for all x ∈ R, f̃ [ϱ] := f̃ϱ ϱ.

We now introduce the sets

Jϱ :=
{
x ∈ R : ϱ

(
{x}

)
> 0

}
and Jϱ :=

∪
x∈Jϱ

(
mϱ(x),Mϱ(x)

)
.

Note that Jϱ is at most countable. If Xϱ is defined by (2.4), then

Xϱ(m) = x for all m ∈ [mϱ(x),Mϱ(x)] and x ∈ Jϱ,

f̃ϱ(Xϱ(m)) = 2m for all m ∈ Ω \ Jϱ.
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For any φ ∈ Cb(R) we haveˆ
Ω

φ(x) f̃ [ϱ](dx) =

ˆ
Ω

φ(Xϱ(m))f̃ϱ(Xϱ(m)) dm

=

ˆ
Ω\Jϱ

φ(Xϱ(m))f̃ϱ(Xϱ(m)) dm+
∑
x∈Jϱ

ˆ Mϱ(x)

mϱ(x)

φ(Xϱ(m))f̃ϱ(Xϱ(m)) dm

= 2

ˆ
Ω\Jϱ

φ(Xϱ(m))mdm+
∑
x∈Jϱ

(
M2

ϱ (x)−m2
ϱ(x)

)
φ(x)

= 2

ˆ
Ω\Jϱ

φ(Xϱ(m))mdm+ 2
∑
x∈Jϱ

ˆ Mϱ(x)

mϱ(x)

φ(x)m dm

= 2

ˆ
Ω

φ(Xϱ(m))m dm.

It follows that ˆ
R
φ(x)fϱ(x) ϱ(dx) =

ˆ
Ω

φ(Xϱ(m)) (2m− 1) dm

Then the map f is pointwise linearly bounded because |fϱ(x)| 6 1 for all x ∈ R. It is continuous since
ϱn −→ ϱ in P2(R) implies that Xϱn −→ Xϱ in L 2(Ω). It is densely Lipschitz continuous since the
associated functional F is given by

F [X](m) := 2m− 1 for all m ∈ Ω, (6.9)

which does not even depend on X ∈ K anymore.

Example 6.10. For σ ∈ L ∞(R) let qϱ be the solution of (recall (1.3))

−∂2xxqϱ = λ
(
ϱ− σ

)
. (6.10)

Then qϱ is locally Lipschitz continuous and its (opposite) derivative aϱ := −∂xqϱ is locally of bounded
variation. Choosing its precise representative we then define

f [ϱ] := ϱaϱ for all ϱ ∈ P2(R). (6.11)

Setting Qσ(x) :=
´ x

0
σ(y) dy it is not difficult to check that

aϱ(x) = −λ
(1
2

(
mϱ(x) +Mϱ(x)− 1

)
−Qσ(x)

)
for all x ∈ R,

so that the associated operator F is given by

F [X](m) = −λ
(1
2
(2m− 1)−Qσ(X(m))

)
for all m ∈ Ω.

This corresponds to the Euler-Poisson system discussed in the Introduction. For simplicity, let us consider
consider the case when σ vanishes.

Sticky solutions for the attractive Euler-Poisson system. In the attractive case (when λ > 0) the functional
F [X] is sticking: Let ΩX be defined by (1.32) and let (α, β) ⊂ ΩX be a maximal interval. Then PHX

(F [X])
is constant in (α, β) and equal to its average over the interval. We define

Ξ(m) :=

ˆ m

α

(
F [X](m)− PHX (F [X])(m)

)
dm for all m ∈ (α, β). (6.12)

Then Ξ(α) = Ξ(β) = 0. Since λ > 0, Ξ is concave and, we obtain that Ξ(m) > 0 in (α, β). By Lemma 2.3,
we conclude that the functional F is sticking. Sticky Lagrangian solutions to the Euler-Poisson system (1.1)
(thus obtained as limit of sticky particly dynamics) are therefore unique and in fact form a semigroup in the
metric space (T2(R), D2) by Theorems 3.6, 3.10, and 3.11.

We can then apply the representation formula (3.26) and (2.9) to obtain the following result:
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Theorem 6.11 (Representation formula for attractive Euler-Poisson system). The unique sticky Lagrangian
solution of the Euler-Poisson system (λ > 0) corresponding to initial data (ϱ̄, v̄) with ϱ̄ = X̄#m, X̄ ∈ K ,
and V̄ = v̄ ◦ X̄, can be obtained by the formula

ϱ(t, ·) = X(t, ·)#m, X(t,m) =
∂

∂m
X ∗∗(t,m) (6.13)

where X ∗∗(t,m) is the convex envelope (w.r.t. m, see (2.10)) of

X (t,m) :=

ˆ m

0

(
X̄(ℓ) + tV̄ (ℓ)− λ

t2

4

(
2ℓ− 1

))
dℓ (6.14)

Notice that when λ = 0 we find the sticky particle solution of [17].

Lagrangian solutions for the repulsive Euler-Poisson system. In the repulsive case λ < 0 the function Ξ
defined in (6.12) is convex and vanishes at the endpoints of (α, β), thus Ξ(m) 6 0 for all m ∈ (α, β), and the
map F does not satisfies the sticking condition. In this case (6.13)-(6.14) may be different from the solution
given by Theorem 3.6.

Here is a simple example for λ = −2: consider the initial condition

X̄(m) := m− 1/2, V̄ (m) := − sign(m− 1/2), (6.15)

for which (6.14) yields

X (t,m) =
1

2
(1 + t2)(m− 1/2)2 − t|m− 1/2| − c(t), c(t) :=

1

8
(1 + t2 − 4t). (6.16)

It is easy to check that

X ∗∗(t,m) =

{
X (t,m) if |m− 1/2| ≥ δ(t),

− t2

2(1+t2) − c(t) if |m− 1/2| ≤ δ(t),
where δ(t) :=

t

1 + t2
, (6.17)

so that X(t, ·) is the piecewise linear continuous map

X(t,m) =

{
X̄(t,m) if |m− 1/2| ≥ δ(t),

0 if |m− 1/2| ≤ δ(t),
where X̄(t,m) :=

∂

∂m
X (t,m).

If we eventually introduce

Y (t,m) :=
∂

∂t
X̄(t,m) =

∂2

∂t ∂m
X (t,m) = 2t(m− 1/2)− sign(m− 1/2),

recalling (3.6) X is a Lagrangian solution if and only if

Y (t, ·)− Ẋ(t, ·) ∈ ∂IK (X(t, ·)) a.e. in (0,∞).

By Lemma 2.3 we obtain the equivalent condition

∂

∂t

(
X (t,m)−X ∗∗(t,m)

)
≥ 0 in − δ(t) < m < δ(t), (6.18)

which is not compatible with (6.16) and (6.17): to see this, fix e.g. 0 < δ < 1/2, m∗ := 1/2 + δ, and

t± := 1±
√
1−4δ2

2δ , so that δ(t±) = δ < δ(t) for every t ∈ (t−, t+). We thus have

X (t±,m∗)−X ∗∗(t±,m∗) = 0, X (t,m∗)−X ∗∗(t,m∗) > 0 for t− < t < t+,

which contradicts (6.18).

7. Convergence of the Time Discrete Scheme of Section 1.4

In this section, we establish the convergence of the time discrete scheme of Section 1.4. Since the proof
does not substantially differ from the one provided in [7] for order-preserving vibrating strings, we only
sketch the main steps. The key point is the non-expansive property of the time-discrete scheme. Indeed, we
first observe that the rearrangement operator, even in the periodic case, is non-expansive in L 2(Ω). More
precisely, we have that ˆ 1

0

|Y ∗(m)− Z∗(m)|2 dm 6
ˆ 1

0

|Y (m)− Z(m)|2 dm
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for all pairs (Y, Z) of maps such that Y − id and Z − id are 1-periodic and square integrable. Next, we see
that the harmonic oscillations (1.39) are isometric in phase space for (X(t,m)−m,V (t,m)), for each fixed
m. Let (Xτ,n, Vτ,n), (Yτ,n,Wτ,n) be generated by the time-discrete scheme. Then

∥Xτ,n+1 − Yτ,n+1∥2L 2(Ω) + ∥Vτ,n+1 −Wτ,n+1∥2L 2(Ω)

6 ∥X̂τ,n+1 − Ŷτ,n+1∥2L 2(Ω) + ∥Vτ,n+1 −Wτ,n+1∥2L 2(Ω)

= ∥Xτ,n − Yτ,n∥2L 2(Ω) + ∥Vτ,n −Wτ,n||2L 2(Ω).

Since (X = id, V = 0) is a trivial solution of the scheme, we immediately get

∥Xτ,n+1 − id∥2L 2(Ω) + ∥Vτ,n+1∥2L 2(Ω) 6 ∥X̄ − id∥2L 2(Ω) + ∥V̄ ∥2L 2(Ω).

Because the scheme is translation invariant in m and (discretely) in n, we easily deduce the strong compact-
ness in C0

t (L
2
m) of the discrete solutions, linearly interpolated in time, for each 1-periodic initial condition

(X̄− id, V̄ ), first in H 1 and then (by a density argument, using the non-expansive property of the scheme) in
L 2. Let us now examine the consistency of the scheme. To do that, let us compare a solution of the discrete
scheme to any smooth test function m→ (Y (m),W (m)) where Y is nondecreasing and (Y (m)−m,W (m))
is 1-periodic. Since the rearrangement operator is non-expansive and Y = Y ∗ is nondecreasing, we first get

∥Xτ,n+1 − Y ∥2L 2(Ω) + ∥Vτ,n+1 −W∥2L 2(Ω)

6 ∥X̂τ,n+1 − Y ∥2L 2(Ω) + ∥Vτ,n+1 −W∥2L 2(Ω)

=

ˆ 1

0

{∣∣(Xτ,n(m)−m) cos(τ) + Vτ,n(m) sin(τ)− (Y (m)−m)
∣∣2

+
∣∣(Xτ,n(m)−m) sin(τ)− Vτ,n(m) cos(τ) +W (m)

∣∣2}dm.

One can then check that

∥Xτ,n+1 − Y ∥2L 2(Ω) + ∥Vτ,n+1 −W∥2L 2(Ω)

6 ∥Xτ,n − Y ∥2L 2(Ω) + ∥Vτ,n −W ||2L 2(Ω)

+ 2τ

ˆ 1

0

{(
Xτ,n(m)− Y (m)

)
Vτ,n(m)−

(
Xτ,n(m)−m

)(
Vτ,n(m)−W (m)

)}
dm+ κτ2,

with constant κ depending only on the test functions (Y,W ) and the initial data (X̄, V̄ ). Clearly, this
estimate is consistent with the differential inequality

d

dt

{
∥X(t, ·)− Y ∥2L 2(Ω) + ∥V (t, ·)−W∥2L 2(Ω)

}
(7.1)

6 2

ˆ 1

0

{(
X(t,m)− Y (m)

)
V (t,m)−

(
X(t,m)−m

)(
V (t,m)−W (m)

)}
dm,

valid for all pair of 1-periodic functions of form m 7→ (Y (m) −m,W (m)) with Y nondecreasing, which is
nothing but the “metric formulation” of (1.35). Indeed, for a.e. t > 0 fixed, by choosing Y = X(t, ·) and
W = V (t, ·)± Z for arbitrary 1-periodic Z ∈ L 2(Ω), we find that

V̇ (t,m) +X(t,m)−m = 0;

cf. (1.39). On the other hand, by choosing W = V (t, ·) and Y = 0 resp. Y = 2X(t, ·), we obtain

ˆ 1

0

X(t,m)(Ẋ(t,m)− V (t,m)) dm = 0

ˆ 1

0

Y (m)(Ẋ(t,m)− V (t,m)) dm > 0 for all Y nondecreasing with Y (m)−m 1-periodic.

This implies precisely that −Ẋ(t, ·) + V (t, ·) ∈ ∂IK (X(t, ·)), which gives (1.35). This concludes the proof of
convergence for the time-discrete scheme.
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