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FRANÇOIS BOUCHUT AND MICHAEL WESTDICKENBERG

Abstract. We derive new models for gravity driven shallow water
flows in several space dimensions over a general topography. A
first model is valid for small slope variation, i.e. small curvature,
and a second model is valid for arbitrary topography. In both
cases no particular assumption is made on the velocity profile in
the material layer. The models are written in arbitrary coordinate
system, and several formulations are provided. A Coulomb friction
term is derived within the same framework, relevant in particular
for debris avalanches. All our models are invariant under rotation,
admit a conservative energy equation, and preserve the steady state
of a lake at rest.

1. Introduction

The problem of modeling gravity driven shallow water flows arises
in many physical situations, such as weather forecast, ocean modeling,
flows in rivers and coastal areas, debris avalanches, etc. Consider the
motion of a relatively thin layer of material under the influence of
gravity over a complex relief, like the ground of an ocean, or over
a mountain. Our particular interest here is to take into account as
much as possible the influence of the topography in the flow equations.
While the dynamics is well understood for the flat case, and also the
mathematical theory becomes settled now, see [8, 7, 6, 1], the situation
is different for the nonflat case. Several models are discussed in the
literature, that we briefly describe now.

The classical Saint-Venant system [12] is given by

∂th + ∂x(hu) = 0,
∂t(hu) + ∂x

(
hu2 + 1

2
gh2

)
+ hg∂xz = 0.

(1.1)
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It is widely used to model flows in one space dimension. Here h is the
height of the material, u is the velocity in the direction parallel to the
bed, and g is the gravity constant. The influence of the topography
enters through the function z(x) which is the altitude of the relief. The
Saint-Venant system is derived from the free surface incompressible
Navier-Stokes equations in the layer in the regime of small slopes, i.e.
with ∂xz being small. It is robust, hyperbolic and admits a convex
entropy, the energy of the system. One important feature of it is that
the steady state of a lake at rest, i.e. h + z = const and u = 0, is
preserved.

In 1991 Savage and Hutter [13] introduced a model which is capable
of handling more general slopes. In its adjusted form, it is given by

∂th + ∂X(hu) = 0 ,

∂t(hu) + ∂X

(
hu2 + 1

2
h2g cos θ

)
+ hg∂Xz + 1

2
gh2∂X(cos θ) = 0 .

(1.2)
The momentum equation can be replaced, for smooth solutions, by the
velocity equation

∂tu + ∂X

(
1
2
u2 + hg cos θ + gz

)
= 0 . (1.3)

Again the model is one-dimensional. But unlike the Saint-Venant equa-
tions which are set up in cartesian coordinate x, the Savage-Hutter
model uses the curvilinear coordinate X along the topography. The
function θ(X) measures the angle of the bed tangent with the horizon-
tal reference frame, thus

dx

dX
= cos θ , (1.4)

and we have the relations

dz

dx
= tan θ ,

dz

dX
= sin θ . (1.5)

The Savage-Hutter model is valid in the regime of small slope variation,
i.e., for θX ≡ ∂Xθ small. Note that θX is the curvature of the terrain.
As before, h is the width of the material layer, this time measured
in normal direction, not vertically. Still u is the tangential velocity.
The system is hyperbolic, admits a convex entropy (the energy) and
preserves the lake at rest steady state u = 0, h cos θ + z = const. It is
widely used, e.g. for the modeling of debris avalanches, in which case
a suitable friction term is added.

Recently, Bouchut et al. [2] derived a set of equations which models
gravity driven shallow water flows in one space dimension, but without
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any restriction on the topography,

∂t

(
h− 1

2
θXh2

)
+ ∂X

(
ln(1− hθX)

−θX

W

)
= 0 ,

∂tW + ∂X

(
W 2

2(1− hθX)2
+ hg cos θ + gz

)
= 0 .

(1.6)

Again the curvilinear coordinate X is used, h(t,X) is the width in nor-
mal direction, and W (t,X) is related to the tangential velocity profile
u defined in the material layer by

u(t,X, ξ̄) = W (t,X)/(1− ξ̄ θX) , (1.7)

where 0 ≤ ξ̄ ≤ h(t, X) is the normal variable. The system admits
a convex entropy and preserves the lake at rest steady state W = 0,
h cos θ + z = const. The model contains asymptotically the Savage-
Hutter model under the assumption θX = O(ε), by neglecting terms
in ε3 and ε2 respectively in (1.6). The number ε is the aspect ratio
between the width of the layer and the typical length of phenomena in
x (thus by definition h = O(ε)).

In the multidimensional case the models are less developed. This
is mainly due to the complexity of the geometry. The curvature, for
example, becomes a matrix, so the quantities that need to be included
into the model are much more difficult to guess than in one dimen-
sion. The extension to multidimension of the Saint-Venant system is of
course obvious, but it is valid only for almost flat topography, thus not
relevant for debris avalanches in particular. The extension to several
dimensions of the Savage-Hutter model is nontrivial. The first attempt
has been made by Gray, Wieland and Hutter [5]. Their model assumes
that the topography has large variation only in one direction, while
it is essentially flat in the other direction. Variants of this model can
be found in [14], [4]. Very recently, Hutter and Pusadaini introduced
a model for avalanches in arbitrarily curved and twisted channels, see
[11] and [10]. However, up to our knowledge, there still exists no truly
multidimensional model for gravity driven shallow water flows on a
general topography.

Our first aim in this paper is to provide general equations extend-
ing the Savage-Hutter theory to several space dimensions. With the
same approach, we also generalize the model of [2] without the small
curvature assumption. A new argument that we also propose enables
indeed to remove the assumption on the velocity profile in the nor-
mal variable (constant for (1.2), specific linear dependence (1.7) for
(1.6)). It is replaced by the interpretation of the velocity variable to
be approximately the average value in the layer of the velocity profile.
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In view of the fact that the model must be solved numerically, it
is desirable to have some flexibility in the choice of (possibly curvilin-
ear) coordinates, thus our models are written in arbitrary coordinates.
Our models also inherit the following features from the incompressible
Navier-Stokes equations with free surface:

• The systems admit a conservative entropy equation. This en-
sures hyperbolicity, and this is particularly important in order
to describe shock formation, and for numerical stability.

• The models preserve the steady state of a lake a rest.
• The models are invariant by rotation.
• The models imply intrinsically that the vorticity is transported

by the flow.

However, in contrast with [13], we shall not take into account internal
angles of friction.

The paper is organized as follows. In Section 2 we state our models
and their intrinsic properties, including the case of Coulomb friction.
In Section 3 we derive the models from the free surface incompress-
ible Navier-Stokes equations. Finally, in Section 4 we give a detailed
justification of the invariance under rotation.

2. Multidimensional shallow water models

This section is devoted to the introduction of our models for multi-
dimensional gravity driven shallow water flows valid for general geome-
tries. Our main model in Subsection 2.2 is valid under the assumption
of small slope variation, or equivalently of small curvature, while the
model proposed in Subsection 2.3 is more general and is valid without
this assumption, generalizing the one-dimensional model of [2]. The
Coulomb friction term is described in Subsection 2.4 for both cases.

2.1. Topography description. We assume that the topography is
given as the graph of some scalar function z(x), the altitude of the
terrain, where x ∈ RN is the horizontal coordinate, see Figure 1, the
physically relevant cases being N = 1 or N = 2. We denote the graph
by S ⊂ RN+1. We assume z sufficiently smooth, so that the unit
upward normal vector ~n to S can be defined. It is given by

~n =

(
− ∇xz√

1+|∇xz|2 ,
1√

1+|∇xz|2

)
≡ (−s, c) ∈ RN × R . (2.1)

The scalar c > 0 is indeed the cosine of the angle between ~n and the
vertical. From these definitions of s(x) and c(x), and since |s|2+c2 = 1,
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Figure 1. Multidimensional topography

we notice that

∂xc = −1
c
st∂xs , (2.2)

∂xs = c(Id−s st)∂2
xxz , ∂2

xxz =
c2 Id +s st

c3
∂xs , (2.3)

where we used the identity (Id−s st)(Id +s st/c2) = Id. The matrix

H = c3∂2
xxz (2.4)

is the curvature tensor of S.
It is sometimes convenient not to work in cartesian coordinates, but

in a coordinate system which is adapted to the topography. We account
for that need by assuming that we are given a parametrization of S,
or equivalently of the horizontal coordinate x ∈ RN by a curvilinear
coordinate ξ ∈ RN , i.e., we have a bijection

ξ 7→ x(ξ) ∈ RN , ξ ∈ RN . (2.5)

We denote by ∂ξx the Jacobian matrix of x, and for convenience we
assume that det ∂ξx > 0. We shall write down our models in general
ξ–coordinates, but of course it is possible to make the choice x(ξ) = ξ.
Anyway, the models are independent of the chosen coordinates.

2.2. A multidimensional shallow water model for small slope
variation. The model reads as follows. The flow is described by

h(t, ξ) ≥ 0 , V (t, ξ) ∈ RN , (2.6)

where h is the width of the material layer in direction normal to the
terrain, and V parameterizes the velocity field, in the sense that defin-
ing

V = (∂ξx)V, (2.7)
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the material velocity vector V tg ∈ RN+1 has horizontal/vertical com-
ponents

V tg =

(
Id
1
c
st

)
V . (2.8)

This formula gives obviously that this physical velocity is tangent to
the topography, V tg · ~n = 0. Its norm is |V tg|2 = |V|2 + (stV/c)2.

Our model reads as two equations on h and V ,

∂t(J0h) +∇ξ ·
(
J0hV

)
= 0 , (2.9)

∂tV +V ·∇ξV +(∂ξx)−1
(
Id−s st

)
(∂ξx)−t∇ξ

(
g(hc+z)

)
= Π , (2.10)

with right-hand side

Π ≡ −(∂ξx)−1
(
∂2

ξξx · V · V )− 1

c2
(V tHV) (∂ξx)−1s . (2.11)

The number g is the gravitation constant, and

J0 ≡ 1
c
det(∂ξx) . (2.12)

Equations (2.9), (2.10) can be combined to give a momentum equation
in conservative form,

∂t(J0hV ) +∇ξ · (J0hV V t) (2.13)

+ J0(∂ξx)−1
(
Id−s st

)
(∂ξx)−t

(
∇ξ

(
1
2
h2gc

)
+ hg∇ξz + 1

2
gh2∇ξc

)

= J0h Π .

We say that this equation is in conservative form because differentiation
of the unknowns h, V appear only in conservative terms (the matrix
factor in front of ∇ξ

(
1
2
h2gc

)
can be put under the ∇ξ symbol up to an

additional term which contains no derivatives of h and V ).

Theorem 2.1. The system (2.9)–(2.10) has the properties
(i) it admits a conservative energy equation

∂t

{
1
2
J0h

[|V|2 + (stV/c)2
]
+ 1

2
J0h

2gc + J0hgz
}

+ ∇ξ ·
{(

1
2

[|V|2 + (stV/c)2
]
+ g(hc + z)

)
J0hV

}
= 0 , (2.14)

(ii) it preserves the steady state of a lake at rest V = 0, hc+z = const,
(iii) denoting by ε the aspect ratio between the width of the layer and
the typical length of phenomena in x, the system is an approximation
up to error terms in ε3 in (2.9) and in ε2 in (2.10) (or ε3 in (2.13)),
as ε → 0, of the free surface incompressible Euler equations, under the
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only assumption that the curvature is small, H = O(ε). In particular,
the velocity dependency in the normal variable needs not be specified.

The precise meaning of statement (iii) and its proof is the subject of
Subsection 3.3, so here we only prove (i) and (ii).

Proof of Theorem 2.1 (i)/(ii). The statement (ii) is obvious since
for functions independent of time satisfying V = 0 and hc+ z = const,
(2.9) and (2.10) are satisfied. In order to prove (i), we multiply (2.10)
by ∂ξx and use identity V · ∇ξ = V · ∇x to obtain the equation

∂tV + V · ∇xV +
(
Id−s st

)∇x

(
g(hc + z)

)
= − 1

c2
(V tHV) s . (2.15)

Next, we take the scalar product of (2.15) with the vector s/c. Noticing
that V · ∇x(s

t/c) = V · ∇x(∂xz) = V tH/c3, we get

∂t(s
tV/c) + V · ∇x(s

tV/c) + c st∇x

(
g(hc + z)

)

=
(V · ∇x(s

t/c)
)V − 1

c3
(V tHV) |s|2 =

1

c
V tHV . (2.16)

Then, we multiply (2.15) by V , we multiply (2.16) by stV/c, and adding
the results, this yields

∂t

{
1
2

[|V|2 +(stV/c)2
]}

+V ·∇x

{
1
2

[|V|2 +(stV/c)2
]
+ g(hc+ z)

}
= 0 .

(2.17)
Noticing again that V · ∇x = V · ∇ξ, we finally multiply (2.17) by J0h
and (2.9) by 1

2

[|V|2 + (stV/c)2
]
+ g(hc + z), which by addition give the

energy equation (2.14). ¤
We remark in passing that (2.15) shows that the model is indepen-

dent of the chosen coordinates ξ, since ξ does not enter any longer in
this equation. The continuity equation (2.9) can also be formulated
in a ξ-independent manner, because according to the divergence chain
rule, we have ∇ξ ·

(
J0hV

)
= det(∂ξx)∇x ·

(
hV/c), thus (2.9) gives

∂t(h/c) +∇x ·
(
hV/c

)
= 0 . (2.18)

In this spirit, the momentum equation takes the form

∂t

(
hV/c

)
+∇x ·

(
hVV t/c

)

+
1

c

(
Id−s st

)(∇x

(
1
2
h2gc

)
+ hg∇xz + 1

2
gh2∇xc

)

= − h

c3
(V tHV) s . (2.19)
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Concerning weak solutions, i.e., possibly discontinuous solutions h and
V , we remark that as long as z(x) and the change of coordinates x(ξ)
are smooth, the formulations (2.9), (2.13) and (2.18), (2.19) both make
sense (recall that the matrix factors in front of the pressure terms
can be put inside the differentiation, up to an additional right-hand
side). They are indeed equivalent, even for weak solutions, because
they are obtained by multiplication by a smooth function. New equa-
tions obtained by the same procedure, such as the conservative version
of (2.26), (2.27) below, are also equivalent to the previous ones. How-
ever, for weak solutions, energy equations have to be changed into
inequalities.

We would like now to make some remarks on the very special form of
(2.10), or equivalently (2.15), that go further the energy conservation.
The curvature term V tHV that appears above can indeed be interpreted
in terms of ~n, as follows. Using (2.2), (2.3) and (2.4), we compute

V · ∇xs = (∂xs)V =
1

c2
(Id−s st)HV ,

V · ∇xc = −1
c
stV · ∇xs = −1

c
stHV ,

(2.20)

V · ∇x~n = − 1

c2

(
Id−s st

c st

)
HV , (2.21)

and thus we get the relation

(V · ∇x~n) · V tg = − 1

c2
V tHV . (2.22)

Therefore, the right-hand side of (2.15) can be somehow better under-
stood if we write the equation satisfied by V tg, which is obtained by
putting (2.15) and (2.16) in a single N + 1–dimensional equation,

∂tV tg + V · ∇xV tg +

(
Id−s st

c st

)
∇x

(
g(hc + z)

)
(2.23)

=
1

c2
(V tHV)~n

= −(
(V · ∇x~n) · V tg

)
~n .

In this equation, the right-hand side has the role to preserve the con-
dition V tg · ~n = 0. If we neglect the gravity, it only remains ∂tV tg + V ·
∇xV tg = −(

(V · ∇x~n) · V tg
)
~n , and the physical interpretation of this

equation is that the particles are advected with the only constraint to
remain on the surface S.
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In order to make a transition to our more general model without
the small curvature assumption, which we will present in the next sub-
section, let us now write another equivalent formulation of the model
(2.9), (2.10). It uses a new velocity parametrization W (t, ξ) ∈ RN ,
linked to V and to V = (∂ξx)V by

W ≡ M−1
0 V = (∂ξx)t

(
Id +s st/c2

)V , (2.24)

with matrix M0 defined by

M0 ≡ (∂ξx)−1
(
Id−s st

)
(∂ξx)−t . (2.25)

The relation with the material velocity V tg is still given by (2.8).

Proposition 2.2. The system (2.9)–(2.10) is equivalent to

∂t(J0h) +∇ξ ·
(
J0hM0W

)
= 0 , (2.26)

∂tW+
(
∂ξW−(∂ξW )t

)
M0W+∇ξ

(
1
2
W tM0W+g(hc+z)

)
= 0 . (2.27)

Moreover, the energy equation (2.14) takes the form

∂t

{
1
2
J0hW tM0W + 1

2
J0h

2gc + J0hgz
}

+ ∇ξ ·
{(

1
2
W tM0W + g(hc + z)

)
J0hM0W

}
= 0 . (2.28)

Proof. The first equation (2.26) is obviously the same as (2.9) since
V = M0W . Then we compute from (2.24)

W tM0W = V t(Id +s st/c2)V = |V|2 + (stV/c)2 = |V tg|2 , (2.29)

and (2.28) follows. The velocity equation is more involved. We multiply
(2.16) by s/c and add it to (2.15). We get

∂t

(
(Id +s st/c2)V)

+ V · ∇x

(
(Id +s st/c2)V)

+∇x

(
g(hc + z)

)

=
(V · ∇x(s/c)

)
stV/c ≡ B . (2.30)

But since ∂x(s
t/c) = ∂2

xxz is symmetric, the jth component of the
right-hand side is

Bj =
(V · ∇x(sj/c)

)
stV/c

=
(V t∂xj

(s/c)
)
stV/c = 1

2
V t∂xj

(s st/c2)V .
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So by definitions (2.24), (2.25) we can write

Bj = 1
2
W t(∂ξx)−1

(
Id−s st

)
∂xj

(
Id +s st/c2

)(
Id−s st

)
(∂ξx)−tW

= −1
2
W t(∂ξx)−1∂xj

(
Id−s st

)
(∂ξx)−tW

= −1
2
W t∂xj

(
(∂ξx)−1

(
Id−s st

)
(∂ξx)−t

)
W

+W t
(
∂xj

(∂ξx)−1
)(

Id−s st
)
(∂ξx)−tW

= −1
2
W t(∂xj

M0)W −W t
(
(∂ξx)−1

(
∂xj

(∂ξx)
)
(∂ξx)−1

)
V .

Therefore,
(
(∂ξx)tB

)
i

= −1
2
W t(∂ξi

M0)W −W t(∂ξx)−1
(
∂ξi

(∂ξx)
)
(∂ξx)−1V

= −1
2
W t(∂ξi

M0)W −W t(∂ξx)−1
(
∂x(∂ξi

x)
)V

= −1
2
W t(∂ξi

M0)W − (V · ∇x(∂ξi
x)

) · (∂ξx)−tW ,

and defining Ki = W t(∂ξi
M0)W , this yields

(∂ξx)tB = 1
2
K − (V · ∇x(∂ξx)t

) · (∂ξx)−tW . (2.31)

Finally, we multiply (2.30) by (∂ξx)t and obtain

∂tW + V · ∇xW +∇ξ

(
g(hc + z)

)
= −1

2
K . (2.32)

Using that V · ∇x = V · ∇ξ and V = M0W , this gives (2.27). ¤
A striking property of the formulation (2.27) is that it implies that

curlξ W ≡ ∂ξW − (∂ξW )t is transported by V = M0W .

2.3. A multidimensional shallow water model for arbitrary to-
pography. This model is described by

h(t, ξ) ≥ 0 , W (t, ξ) ∈ RN , (2.33)

where as before h is the width of the material layer in direction normal
to the topography, and W is a parametrization of the velocity field that
is linked to the N + 1–dimensional material velocity vector V tg by

V tg =

(
Id
1
c
st

)
(Id−s st)

(
Id−1

2
h ∂xs

)−t
(∂ξx)−tW . (2.34)

Notice that this relation is now time dependent, via the function h(t, ξ).
The model reads as

∂t

∫ h

0

J dξ̄ +∇ξ ·
(∫ h

0

JM dξ̄ W

)
= 0 , (2.35)
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∂tW +
(
∂ξW − (∂ξW )t

)∫ h

0
JM dξ̄∫ h

0
Jdξ̄

W +∇ξ

(
1
2
W tMhW + g(hc + z)

)

= 0 , (2.36)

where M(ξ, ξ̄) and J(ξ, ξ̄) are defined for ξ̄ ≥ 0 small enough by

M ≡ (∂ξx)−1
(
Id−ξ̄ ∂xs

)−1(
Id−s st

)(
Id−ξ̄∂xs

)−t
(∂ξx)−t , (2.37)

J ≡ (det M)−1/2 = 1
c
det

(
(Id−ξ̄ ∂xs)∂ξx

)
, (2.38)

and

Jh(t, ξ) ≡ J
(
ξ, ξ̄ = h(t, ξ)

)
, Mh(t, ξ) ≡ M

(
ξ, ξ̄ = h(t, ξ)

)
.

(2.39)
Notice that with these notations, J0 and M0 defined previously in equa-
tions (2.12) and (2.25) can be understood as J0(ξ) = J(ξ, ξ̄ = 0) and
M0(ξ) = M(ξ, ξ̄ = 0). The velocity equation (2.36) has the advantage
to make apparent the transport equation on curlξ W = ∂ξW − (∂ξW )t,
but it can be replaced by the momentum equation

∂t

(∫ h

0

J dξ̄ W

)
+∇ξ ·

(
W ⊗

∫ h

0

JM dξ̄ W

)
− (∂ξW )t

∫ h

0

JM dξ̄ W

+

(∫ h

0

J dξ̄

)
∇ξ

(
1
2
W tMhW + g(hc + z)

)
= 0 , (2.40)

or in conservative form

∂t

(∫ h

0

J dξ̄ W

)
+∇ξ ·

(
W ⊗

∫ h

0

JM dξ̄ W

)

+ ∇ξ

{∫ h

0

J dξ̄ 1
2
W tMhW − 1

2
W t

∫ h

0

JM dξ̄ W +

∫ h

0

Jdξ̄ g(hc + z)

}

− Jh g(hc + z)∇ξh (2.41)

=

∫ h

0

∇ξJ dξ̄
(

1
2
W tMhW + g(hc + z)

)
− 1

2
W t

∫ h

0

∇ξ(JM) dξ̄ W .

Indeed we have for the term in ∇ξh

Jh g(hc + z)∇ξh = ∇ξ

(∫ h

0

Jg(ξ̄c + z) dξ̄

)
−

∫ h

0

∇ξ

(
Jg(ξ̄c + z)

)
dξ̄ .

(2.42)

Theorem 2.3. The system (2.35)–(2.36) has the properties
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(i) it admits a conservative energy equation

∂t

{
1
2
W t

∫ h

0

JM dξ̄ W + gc

∫ h

0

Jξ̄ dξ̄ + gz

∫ h

0

J dξ̄

}

+ ∇ξ ·
{(

1
2
W tMhW + g(hc + z)

) ∫ h

0

JM dξ̄ W

}
= 0 , (2.43)

(ii) it preserves the steady state of a lake at rest W = 0, hc+z = const,
(iii) denoting by ε the aspect ratio between the width of the layer and
the typical length of phenomena in x, the system is an approximation
up to error terms in ε3 in (2.35) and in ε2 in (2.36) (or ε3 in (2.41)), as
ε → 0, of the free surface incompressible Euler equations, without any
assumption on the topography nor on the velocity profile in the normal
variable.

The precise meaning of statement (iii) and its proof is the subject of
Subsection 3.4, and since (ii) is obvious, we only prove here (i).

Proof of Theorem 2.3 (i). Multiply (2.36) by
∫ h

0
JM dξ̄ W , (2.35)

by 1
2
W tMhW + g(hc + z) and add up the results. It gives

(
1
2
W tMhW + g(hc + z)

)
Jh ∂th + ∂tW

t

(∫ h

0

JM dξ̄ W

)

+ ∇ξ ·
{(

1
2
W tMhW + g(hc + z)

) ∫ h

0

JM dξ̄ W

}
= 0 , (2.44)

leading to (2.43). ¤

In the case of small curvature H = O(ε), we have ∂xs = O(ε), and
since by definition of ε we have h = O(ε), we deduce that for 0 ≤ ξ̄ ≤ h,
M = M0 +O(ε2), J = J0 +O(ε2), thus (2.35)–(2.36) reduces to (2.26)–
(2.27) up to terms in ε3 and ε2, respectively.

2.4. Coulomb friction. A bottom friction term of the type described
in [5] can be included in either the model for small slope variation of
Subsection 2.2 or the model for arbitrary topography of Subsection 2.3.

2.4.1. Friction with small curvature. In the case of model (2.9)–(2.10),
an extra term has to be introduced as

∂t(J0h) +∇ξ ·
(
J0hV

)
= 0 , (2.45)
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∂tV + V · ∇ξV + (∂ξx)−1
(
Id−s st

)
(∂ξx)−t∇ξ

(
g(hc + z)

)

= Π− gµc V√
|V|2 + (stV/c)2

(
1 +

V tHV
gc3

)

+

, (2.46)

where Π is still given by (2.11), and with the same notations. The
denominator in the friction term is nothing else than the norm of the
material velocity V tg in (2.8),

|V|2 + (stV/c)2 = V t(Id +s st/c2)V = |V tg|2 . (2.47)

The friction coefficient µ ≥ 0 could be any function of t and ξ, but for
physical relevance if should depend only on h and |V tg|, see [9]. The
scalar V tHV is the curvature of the topography in the direction of the
flow. It can be positive or negative according to the local convexity
or concavity of the surface. The index + stands for the positive part,
x+ = max(0, x). It appears here because when the expression between
parentheses becomes negative, the material should leave the topograph-
ical surface, giving thus a vanishing (instead of negative) friction.

In the horizontal coordinate formulation the model reads as

∂t(h/c) +∇x ·
(
hV/c

)
= 0 , (2.48)

∂tV + V · ∇xV +
(
Id−s st

)∇x

(
g(hc + z)

)

= − 1

c2
(V tHV) s− gµcV√

|V|2 + (stV/c)2

(
1 +

V tHV
gc3

)

+

. (2.49)

see (2.18), (2.15). In (2.45)–(2.46) or (2.48)–(2.49), we have to precise
the meaning of the friction term when when V = 0, or equivalently
when V = 0. Indeed we have to understand the ratio R = V/|V tg| as
multivalued. This means that when V = 0, R can take any value that
can be obtained from a limit when V → 0, i.e., R can be any vector
such that |R|2 + (stR/c)2 ≡ Rt(Id +s st/c2)R ≤ 1, or equivalently
|Rtg| ≤ 1, by adopting the abstract notation Rtg ≡ (R, stR/c). With
this interpretation, one can check easily that the friction term dissipates
energy, in the sense that the right-hand side that enters into the energy
identity (2.14) is always nonpositive. This interpretation also gives
directly the steady states of (2.48)–(2.49), which are those for which

V = 0 ,
∣∣∣
[(

Id−s st
)∇x(hc + z)

]tg
∣∣∣ ≤ µc , (2.50)

or more explicitly

V = 0 ,
(∇x(hc + z)t

) (
Id−s st

)∇x(hc + z) ≤ µ2c2 . (2.51)



14 FRANÇOIS BOUCHUT AND MICHAEL WESTDICKENBERG

A rigorous existence result has been proved for such a multivalued
friction term in [6].

Another velocity parametrization of interest is

u = V/c, (2.52)

for which the relation with the material velocity V tg in (2.8) becomes

V tg = (cu, s · u) . (2.53)

Note that this is close to a rotation of u since |s|2+c2 = 1. In dimension
N = 1, u is effectively the scalar physical velocity in the direction of
the topography. The system satisfied by h and u is

∂t(h/c) +∇x ·
(
hu

)
= 0 , (2.54)

∂tu + cu · ∇xu +
1

c

(
Id−s st

)∇x

(
g(hc + z)

)

= −1

c
(utHu) s +

1

c
(stHu)u− gµc u√

c2|u|2 + (s · u)2

(
1 +

utHu

gc

)

+

.

(2.55)

The model can also be written in the normal variable W . The system
(2.26)–(2.27) is then modified as

∂t(J0h) +∇ξ ·
(
J0hM0W

)
= 0 , (2.56)

∂tW +
(
∂ξW − (∂ξW )t

)
M0W +∇ξ

(
1
2
W tM0W + g(hc + z)

)

= − gµc W√
W tM0W

(
1 +

V tHV
gc3

)

+

, (2.57)

with the relation (2.24) linking V to W , that gives |V tg|2 = W tM0W .

Theorem 2.4. The system (2.45)–(2.46) (or equivalently (2.48)–(2.49)
or (2.54)–(2.55) or (2.56)–(2.57)) is an approximation, up to errors in
O(ε3) and O(ε2) respectively for mass and velocity equations, as the
aspect ratio ε → 0, of the free surface incompressible Navier-Stokes
equations with viscosity ν and Coulomb bottom friction with coefficient
µ, under the assumptions that ν = o(ε2), µ = O(ν/ε), and the curvature
is small H = O(ε).

More precise statements are provided within the proof of this theo-
rem, which is given in Subsection 3.5. Notice that with the assumption
of smallness of the friction µ, the curvature term leads to a correction
of order ε2 that could just be removed. However, we keep it in order
to have a more accurate model.
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Notice also that with our assumption ν = o(ε2), the boundary layer
induced by viscosity, which is of order

√
νt, is much smaller than the

material layer, which is of order ε. This situation is very different from
that considered in [3] where ν ∼ ε, which implies that the lengthscale
induced by the viscosity is much larger than ε.

2.4.2. Friction with arbitrary topography. The model for arbitrary to-
pography (2.35)–(2.36) has to include a friction term of the form

∂t

∫ h

0

J dξ̄ +∇ξ ·
(∫ h

0

JM dξ̄ W

)
= 0 , (2.58)

∂tW +
(
∂ξW − (∂ξW )t

)∫ h

0
JM dξ̄∫ h

0
J dξ̄

W +∇ξ

(
1
2
W tMhW + g(hc + z)

)

= −J0
µW√

W tM0W

(
ghc + 1

2
W t(Mh −M0)W

)
+∫ h

0
J dξ̄

. (2.59)

Theorem 2.5. In the regime curl W = O(ε), the system (2.58)–(2.59)
is an approximation, up to errors in O(ε3) and O(ε2) respectively for
mass and velocity equations, as the aspect ratio ε → 0, of the free
surface incompressible Navier-Stokes equations with viscosity ν and
Coulomb bottom friction with coefficient µ, under the assumptions that
ν = o(ε2) and µ = O(ν/ε).

The proof of this theorem is provided in Subsection 3.5.

3. Derivation of the Models

In this section, we derive the models introduced in Section 2 from
the incompressible Euler equations with free boundary.

Notation. In the following, a vector in RN+1 is marked by an arrow.
The first components of it which form a vector in RN are denoted by
bold symbols, the last component by an overbar, as in ~X = (X, X̄). If
symbols have an arrow, then indices are running from 1 to N + 1. For
bold symbols, indices range from 1 to N .

3.1. Geometry of the layer. Consider a topography S, as described
in Subsection 2.1, and assume a parametrization of S is given, via an
invertible map ξ 7→ x(ξ) for ξ ∈ RN . Then we construct a coordinate
system in a suitable neighboorhood above the graph of z as follows.

We define a map ~ξ 7→ ~X(~ξ ) for ~ξ = (ξ, ξ̄) ∈ RN+1, ξ̄ > 0, by
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z

x

hc + z

h

Figure 2. Material layer above the graph of z.

~X(~ξ ) ≡ (X, X̄) =

(
x(ξ)

z(x(ξ))

)
+ ξ̄

(−s(x(ξ))

c(x(ξ))

)
. (3.1)

Note that the second vector on the right-hand side is just the normal
~n, written as a function of ξ. The mapping (3.1) is (locally) invertible
whenever ξ̄ is small enough, so that the Jacobian has full rank. This
defines an open neighboorhood above the graph of z. We are going to
describe a material layer filling the domain

Ωt ≡
{

~X(~ξ ) ∈ RN+1
∣∣∣ 0 < ξ̄ < h(t, ξ)

}
, (3.2)

see Figure 2, thus we assume that ~X is a diffeomorphism in Ωt.
The Jacobian matrix of (3.1) defines the matrix A by

A−1 = ∂~ξ
~X =

(
Id −s
1
c
st c

) (
∂ξX 0
0 1

)
, (3.3)

A =
(
∂~ξ

~X
)−1

=

(
(∂ξX)−1 0

0 1

)(
Id−s st cs
−st c

)
, (3.4)

with

∂ξX =
(
Id−ξ̄ ∂xs

)
∂ξx . (3.5)

For further reference, we compute

AAt =

(
M 0
0 1

)
with M = (∂ξX)−1(Id−s st)(∂ξX)−t . (3.6)

The determinant of (3.3) is given by

J ≡ det(∂~ξ
~X) = 1

c
det(∂ξX) = (det M)−1/2 , (3.7)

and the differential operators transform according to

∇~X = At∇~ξ . (3.8)
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3.2. Transformation of Euler equations. We start from the in-
compressible Euler equations in cartesian coordinates. Assume that
velocity and pressure fields

~U
(
t, ~X

) ∈ RN+1 , P
(
t, ~X

) ∈ R (3.9)

are given for t > 0 and ~X ∈ Ωt, that satisfy

∂t
~U +

(
~U · ∇~X

)
~U +∇~XP = −~g , (3.10)

∇~X · ~U = 0 , (3.11)

where ~g = g
(
0
1

)
, and the following boundary conditions: at the bed

~U · ~n = 0 for ξ̄ = 0 , (3.12)

and at the free surface

P = 0 for ξ̄ = h(t, ξ) . (3.13)

We also have to give a rule for the evolution of the free surface:

The free surface is advected by the material velocity ~U. (3.14)

We are going to transform these Euler equations into the curvilinear
coordinate system defined in Subsection 3.1. Moreover, starting from
the horizontal and vertical velocity components ~U = (U, Ū), we are

going to decompose ~U into the part tangential to the topography and
the normal part, and write the corresponding momentum equations.
This can be done in several ways, and we have selected two important
choices which lead to two different formulations, even if they are of
course equivalent.

3.2.1. First velocity decomposition: by jacobian matrix. A natural way
of choosing new velocity components is to define a parameter vector

~V ≡ (V, V̄ ) = A~U . (3.15)

According to (3.8), we then obtain

~U · ∇~X = ~V · ∇~ξ . (3.16)

Note that (3.15) and (3.4) read

(∂ξX)V = U + s V̄ , V̄ = ~n · ~U , (3.17)

thus V̄ is the normal component of ~U . Using (3.3) we also find

U = (∂ξX)V − sV̄ , Ū = 1
c
st(∂ξX)V + cV̄ . (3.18)
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This yields in particular the tangential part of ~U ,

~U − (~n · ~U)~n =

(
Id
1
c
st

)
(∂ξX)V . (3.19)

A first equation is obtained by applying the divergence chain rule to
the incompressibility condition (3.11),

∇~ξ ·
(
J ~V

)
= J ∇~X · ~U = 0 . (3.20)

Observe that once V is known, this equation determines V̄ in a unique
way with the boundary condition (3.12). Next, to write down a mo-

mentum equation for ~V , we multiply (3.10) by A, noticing that

~g = ∇~X

(
~g · ~X

)
= ∇~X

(
g(ξ̄c + z)

)
, (3.21)

and we obtain

∂t
~V +

(
~V · ∇~ξ

)
~V + AAt∇~ξ

(
P + g(ξ̄c + z)

)
= ~Γ(~V ) , (3.22)

with

~Γ(~V ) =
((

~V · ∇~ξ

)
A

)
A−1~V = −A

((
~V · ∇~ξ

)
A−1

)
~V , (3.23)

the Christoffel symbol of the transformation. Denoting the components
of (3.23) by ~Γ ≡ (

Γ, Γ̄
)
, (3.22) can also be written with (3.6)

∂tV +
(
~V · ∇~ξ

)
V + M∇ξ

(
P + g(ξ̄c + z)

)
= Γ(~V ) , (3.24)

∂tV̄ +
(
~V · ∇~ξ

)
V̄ + ∂ξ̄ P + gc = Γ̄(~V ) , (3.25)

with M defined by (3.6). To simplify notation, we will write ∂i = ∂~ξi
,

for indices i = 1, . . . , N + 1. We compute with (3.3)–(3.4)
(

∂ξX 0
0 1

)
A

(
∂i(A

−1)
)

=

(
Id−s st cs
−st c

)(
∂i(∂ξX) −∂is

1
c
st

(
∂i(∂ξX)

)
+

(
∂i(

1
c
st)

)
(∂ξX) ∂ic

)

=

(
∂i(∂ξX) −∂is

0 0

)
+

(
cs

(
∂i(

1
c
st)

)
(∂ξX) 0

c
(
∂i(

1
c
st)

)
(∂ξX) 0

)
.

Let us consider the last component Γ̄(~V ) of ~Γ(~V ) first. From definition
(2.1) above we know that 1

c
st = ∂xz. Hence the chain rule gives

Γ̄(~V ) = −cVt(∂ξx)t(∂2
xxz)(∂ξX)V . (3.26)
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Next, we have

(∂ξX)Γ(~V ) = −
((

∂~ξ (∂ξX)
)
~V

)
V + (∂ξs)V V̄ + Γ̄(~V ) s

= − ∂2
ξξX ·V ·V + 2(∂ξs)V V̄ + Γ̄(~V ) s .

(3.27)

The formulas (3.20) and (3.24)–(3.27) conclude the derivation of the
transformed incompressible Euler equations inside the domain Ωt.

Concerning boundary conditions, (3.12) and (3.13) are unchanged

since ~U ·~n = V̄ , and we only need to give an equation for (3.14). Since

∇~X · ~U = 0, this condition of advection of the domain can be written

∂t1I ~X∈Ωt
+∇~X ·

(
1I ~X∈Ωt

~U
)

= 0 for 0 < ξ̄ < ∞ , (3.28)

thus multiplying by J and using the divergence chain rule, it becomes

∂t(J1Iξ̄<h(t,ξ)) +∇~ξ ·
(
J1Iξ̄<h(t,ξ)

~V
)

= 0 for 0 < ξ̄ < ∞ . (3.29)

Since this equation is trivial inside the domain, only the part propor-
tional to δ

(
h(t, ξ)− ξ̄

)
is involved, thus (3.29) can be explicited as

∂th + Vξ̄=h(t,ξ) · ∇ξh = V̄ξ̄=h(t,ξ) . (3.30)

In order to put this equation for h in conservation form, we use the
assumption V̄ = 0 at ξ̄ = 0 in (3.29), which gives

∂t(J1I0<ξ̄<h(t,ξ))+∇~ξ ·
(
J1I0<ξ̄<h(t,ξ)

~V
)

= 0 for −∞ < ξ̄ < ∞ . (3.31)

Integrating in ξ̄ from −∞ to +∞ we obtain

∂t

∫ h(t,ξ)

0

J dξ̄ +∇ξ ·
∫ h(t,ξ)

0

JV dξ̄ = 0 . (3.32)

This last formulation is the true conservative formulation, since the

total volume of material is
∫

~X∈Ωt
d ~X =

∫∫ h

0
J dξ̄ dξ.

3.2.2. Second velocity decomposition: the normal form. Our second
choice of new velocity components is to define

~W ≡ (W, W̄ ) = A−t~U . (3.33)

The relation between ~W and ~V defined in (3.15) is then given by

~W = A−tA−1~V , (3.34)

thus according to (3.6),

W = M−1V , W̄ = V̄ . (3.35)

With this choice, we have

|~U |2 = ~U · At ~W = ~W · ~V = ~W tAAt ~W = WtMW + W̄ 2 . (3.36)
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Now we multiply (3.10) by A−t. From (3.16), (3.8) and (3.21), we get

∂t
~W +

(
~V · ∇~ξ

)
~W +∇~ξ

(
P + g(ξ̄c + z)

)
= ~Ξ , (3.37)

with

~Ξ ≡
((

~V · ∇~ξ

)
A−t

)
~U =

((
~V · ∇~ξ

)
A−t

)
A−1~V . (3.38)

Denoting as before ∂i = ∂~ξi
, for indices i = 1, . . . , N + 1, we have by

definition A−t
kj = ∂k

~Xj, hence

∂iA
−t
kl = ∂2

ik
~Xl = ∂kA

−t
il , (3.39)

and therefore denoting

G = A−tA−1 =

(
M−1 0

0 1

)
, (3.40)

we compute∑

l

(
∂iA

−t
kl

)
A−1

lj =
∑

l

(
∂kA

−t
il

)
A−1

lj

= ∂kGij −
∑

l

A−t
il

(
∂kA

−1
lj

)

= ∂kGij −
∑

l

A−1
li

(
∂kA

−t
jl

)
= ∂kGij −

∑

l

(
∂jA

−t
kl

)
A−1

li .

When multiplying by ~Vi
~Vj and summing over i and j, the second term

on the right gives the same as the sum on the left. Thus we get

~Ξk = 1
2
~V · (∂kG)~V (3.41)

= 1
2
~W · G−1(∂kG)G−1 ~W

= −1
2
~W · (∂kG−1) ~W = −1

2
Wt(∂kM)W .

Since W̄ = V̄ , comparing (3.25) to the last component of (3.37), this
gives a new formula instead of (3.26),

Γ̄(~V ) = Ξ̄ = −1
2
Wt(∂ξ̄M)W . (3.42)

Using now (3.41), (3.42) in (3.37), we obtain

∂tW +
(
~V · ∇~ξ

)
W +∇ξ

(
1
2
WtMW + P + g(ξ̄c + z)

)

= (∂ξW)tMW , (3.43)

∂tW̄ +
(
~V · ∇~ξ

)
W̄ + ∂ξ̄

(
1
2
WtMW + P + g(ξ̄c + z)

)

= (∂ξ̄W)tMW . (3.44)
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Notice that in (3.43), we can make the curl of W appear by writing
(
~V ·∇~ξ

)
W−(∂ξW)tMW = V̄ ∂ξ̄W+

(
∂ξW−(∂ξW)t

)
MW . (3.45)

These two equations (3.43), (3.44) conclude the derivation of the trans-
formed Euler equations for our second velocity decomposition, since the
divergence equation (3.20) and the boundary conditions (3.12) (note

that V̄ = W̄ = ~n · ~U), (3.13), and (3.30) or (3.32) remain unchanged,
we just have to say that V = MW.

3.3. Shallow water approximation for small slope variation.
We derive in this section the model of Subsection 2.2, i.e., we prove
Theorem 2.1 (iii). This is done starting from the formulation of incom-
pressible Euler equations of Subsection 3.2.1. In order to emphasize the
question of velocity variation in the layer, we first perform the deriva-
tion within the classical assumption of almost constant dependency,
and treat general dependency afterwards.

3.3.1. Almost constant velocity in the layer. We assume that

(a) the material layer is thin, h = O(ε),
(b) the curvature is small, H = O(ε),
(c) the velocity V does almost not depend on the normal variable

ξ̄,

V(t, ~ξ ) = V (t, ξ) +O(ε2) . (3.46)

Here, ε ¿ 1 is the aspect ratio between the width of the layer and the
typical length of phenomena in x. Note that (b) can also be written as
∂xs = O(ε). Assumption (c) is made to get a model in the variable ξ
only. The usual procedure to get an equation in ξ is depth-integration,
but here we shall write the equation in the full domain Ωt, and check
that the variable ξ̄ disappears. This approach has the advantage to
justify the compatibility of assumption (c) with the set of equations in
the whole material layer.

With (a) and (3.2), we get ξ̄ = O(ε). Assuming moreover that there
is no boundary layer, we deduce from the boundary condition (3.12) at
the bed that

V̄ = ~n · ~U = O(ε) . (3.47)

We can now make expansions in (3.5), (3.26) and (3.27),

∂ξX = ∂ξx +O(ε2) , (3.48)

Γ̄(~V ) = −cV t(∂ξx)t(∂2
xxz)(∂ξx)V +O(ε3) = O(ε) , (3.49)

(∂ξx)Γ(~V ) = − ∂2
ξξx · V · V + Γ̄(~V ) s +O(ε2) . (3.50)
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Using this in (3.24), (3.25), we obtain the reduced momentum equation

∂tV + V · ∇ξV + M∇ξ

(
P + g(ξ̄c + z)

)

= −(∂ξx)−1∂2
ξξx · V · V + Γ̄(~V )(∂ξx)−1s +O(ε2) , (3.51)

and the pressure relation

∂ξ̄P = −gc +O(ε) . (3.52)

This equation can be integrated with the boundary condition (3.13),

P = −gc
(
ξ̄ − h(t, ξ)

)
+O(ε2) . (3.53)

Using this in (3.51) and expanding M with (3.6), (3.48), we get our
equation (2.10), up to terms in O(ε2). Finally, we have to write the
equation for evolving the free surface. We use the formulation (3.32),
and expanding J according to (3.7), (3.48), we get J = J0 +O(ε2), and

∂t (J0h) +∇ξ · (J0hV ) = O(ε3) , (3.54)

which is (2.9) up to terms in O(ε3).

3.3.2. Arbitrary velocity dependency in the layer. We now establish
Theorem 2.1 (iii) in its full generality, i.e. with the only assumptions

(a) the material layer is thin, h = O(ε),
(b) the curvature is small, H = O(ε).

Now, the assumption (c) above is replaced by a linear approximation
argument, and by an interpretation of (2.10) as the equation on the
mean value of the velocity in the layer.

We first notice that since ξ̄ = O(ε) by (a) and (3.2), the fact that
we do not consider any singular boundary layer implies that up to an
error in ε2, the normal dependency is linear,

V(t, ~ξ ) = V (t, ξ) + V 1(t, ξ)
(
ξ̄ − h(t, ξ)/2

)
+O(ε2) , (3.55)

for some functions V (t, ξ) and V 1(t, ξ) that represent respectively the
mean value and the slope of the velocity in the material layer. Then,
the important point in evaluating integrals over the layer is that for
any smooth function ϕ,

∫ h(t,ξ)

0

ϕ
(
V(t, ~ξ )

)
dξ̄ = h(t, ξ) ϕ

(
V (t, ξ)

)
+O(ε3) . (3.56)

We now follow the lines of the previous subsection and observe that
from (3.12), (3.5), (3.6), (3.7), (3.26), (3.27),

V̄ = O(ε) , (3.57)

∂ξX = ∂ξx +O(ε2) , (3.58)
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M = (∂ξx)−1(Id−s st)(∂ξx)−t +O(ε2) , (3.59)

J = J0 +O(ε2) , (3.60)

Γ̄(~V ) = −cV t(∂ξx)t(∂2
xxz)(∂ξx)V +O(ε2) = O(ε) , (3.61)

(∂ξx)Γ(~V ) = − ∂2
ξξx ·V ·V + Γ̄(~V ) s +O(ε2) . (3.62)

Using this in (3.25) we get with (3.13)

∂ξ̄P = −gc +O(ε) , P = −gc
(
ξ̄ − h(t, ξ)

)
+O(ε2) , (3.63)

P + g(ξ̄c + z) = g(hc + z) +O(ε2) . (3.64)

Concerning the continuity equation, we deduce by expanding (3.32)
with (3.56) that (2.9) holds, up to terms in O(ε3).

Now it remains only to deal with the velocity equation (3.24). If in
this equation we replace V by its expansion (3.55), drop terms in ε2

and separate the terms constant and linear in ξ̄, we obtain two equa-
tions coupling V and V 1, one starting with ∂tV and another starting
with ∂tV

1. The striking property that we are going to justify now is
that indeed the equation on V is exactly (2.10), and in particular it is
decoupled from V 1. The argument is as follows. Since in (3.55) V is
defined only up to terms in ε2, we can fix its value to the value of V at
ξ̄ = h(t, ξ)/2, i.e., as

V (t, ξ) = V
(
t, ξ, h(t, ξ)/2

)
. (3.65)

Then by the chain rule,

(∂tV)
(
t, ξ, h(t, ξ)/2

)
= ∂tV − (∂ξ̄V)

(
t, ξ, h(t, ξ)/2

)
∂th/2 ,

(∂ξV)
(
t, ξ, h(t, ξ)/2

)
= ∂ξV − (∂ξ̄V)

(
t, ξ, h(t, ξ)/2

)
∂ξh/2 .

(3.66)
We deduce the value of

∂tV +
(
~V · ∇~ξ

)
V = ∂tV +

(
V · ∇ξ

)
V + V̄ ∂ξ̄V (3.67)

at the point
(
t, ξ, h(t, ξ)/2

)
,

(
∂tV +

(
~V · ∇~ξ

)
V

) (
t, ξ, h(t, ξ)/2

)
(3.68)

= ∂tV +
(
V · ∇ξ

)
V

+ (∂ξ̄V)
(
t, ξ, h(t, ξ)/2

){
V̄

(
t, ξ, h(t, ξ)/2

)− ∂th/2− V · ∇ξh/2

}
.

But using condition (3.30) and since V(ξ̄ = h) = V +O(ε), we have

V̄
(
t, ξ, h(t, ξ)/2

)
= 1

2
V̄

(
t, ξ, h(t, ξ)

)
+O(ε2) (3.69)

=
(
∂th/2 + V · ∇ξh/2

)
+O(ε2) .
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Putting this in (3.68) we obtain
(
∂tV +

(
~V · ∇~ξ

)
V

) (
t, ξ, h(t, ξ)/2

)
= ∂tV +

(
V · ∇ξ

)
V +O(ε2) ,

(3.70)
and V 1 = ∂ξ̄V +O(ε) disappears. Now in order to obtain our velocity

equation, we take the value of (3.24) at ξ̄ = h(t, ξ)/2. Using (3.70), we
obtain (2.10) up to terms in O(ε2).

Finally, the justification of the relation with the physical velocity
(2.8) is that in our expansion V̄ = ~n · ~U = O(ε), thus from (3.19)

~U = V tg +O(ε) . (3.71)

A higher order expansion is also possible,

V tg =
(

~U − (~n · ~U)~n
)(

t, ξ, h(t, ξ)/2
)

+O(ε2) . (3.72)

Remark. Note that assumption (c) in Subsection 3.3.1 (see (3.46)) is
consistent with the derivation we gave here since it is always possible
to take V 1 = 0 in (3.55). Indeed the equation on V 1, that we did not
write down explicitly but that can be obtained as explained above, is
linear (with coefficients depending on V ). Thus if we start from initial
data with V 1 vanishing, then V 1 vanishes for all time.

3.4. Shallow water approximation for arbitrary topography.
We derive in this section the model of Subsection 2.3, i.e., we prove
Theorem 2.3 (iii). This is done starting from the formulation of incom-
pressible Euler equations of Subsection 3.2.2. The only assumption is
that the material layer is thin, h = O(ε). Contrary to the case of small
curvature, we cannot assume here that the velocity is almost constant
in the layer, this would lead to a contradiction unless curlξ W = O(ε).
Therefore, we rather follow the strategy of Subsection 3.3.2.

We still have that ξ̄ = O(ε), and since we do not consider any singular
boundary layer, the normal dependency of the velocity is linear up to
an error in ε2,

W(t, ~ξ ) = W (t, ξ) + W 1(t, ξ)
(
ξ̄ − h(t, ξ)/2

)
+O(ε2) , (3.73)

for some mean value W (t, ξ) and some slope W 1(t, ξ). Then, by the
mean value formula (3.56) and since V = MW, the free surface evolu-
tion equation (3.32) directly gives (2.35) up to an error in O(ε3). Next,

since W̄ = V̄ = ~n · ~U = O(ε) by (3.12), equation (3.44) gives

∂ξ̄

(
1
2
WtMW + P + g(ξ̄c + z)

)
= (∂ξ̄W)tMW +O(ε) . (3.74)
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Therefore, by integration between ξ̄ and h(t, ξ) and using (3.13),

1
2
WtMW + P + g(ξ̄c + z) (3.75)

= 1
2
Wt

hMhWh + g(hc + z)−
∫ h

ξ̄

∂ξ̄W
tMW +O(ε2)

= 1
2
WtMhW + g(hc + z)−

∫ h

ξ̄

∂ξ̄W
t(M −Mh)W +O(ε2)

= 1
2
WtMhW + g(hc + z) +O(ε2) ,

where the index h means that we take the value at ξ̄ = h(t, ξ). Now,
we can replace in (3.43) W by its expansion (3.73) and the term under
∇ξ by its expansion in (3.75). Separating the terms constant and linear
in ξ̄, the result is a system of two equations involving W and W 1. We
claim that again, the equation on W is decoupled from W 1. In order to
obtain this equation, we argue as in Subsection 3.3.2. Since in (3.73)
W is only defined up to terms in ε2, we can fix its value to the value
of W at ξ̄ = h(t, ξ)/2,

W (t, ξ) = W
(
t, ξ, h(t, ξ)/2

)
. (3.76)

Then the same computations (3.66)–(3.69) give

(∂tW)
(
t, ξ, h(t, ξ)/2

)
= ∂tW − (∂ξ̄W)

(
t, ξ, h(t, ξ)/2

)
∂th/2 ,

(∂ξW)
(
t, ξ, h(t, ξ)/2

)
= ∂ξW − (∂ξ̄W)

(
t, ξ, h(t, ξ)/2

)
∂ξh/2 ,

(3.77)
and

(
∂tW +

(
~V · ∇~ξ

)
W

) (
t, ξ, h(t, ξ)/2

)
(3.78)

= ∂tW +
(
Mh/2W

) · ∇ξW

+ (∂ξ̄W)
(
t, ξ, h(t, ξ)/2

)

×
{

V̄
(
t, ξ, h(t, ξ)/2

)− ∂th/2− (Mh/2W ) · ∇ξh/2

}

= ∂tW +
(
Mh/2W

) · ∇ξW +O(ε2) .

Now, we take the value of (3.43) at ξ̄ = h(t, ξ)/2. We apply (3.78)
and (3.75), and we use again the chain rule formula (3.77) for the two
terms involving derivatives in ξ. For each term it produces an extra
term proportional to ∂ξh, thus in O(ε). But since Mh −Mh/2 = O(ε),
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the errors compensate and we obtain

∂tW +
(
Mh/2W

) · ∇ξW +∇ξ

(
1
2
W tMhW + g(hc + z)

)

= (∂ξW )tMh/2W +O(ε2) , (3.79)

which is (2.36) up to terms in O(ε2). Concerning the formula (2.34)
for V tg, it follows from (3.19) and V = MW, which give

~U − (~n · ~U)~n =

(
Id
1
c
st

)
(∂ξX)MW . (3.80)

Since by (3.6) we have (∂ξX)M = (Id−s st)(∂ξX)−t, with (3.5) we get
(

~U − (~n · ~U)~n
) (

t, ξ, h(t, ξ)/2
)

= V tg . (3.81)

To conclude this section, we would like to mention that the con-
servative momentum and energy equations of our models can also be
obtained by expansions from corresponding equations for the incom-
pressible equations in the layer. To obtain the energy equation (2.43)

for example, we multiply (3.10) by ~U to get

∂t|~U |2/2+
(
~U ·∇~X

)|~U |2/2+~U ·∇~XP = −~U ·~g = −~U ·∇~X(~g· ~X) , (3.82)

which can be put in conservative form with (3.11),

∂t|~U |2/2 +∇~X ·
(
(|~U |2/2 + P + ~g · ~X)~U

)
= 0 . (3.83)

Thus multiplying by J and using the divergence chain rule,

∂t

(
J |~U |2/2) +∇~ξ ·

(
J(|~U |2/2 + P + ~g · ~X)A~U

)
= 0 . (3.84)

Then, using (3.36) and (3.1),

∂t

{
J
(

1
2

(
WtMW + W̄ 2

)
+ g(ξ̄c + z)

)}

+∇~ξ ·
{

J
(

1
2

(
WtMW + W̄ 2

)
+ P + g(ξ̄c + z)

)
~V

}
= 0 . (3.85)

Integrating for ξ̄ between 0 and h and using the boundary condition
(3.30) we obtain

∂t

∫ h

0

J
(

1
2

(
WtMW + W̄ 2

)
+ g(ξ̄c + z)

)
dξ̄ (3.86)

+ ∇ξ ·
∫ h

0

J
(

1
2

(
WtMW + W̄ 2

)
+ P + g(ξ̄c + z)

)
MW dξ̄ = 0 .
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Expanding the integrals we finally get (2.43) up to terms in O(ε3). A
similar computation, expanding (3.100) (with ν = 0) with the help of
(3.75) yields the momentum equation (2.41) up to terms in O(ε3).

Remark. The proof above shows that if we have a solution to (2.35)–
(2.36) such that curlξ W = 0, then W ≡ W is an exact solution con-
stant in the variable ξ̄ to the hydrostatic incompressible Euler system
(where only the normal acceleration ∂tW̄ +

(
~V · ∇~ξ

)
W̄ in (3.44) is re-

moved).

3.5. Bottom Coulomb friction. In this section, we prove Theorems
2.4 and 2.5. Since Theorem 2.4 can take the equivalent form (2.56)–
(2.57), we are going to provide a common proof for both cases. We will
derive the momentum equation in conservative form, i.e., we derive an
equation analogous to (2.41) with friction terms added. Transforming
this into the nonconservative form of (2.59) is then straightforward.

We start from the free boundary incompressible Navier-Stokes sys-
tem in cartesian coordinates. We assume that the functions

~U
(
t, ~X

) ∈ RN+1 , P
(
t, ~X

) ∈ R (3.87)

for t > 0 and ~X ∈ Ωt satisfy

∂t
~U +

(
~U · ∇~X

)
~U +∇~XP = −~g +∇~X · σ , (3.88)

∇~X · ~U = 0 . (3.89)

Again, ~g = g
(
0
1

)
with g the gravitational constant, and

σ = ν
(
∂~X

~U +
(
∂~X

~U
)t

)
(3.90)

with suitable viscosity coefficient ν. This problem is well-defined under
the following set of boundary conditions which we will assume through-
out. Let ~N be the outward unit normal vector at the free boundary of
Ωt, see (3.112) below, and define the total stress tensor

σT = P Id−σ . (3.91)

Then we require

• at the bed

~U · ~n = 0

σT~n− (
~n · σT~n

)
~n = −µ

~U

|~U |
(
~n · σT~n

)
+





for ξ̄ = 0 , (3.92)

• at the free boundary

P = 0

σT
~N − (

~N · σT
~N

)
~N = 0

}
for ξ̄ = h(t, ξ) . (3.93)
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The first equation in (3.92) is the no-penetration condition which we
already considered in Section 3.2, the second is the usual Coulomb
friction condition. It states that the tangential part of the total stress
tensor is opposite to the material velocity ~U , and its ratio to the normal
stress is given by µ. Here again the positive part is put to neutralize
the friction in case the material is leaving the bed, and ~U/|~U | should be

understood as multivalued when ~U = 0. Condition (3.93) states that
the atmospheric pressure and the tangential part of the total stress
vector vanish at the free surface. Note that we can replace σT by −σ
on the left-hand sides of (3.92) and (3.93) since the unit length of ~n

and ~N implies that the terms with P Id cancel.
We are going to transform equations (3.88)–(3.89), (3.92)–(3.93) into

the curvilinear coordinate system ~ξ defined in (3.1), with the velocity
decomposition of Subsection 3.2.2, i.e., with

~W = A−t~U , A−1 = ∂~ξ
~X . (3.94)

We will need the following lemma on the divergence of tensors whose
proof is given at the end of this section. For ease of notation we write
B1 : B2 ≡ tr(B1B2) for matrices B1 and B2, with tr the trace.

Lemma 3.1. Let ~ξ 7→ ~X(~ξ) be a change of coordinates, and let σ be a
symmetric tensor, σt = σ. Then

JA−t∇~X · σ = ∇~ξ · (JPAAt) + J
2
P : ∇~ξ (AAt) (3.95)

with P = A−tσA−1, A−1 = ∂~ξ
~X and J = det A−1.

Note that AAt has block structure, see (3.6). In particular, the only
nontrivial entry of any derivative of AAt is the left upper block. We
will use Lemma 3.1 to transform the divergence of the tensor σ into the
curvilinear coordinate system. In order to simplify a bit the notation,
we decompose the tensor P = A−tσA−1 into blocks as

P =

(
P Z
Zt f

)
with P ∈ RN×N , Z, Z̄ ∈ RN , f ∈ R . (3.96)

We multiply (3.88) by A−t. Following the arguments of Subsection 3.2.2
and using Lemma 3.1 then yield the transformed momentum equation,
separated in tangential and normal components as

∂tW +
(
~V · ∇~ξ

)
W +∇ξ

(
1
2
WtMW + P + g(ξ̄c + z)

)

= (∂ξW)tMW + J−1∇ξ · (JPM) + J−1∂ξ̄(JZ) + 1
2
P : ∇ξM ,

(3.97)
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∂tW̄ +
(
~V · ∇~ξ

)
W̄ + ∂ξ̄

(
1
2
WtMW + P + g(ξ̄c + z)

)

= (∂ξ̄W)tMW + J−1∇ξ · (JMZ) + J−1∂ξ̄(Jf) + 1
2
P : ∂ξ̄M ,

(3.98)

see (3.43)–(3.44). Multiplying (3.97) by J and using again the incom-
pressibility condition (3.20) we deduce the conservative formulation

∂t(JW) +∇~ξ ·
(
W ⊗ J ~V

)
+∇ξ

(
J
(
P + g(ξ̄c + z)

))
(3.99)

= −J 1
2
Wt(∇ξM)W +

(
P + g(ξ̄c + z)

)∇ξJ

+∇ξ · (JPM) + ∂ξ̄(JZ) + 1
2
JP : ∇ξM .

We integrate this equation for ξ̄ between 0 and h(t, ξ). This yields
using the boundary conditions

∂t

∫ h

0

JW dξ̄ +∇ξ ·
∫ h

0

(
W ⊗ JV

)
dξ̄ (3.100)

+∇ξ

∫ h

0

(
J
(
P + g(ξ̄c + z)

))
dξ̄ − Jhg(hc + z)∇ξh

=

∫ h

0

(
− J 1

2
Wt

(
∂ξi

M
)
W +

(
P + g(ξ̄c + z)

)∇ξJ
)

dξ̄

+∇ξ ·
∫ h

0

JPM dξ̄ + 1
2

∫ h

0

JP : ∇ξM dξ̄

+ Jh

(−PhMh∇ξh + Zh

)− J0Z0 ,

where the subscripts 0 and h indicate that the terms are evaluated at
the bottom and the free surface respectively. We used the Leibniz rule
several times to commute integrals in ξ̄ and derivatives in ξ.

Now we will consider the stress tensor in more detail. Although ~U is
known only implicitly as solution of the Navier-Stokes system (3.88),
we will show that scaling arguments allow to identify which components
of P are dominating. This will give a link between the tangential and
normal aspects of the flow. We first observe that

A−t∂~X
~UA−1 = A−t∂~ξ

~U = ∂~ξ

(
A−t~U

)− (
∂~ξ A−t

)
~U . (3.101)

By (3.94) we then have

(
A−t∂~X

~UA−1
)

ij
= ν∂~ξj

~Wi − ν
(
∂2

~ξi
~ξj

~X t
)
At ~W (3.102)
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Wξ̄=0

Wb+

O(
√

νt)

h
0 ξ̄

W

Figure 3. Viscous and material layers

for all i, j = 1, . . . , N + 1. Note that we already computed A
(
∂~ξA

−1
)

in (3.26). This formula gives for the components of P , see (3.96),
{

Z = ν∂ξ̄W + ν∇ξW̄ − 2ν(∇ξs
t)(∂ξX)−tW ,

f = 2ν∂ξ̄W̄ .
(3.103)

We do not provide the details of P since they will not be needed. Note,
however, that P contains only derivatives of W in ξ, not in ξ̄.

In the asymptotics ν → 0, the boundary conditions (3.92) and (3.93)
can only induce boundary layers in the variable ξ̄, and as usual in par-
abolic problems, their length is of order

√
νt. Since by assumption

ν = o(ε2), this length is much smaller than h, and we have the situa-
tion drawn in Figure 3. Thus derivatives in ξ never give singularities,
while derivatives in ξ̄ and t can be unbounded. However, according to
the parabolic scaling we have that ν∂ξ̄

~U and ν∂t
~U , and hence ν∂ξ̄

~W

and ν∂t
~W , are bounded. Recall that the geometry is assumed to be

sufficiently smooth. Then we can use the incompressibility constraint
(3.20) and (3.35) to conclude that ∂ξ̄W̄ must be bounded as well. These
heuristics and (3.96), (3.103) imply that P simplifies to

P =

(
0 ν∂ξ̄W

ν∂ξ̄W
t 0

)
+O(ν) . (3.104)

Consider now (3.98). By the asymptotics just given, we can write

∇ξ · (JMZ) = ∇ξ ·
(
JM

(
ν∂ξ̄W

))
+O(ν) . (3.105)

We use again the incompressibility (3.20) and V = MW to compute

∇ξ ·
(
JM

(
ν∂ξ̄W

))

= ν∂ξ̄

(
∇ξ ·

(
JV

))− ν∇ξ ·
(
∂ξ̄(JM)W

)
(3.106)

= −∂ξ̄

(
J
(
ν∂ξ̄W̄

))− ν∂ξ̄

((
∂ξ̄J

)
W̄

)
− ν∇ξ ·

(
∂ξ̄(JM)W

)
.
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The last two terms on the right-hand side are inO(ν). We can therefore
conclude that the error terms, which (3.98) induces in (3.74), are all of
the form ∂ξ̄O(ν)+O(ν). Since ν = o(ε2) and since P = 0 for ξ̄ = h(t, ξ)
by condition (3.93), we deduce that the approximation (3.75) is still
valid: for 0 < ξ̄ < h(t, ξ) we have

P + g(ξ̄c + z) = 1
2
Wt

(
Mh −M

)
W + g(hc + z) +O(ε2) . (3.107)

In (3.100) the two integrals with P are of order o(ε3) and can there-
fore be neglected. The same is true for Ph∇ξh since ∇ξh is in O(ε).
Using now identity (3.107) and the expansion of W outside the bound-
ary layer, see (3.73), we obtain the conservative momentum equation
(2.41) with the extra term JhZh − J0Z0 on the right-hand side, up to
errors in O(ε3) (the boundary layers are of size

√
νt, hence negligible

in the integrals). We refer to Subsection 3.4 for more details.
Let us now consider the boundary conditions which must finally give

the friction. We first note that A~n = A−t~n =
(
0
1

)
, thus ~U ·~n = W̄ . Then

we multiply the second equation in (3.92) by A−t. Using σ = AtPA
and the decomposition of P in (3.96) we find

A−tσ~n =

(
Z

f

)
and ~n · σ~n = f . (3.108)

Definition (3.91) gives

A−t
(
σT~n− (

~n · σT~n
)
~n
)

= −
(
Z

0

)
(3.109)

for the left-hand side of (3.92). Now we observe that the normal com-
ponent of the right-hand side vanishes because of (3.94) and W̄ = 0

for ξ̄ = 0. Also |~U |2 = WtMW, see (3.36). Thus with (3.104)

ν∂ξ̄W =
µW√

WtMW
P+ +O(ν) for ξ̄ = 0 , (3.110)

which is O(ν) since by assumption µ = O(ν/ε) and P = O(ε).

To compute the unit normal vector ~N at the free boundary we first
note that the tangent space is spanned by the vectors

~Ti ≡
(

Id
1
c
st

)
∂ξi

X
∣∣∣
ξ̄=h

+ ~n ∂ξi
h for i = 1, . . . , N . (3.111)

Indeed, since the two summands are orthogonal to each other, and
since h is assumed small enough such that ∂ξX has full rank, the ~Ti are

linear independent. Therefore the normal vector ~N is uniquely defined,
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up to orientation, by the condition ~N ⊥ ~Ti for all i. We put

η ~N ≡ −
(

Id−s st

cst

) (
∂ξX

)−t
∣∣∣
ξ̄=h
∇ξh + ~n , (3.112)

with normalizing factor η given by

η2 ≡ 1 + (∇ξh)tMh∇ξh . (3.113)

Note that the matrix Mh is positive definite, see (3.6), so η is always
different from zero. We now compute

ηA ~N =

(−Mh∇ξh

1

)
and ηA−t ~N =

(−∇ξh

1

)
. (3.114)

Then σ = AtPA and (3.104) imply

ηA−tσ ~N =

(
ν∂ξ̄W

−ν∂ξ̄W
tM∇ξh

)
+O(ν)

η2 ~N · σ ~N = − 2ν∂ξ̄W
tM∇ξh +O(ν)





for ξ̄ = h(t, ξ) .

(3.115)
Multiplying the second equation in (3.93) by A−t yields, with (3.91),

(
1 + (∇ξh)tM∇ξh

)
ν∂ξ̄W − 2

(
ν∂ξ̄W

tM∇ξh
)∇ξh = O(ν)

(
ν∂ξ̄W

tM∇ξh
)(

1− (∇ξh)tM∇ξh
)

= O(ν)





for ξ̄ = h(t, ξ) . (3.116)

Since ∇ξh = O(ε) the second equation gives ν∂ξ̄W
tM∇ξh = O(ν), and

using this estimate in the first equation implies ν∂ξ̄W = O(ν). From
this and the estimate for (3.110) we obtain the improved bound

∂ξ̄W is bounded , (3.117)

which allows to precise the expansions we have done and in particular
the terms in O(ν). We shall denote by Or(ν) any function that can
be written as ν times a function which is bounded and has bounded
derivative in ξ̄. We observe from (3.102) that the error in (3.104) is
Or(ν) instead of O(ν). Then, the same improvement occurs in (3.97),
(3.98) and (3.99). We deduce that the error in (3.100) is of order O(νε).

Now we analyze more precisely the boundary layer. In (3.97), the
leading operator as ν → 0 is ∂tW − ∂ξ̄

(
ν∂ξ̄W

)
, thus one expects an

asymptotic behavior of the form

W ∼ ϕ

(
t,

t

ν
, ξ,

ξ̄

ν

)
in the boundary layer as ν → 0 , (3.118)
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for some smooth function ϕ. Looking at the behavior of the boundary
layer profile (3.118) solving the heat equation ∂tW − ∂ξ̄(ν∂ξ̄W) = 0
with boundary condition (3.110) (the error in O(ν) comes from a term
inOr(ν) and therefore does not come into play), we deduce the behavior
of W at ξ̄ = 0 as ν → 0,

W
∣∣
ξ̄=0

∼ Wb+

(
1−

√
νt

ν

µP+|ξ̄=0√
Wt

b+M0Wb+

)

+

, (3.119)

ν∂ξ̄W
∣∣
ξ̄=0

∼ Wb+ min

(
ν√
νt

,
µP+|ξ̄=0√

Wt
b+M0Wb+

)
, (3.120)

with Wb+ the value at the right of the boundary layer, see Figure 3.
Now, since by assumption µ = O(ν/ε) and P = O(ε), the min in
(3.120) is realized by the second argument. But from (3.107),

P |ξ̄=0 = ghc + 1
2
Wt

∣∣
ξ̄=0

(Mh −M0)W
∣∣
ξ̄=0

+O(ε2) , (3.121)

and we could replace W|ξ̄=0 by Wb+ or any value of W since their
difference is at most of order O(ε). Similarly we can replace Wb+ by
any value of W in (3.120), this gives an error in O(νε) only. This
yields the friction term in (2.59). The only bad term is the boundary
term at ξ̄ = h in (3.100) since ∂ξ̄W = W 1 + O(ε). This is why we
have the assumption that curl W = O(ε) in Theorem 2.5, that enables
to take coherently W 1 = 0. Concerning Theorem 2.4, it is possible to
consider solutions such that W 1 = 0 without any further assumption,
see Subsection 3.3.2. The proof is complete.

Proof of Lemma 3.1. For any vector field ~Z we have

J∇~X · ~Z = ∇~ξ ·
(
JA~Z

)
, (3.122)

by the divergence chain rule. Applying (3.122) to each row of σ gives

J
∑

j

∂ ~Xj
σij =

∑
j

∂~ξj

(
J

∑

k

Ajkσik

)
, (3.123)

for all indices i = 1, . . . , N . Then,

J
∑

i

A−t
li

∑
j

∂ ~Xj
σij (3.124)

=
∑
ij

A−t
li ∂~ξj

(
J

∑

k

σikA
t
kj

)

=
∑
ij

∂~ξj

(
JA−t

li

∑

k

σikA
t
kj

)
− J

∑

ijk

(
∂~ξj

A−t
li

)
σikA

t
kj .
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Since PAAt = A−tσAt, the first term on the right-hand side corre-
sponds to the first term in (3.95). For the last term, we can write

∑
j

(
∂~ξj

A−t
li

)
At

kj =
∑

j

(
∂~ξl

A−t
ji

)
At

kj = −
∑

j

A−t
ji

(
∂~ξl

At
kj

)
(3.125)

using the definition of A−1, see (3.94). By symmetry of P we have

−
∑

ijk

(
∂~ξj

A−t
li

)
σikA

t
kj (3.126)

=
∑

ijk

PjiAik∂~ξl
At

kj

= 1
2

∑

ijk

Pji

(
Aik∂~ξl

At
kj +

(
∂~ξl

Aik

)
At

kj

)
= 1

2
P : ∂~ξl

(AAt)

for indices l = 1, . . . , N + 1. This gives the result. ¤

4. Invariance under rotation

One important feature of our models, which distinguishes them from
others discussed in the literature, is their invariance under rotation. In
this section we will discuss this property for the system in (2.48)–(2.49)
only, but similar arguments apply to all other models. Assume that
the topography, given by the height field z, is rotated in RN . More
precisely, assume there exists a new function z̃(x) with

z̃(x) = z(Rx) for some rotation R . (4.1)

For any function ϕ, the chain rule gives

∇xϕ̃(x) = Rt∇yϕ(y)
∣∣∣
y=Rx

, (4.2)

where ϕ̃(x) ≡ ϕ(Rx) with x ∈ RN . From this formula we obtain

s̃(x) = Rts(Rx) and c̃(x) = c(Rx) . (4.3)

The curvature transforms as

H̃(x) = RtH(Rx)R . (4.4)

We will show that a suitable rotation of any solution of (2.48)–(2.49)
is a solution of the rotated problem, i.e., of the same equations with
the geometrical functions z, s, c and H replaced by the corresponding
tilded ones. So let (h,V) be a solution of (2.48)–(2.49) and consider

{
h̃(t, x) ≡ h(t, Rx) ,

Ṽ(t, x) ≡ RtV(t, Rx) .
(4.5)
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Then (4.2) and orthogonality of R yield

∇x · (h̃Ṽ/c̃)
∣∣∣
(t,x)

= Rt∇y ·Rt(hV/c)
∣∣∣
(t,y=Rx)

= ∇y · (hV/c)
∣∣∣
(t,y=Rx)

. (4.6)

Thus we find the modified continuity equation

∂t(h̃/c̃) +∇x · (h̃Ṽ/c̃)
∣∣∣
(t,x)

= ∂t(h/c) +∇y · (hV/c)
∣∣∣
(t,y=Rx)

= 0 , (4.7)

see (2.48). For the momentum equation we proceed in a similar way.
The material derivative, for example, transforms as

(Ṽ · ∇x

)Ṽ
∣∣∣
(t,x)

=
(
RtV ·Rt∇y

)
RtV

∣∣∣
(t,y=Rx)

= Rt
{(V · ∇y

)V
}∣∣∣

(t,y=Rx)
. (4.8)

Using (4.3) and the orthogonality of R we obtain

∂tṼ +
(Ṽ · ∇x

)Ṽ +
(
Id−s̃ s̃t

)∇x

(
g(h̃c̃ + z̃)

)∣∣∣
(t,x)

= Rt

{
∂tV +

(V · ∇y

)V +
(
Id−s st

)∇y

(
g(hc + z)

)
}∣∣∣∣∣

(t,y=Rx)

(4.9)

for the left-hand side of (2.49) and

− 1

c̃2

(Ṽ tH̃Ṽ)
s̃− gµc̃ Ṽ√

|Ṽ|2 + (s̃tṼ/c̃)2

(
1 +

Ṽ tH̃Ṽ
gc̃3

)∣∣∣∣∣
(t,x)

= Rt

{
− 1

c2

(V tHV)
s− gµcV√

|V|2 + (stV/c)2

(
1 +

V tHV
gc3

)}∣∣∣∣∣
(t,y=Rx)

(4.10)

for the right-hand side. This proves the rotational invariance of (2.49).
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plications, École Normale Supérieure, 45 rue d’Ulm, 75230 Paris cedex
05, France

E-mail address: fbouchut@dma.ens.fr

Michael Westdickenberg, Institute for Applied Mathematics, Uni-
versity of Bonn, Wegelerstraße 10, 53115 Bonn, Germany

E-mail address: mwest@iam.uni-bonn.de


