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Abstract

Considering the isentropic Euler equations of compressible fluid dynamics with ge-
ometric effects included, we establish the existence of entropy solutions for a large
class of initial data. We cover fluid flows in a nozzle or in spherical symmetry when
the origin r = 0 is included. These partial differential equations are hyperbolic, but
fail to be strictly hyperbolic when the fluid mass density vanishes and vacuum is
reached. Furthermore, when geometric effects are taken into account, the sup-norm
of solutions can not be controlled since there exist no invariant regions. To overcome
these difficulties and to establish an existence theory for solutions with arbitrarily
large amplitude, we search for solutions with finite mass and total energy. Our strat-
egy of proof takes advantage of the particular structure of the Euler equations, and
leads to a versatile framework covering general compressible fluid problems. We es-
tablish first higher-integrability estimates for the mass density and the total energy.
Next, we use arguments from the theory of compensated compactness and Young
measures, extended here to sequences of solutions with finite mass and total energy.
The third ingredient of the proof is a characterization of the unbounded support of
entropy admissible Young measures. This requires the study of singular products
involving measures and principal values.

Résumé

Nous considérons les équations d’Euler isentropiques de la dynamique des fluides
en incluant des termes de nature géométrique, and nous établissons un résultat
d’existence de solutions entropiques pour une large classe de données initiales. Nous
couvrons le cas des fluides dans une tuyère, ainsi que des fluides à symmétrie
sphérique en incluant l’origine r = 0. Ces équations aux dérivées partielles sont
hyperboliques mais ne sont pas strictement hyperboliques lorsque la densité du flu-
ide s’annule. Par ailleurs, lorsque des termes géométriques sont pris en compte,
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la technique des domaines invariants ne s’applique plus et l’amplitude des solu-
tions n’est en général pas controlée uniformément. Pour surmonter ces difficultés
et développer notre théorie d’existence de solutions d’amplitude arbitraire, nous
proposons de rechercher des solutions de masse et d’énergie finies. Notre stratégie
de démonstration s’appuie sur la structure particulière des équations d’Euler, et
nous conduit à un cadre mathématique couvrant une large classe de problèmes de
la dynamique des fluides. Nous établissons tout d’abord, pour la masse et l’énergie
totale, une estimée d’intégrabilité uniforme des solutions. Nous utilisons ensuite des
arguments de la théorie de compacité par compensation et de la théorie des mesures
d’Young, que nous généralisons à des suites de solutions de masse et énergie finies. Le
troisième ingrédient de notre méthode est une caractérisation du support (non-borné
en général) d’une classe de mesures d’Young, pour laquelle nous devons étudier des
produits singuliers de mesures et de parties principales.
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1 Introduction

We are interested in the existence of entropy solutions to the Euler equations
for isentropic compressible fluids. Attention in the literature has been so far
restricted to bounded solutions and, for this reason, current techniques apply
to one-dimensional equations or to simplified situations with symmetry only.
Recall that the Euler equations form a hyperbolic system of conservation laws;
strict hyperbolicity, however, fails when the fluid mass density vanishes and
vacuum is reached. This major difficulty for the analysis was first dealt with
by DiPerna [10] using Tartar’s method of compensated compactness [22].

When geometric effects are taken into account, the Euler equations are no
longer in a fully conservative form but consist of two balance laws with vari-
able coefficients. It is conceivable that due to the interaction of characteristic
waves and the geometry of the problem, solutions may become unbounded
at isolated points. For spherically symmetric flows, for instance, the fluid can
converge towards the origin and waves can amplify nonlinearly, even if the
initial data was bounded pointwise. We are not aware of any result showing
that pointwise blow-up actually does occur. On the other hand, there also
seem to exist no method to establish boundedness in full generality. In partic-
ular, the Conley-Chuey-Smoller principle of invariant regions does not apply
because the equations are not in conservative form. Our objective is therefore
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to investigate the isentropic Euler equations within a more general functional
class: We will only assume that solutions satisfy the natural bounds of finite
mass and total energy. The strategy we propose leads to a versatile framework
covering quite general compressible fluid flows.

We are particularly interested in the case of spherically symmetric flows where
the origin r = 0 is included in the domain, and of fluid flows in a nozzle. Let us
quickly recall the equations describing these situations. We will assume that
the nozzle is characterized by a function A = A(x) > 0 that determines its
cross section at position x ∈ R. Then the isentropic Euler equations read

∂t(ρA) + ∂x(ρuA) = 0,

∂t(ρuA) + ∂x(ρu
2A) + A∂xP (ρ) = 0.

(1.1)

The unknowns of this system are the density ρ > 0 and the velocity u, which
are functions of the independent variables (t, x) ∈ [0,∞) × R. The pressure
P (ρ) is related to the internal energy U(ρ) by the relation

P (ρ) = U ′(ρ)ρ− U(ρ)

for all ρ > 0. We restrict ourselves to polytropic perfect gases, for which

U(ρ) = κ
γ−1

ργ and P (ρ) = κργ.

Here γ > 1 is the adiabatic coefficient, and κ := θ2/γ with θ := (γ − 1)/2 are
constants. The case of general pressure laws will be addressed in future work.
The first equation in (1.1) implies that the total mass is conserved, thus

M [ ρ ] :=
∫

R
ρAdx is constant in time. (1.2)

The analogous statement for the momentum ρuA does not hold because the
momentum equation in general does not admit a conservative form.

For spherically symmetric flows in Rd, we have again equations (1.1) with

A(x) := ωdx
d−1 for all x ∈ (0,∞).

The constant ωd > 0 denotes the volume of the unit sphere in Rd. Here the
unknowns (ρ, u) are defined for (t, x) ∈ [0,∞)× (0,∞) and

M [ ρ ] :=
∫
(0,∞)

ρAdx is constant in time.

In the following, we will cover both cases simultaneously by considering the
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equations (1.1) with A a continuously differentiable function and

nozzle flow case Ω := R A : R −→ [A,A ]

spherical symmetry Ω := (0,∞) A(x) := xα
(1.3)

Here, A < A and α are positive constants. We also require that

(∂xA)− ∈ L1 ∩ L∞(Ω), (1.4)

where (b)− := −min{b, 0} for all b ∈ R. We refer the reader to Sections 2.2 and
2.5 for further explanation. Note that in the case of spherically symmetric flows
(1.4) is trivially satisfied since then A is strictly increasing. We also emphasize
that for nozzle flows our arguments can be adapted to work if assumption (1.4)
is satisfied for the positive part (∂xA)+ instead. This is natural since otherwise
one direction would be favored, which would be unphysical.

It is easy to check that every smooth solution of (1.1) admits an additional
conservation law for the total energy of the fluid

∂t

((
1
2
ρu2 + U(ρ)

)
A
)

+ ∂x

((
1
2
ρu2 +Q(ρ)

)
uA
)

= 0, (1.5)

where Q(ρ) := U ′(ρ)ρ. The observation made earlier for the mass equation
applies again: the total energy associated with smooth solutions of (1.1) is
constant in time. For weak solutions this equation should not be imposed as
an equality but as an inequality. In turn, it is natural to require that for
physically relevant weak solutions of (1.1), the total energy

E[ ρ, u ] :=
∫
Ω

(
1
2
ρu2 + U(ρ)

)
Adx is nonincreasing in time. (1.6)

Our primary interest is about the Cauchy problem, so we impose the condition

ρ = ρ, ρu = ρu on {t = 0} × Ω, (1.7)

where (ρ, u) is given initial data with finite mass and total energy:

M [ ρ ] =: M, E[ ρ, u ] =: E, with M,E <∞. (1.8)

The selection of physically relevant solutions is based on a family of entropy
inequalities, which are defined as follows. For s ∈ R and (ρ, u) ∈ [0,∞) × R
introduce the entropy/entropy-flux kernels

χ(s|ρ, u) :=
(
ρ2θ − (s− u)2

)λ
+
,

σ(s|ρ, u) :=
(
θs+ (1− θ)u

)
χ(s|ρ, u),

(1.9)
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where λ := (3− γ)/2(γ− 1) and (b)+ := max{b, 0} for all b ∈ R. Observe that

∫
R


1

s

1
2
s2


(
χ(s|ρ, u), σ(s|ρ, u)

)
ds =


ρ ρu

ρu ρu2 + P (ρ)

1
2
ρu2 + U(ρ)

(
1
2
ρu2 +Q(ρ)

)
u

 ,

which connects the Euler equations and the entropy/entropy-flux kernels.

We will say that a function ψ ∈ C2(R) is an admissible weight function if it
is convex and has subquadratic growth at infinity. For all admissible weight
functions ψ we can introduce the entropy/entropy-flux pair(

ηψ(ρ, u), qψ(ρ, u)
)

:=
∫

R
ψ(s)

(
χ(s|ρ, u), σ(s|ρ, u)

)
ds, (1.10)

and we impose the entropy inequalities

∂t

(
ηψ(ρ, u)A

)
+ ∂x

(
qψ(ρ, u)A

)
+
(
ρu ηψ,ρ(ρ, u)− qψ(ρ, u)

)
(∂xA) 6 0 (1.11)

in the distribution sense. We use the notation g,ρ := ∂ρg for all functions g.

Definition 1.1 Let (ρ, u) be given initial data with finite mass and total en-
ergy. A pair of measurable functions (ρ, u) : [0,∞)×Ω −→ [0,∞)×R is called
an entropy solution with finite mass and energy (or a finite energy solution,
for short) to the Cauchy problem (1.1) & (1.7) if the following is true:

(i) The total mass is conserved in time: for almost every (a.e.) t

M [ ρ ](t) = M.

(ii) The total energy is bounded in time: for a.e. t

E[ ρ, u ](t) 6 E.

(iii) The entropy inequalities (1.11) are satisfied in the distribution sense for
all admissible weight functions ψ.

(iv) The initial data (ρ, u) is attained in the distribution sense.

Clearly, the balance laws (1.1) follow from the entropy inequality, by choosing
ψ to be constant or linear. Here is our main result:

Theorem 1.2 (Global Existence) Consider the isentropic Euler equations
(1.1) for a polytropic perfect gas with adiabatic coefficient γ ∈ (1, 5/3]. Let
the geometry be specified by (1.3) & (1.4), where A < A and α are positive
constants. Then, for any initial data (ρ, u) with finite mass and total energy,
the Cauchy problem (1.1) & (1.7) admits a finite energy solution (ρ, u).
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As we will show below, finite energy solutions have nonincreasing total energy,
so (1.6) holds. But our estimates are not strong enough to conclude that also
a local energy balance is satisfied (see Section 2.5 for further details). This
is the reason why only ψ with subquadratic growth are considered here. The
local energy inequality can be recovered if we impose higher-integrability for
the initial data, as we will discuss in a follow-up paper.

In the planar case, for which A is constant, the existence of bounded entropy so-
lutions arising from bounded initial data was first studied in pioneering work
by DiPerna [10]. His result was generalized in [2,5,8–10,14,15]. Existence of
bounded solutions for the case of spherically symmetric and nozzle flows were
considered by Glimm and Chen [4]. To avoid the difficulty of spherically sym-
metric solutions becoming potentially unbounded, they constructed solutions
outside a ball around the origin only. A criterion for existence of bounded
solutions in the whole space (including the origin) was found by Chen [3]: The
inflow of the fluid towards the origin must be below a certain threshold.

Our strategy to establish Theorem 1.2 consists of two parts. In Section 2 we
first establish the existence of measure-valued entropy solutions: We consider
a sequence of bounded approximate solutions (ρn, un), obtained by suitably
truncating the unbounded initial data (ρ, u) and then using the existence
results of [4]. We then prove the first key observation that the approximate
density ρn enjoys higher-integrability in space-time, i.e., we have

ρn ∈ Lγ+1
loc

(
[0,∞)× Ω

)
uniformly in n.

This fact is established by a commutator estimate, following a strategy that
was already used in [7] in the context of scalar conservation laws. A similar
estimate was also derived in [13]. The second key observation made in Section 2
is that also the total energy E[ ρn, un ] enjoys a higher integrability. The proof
is based on a bound for the entropy-flux, following the arguments in [15,16].
An alternative proof, which works for the planar case only, is given in the
Appendix. It relies on “propagation of equi-integrability” for the total energy.
The particular form of the Euler equations and the freedom in choosing the
weight function ψ in the definition of the entropy is essential here.

In Section 3 we further analyze the structure of the measure-valued solution.
We show that the associated Young measure ν(t,x) is concentrated at a single
point for almost every (t, x) and therefore conclude that the measure-valued
solution is actually a weak solution. This proves Theorem 1.2. To achieve the
Young measure reduction, we first apply compensated compactness theory (see
Tartar [22]) and derive the well-known div-curl-commutator relation. Then
we determine the support of the Young measure in the (ρ, u)-plane, for which
we must study singular products of distributions. Since we do not require
pointwise bounds on the solutions, we must also deal with the difficulty that
the support of the Young measure might be unbounded.
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In the following, we denote by Ck(B) the space of k-times continuously dif-
ferentiable functions, for suitable subsets B ⊂ RN . If k = 0, then we simply
write C(B) := C0(B). We denote by Cb(B) the space of bounded continuous
functions, whereas C0(B) is the closure of D(B) with respect to the sup-norm.
Here, D(B) is the space of smooth functions with compact support. The sym-
bol Cα(B) with α ∈ (0, 1) is used for Hölder continuous functions.

2 Weak convergence and measure-valued solutions

In this section, we first construct a sequence of approximate solutions (ρn, un)
to the isentropic Euler equations. These functions are entropy solutions gen-
erated by compactly supported bounded initial data. We then show the weak
convergence of approximate solutions to a measure-valued solution.

2.1 Finite energy approximate solutions

In the spherically symmetric case, we need to remove the singularity at the
origin. We therefore introduce the modified geometry function

An(x) := (x+ 1/n)α, (2.1)

which converges uniformly to A(x) = xα as n → ∞. The Cauchy problem
associated to the function An is equivalent to a problem posed in the exterior
of a ball of radius 1/n, for which existence of bounded entropy solution was
shown in [4]. In the case of nozzle flows we simply put An := A for all n. Again
we can use [4]. Let Mn[·] and En[·] denote the functionals defined in (1.2) and
(1.6), with A replaced by An. Given initial data (ρ, u) with ρ > 0, we now
consider a sequence of measurable functions (ρn, un) with ρn > 0 that

(i) are bounded and compactly supported in the closure Ω̄;
(ii) converge in measure:

lim
n→∞

(ρn, un) = (ρ, u); (2.2)

(iii) have finite total mass M :

Mn[ ρn ] = M for all n; (2.3)

(iv) have uniformly bounded total energy converging to E:

sup
n
En[ ρn, un ] 6 2E, lim

n→∞
En[ ρn, un ] = E. (2.4)
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Clearly, it is possible to choose an approximating sequence (ρn, un) with the
above properties, by first truncating and mollifying the initial data (ρ, u) and
then multiplying the density by a suitable constant to enforce (2.3).

Next, let (ρn, un) be a sequence of entropy solutions of (1.1) corresponding to
the sequence of initial data (ρn, un). They have the following properties:

(i) For any n the entropy solution (ρn, un) is bounded in L∞([0,∞)×Ω) and
has compact support in space for all times t > 0.

(ii) The total mass is conserved in time: for a.e. t

Mn[ ρn ](t) = Mn[ ρn ]. (2.5)

(iii) The total energy is nonincreasing in time: for a.e. t

En[ ρn, un ](t) 6 En[ ρn, un ]. (2.6)

We will refer to a sequence of functions (ρn, uu) satisfying the above conditions
as a sequence of finite energy approximate solutions of the Euler equations.

Our objective is to establish the strong pre-compactness of (ρn, un). To achieve
this, we first derive a higher-integrability property satisfied by the density ρn

uniformly in n. This will allow us to introduce a Young measure representation
for the limits of nonlinear functions of (ρn, un).

2.2 Higher integrability of the mass density variable

We claim that for every n there exists a function hn : [0,∞)× Ω̄ −→ R that

(i) has distributional derivatives

∂th
n = −ρnunAn, ∂xh

n = ρnAn; (2.7)

(ii) can be normalized so that

0 6 hn 6 M. (2.8)

In the spherically symmetric case, we may assume h(t, 0) = 0 for all t.

Note first that a function hn satisfying (2.7) always exists since the conserva-
tion law for ρ precisely says that the mixed second derivatives of hn commute.
We see that for almost every t > 0, the map x 7→ hn(t, x) is absolutely con-
tinuous and nondecreasing because the function ρnAn is nonnegative.
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Consider first the case of a nozzle, for which Ω = R. Since the total mass is
preserved we conclude that for a.e. t > 0 we have the identity

lim
x→∞

hn(t, x)− lim
x→−∞

hn(t, x) = M. (2.9)

On the other hand, since for all fixed t the functions (ρn, un)(t, ·) are compactly
supported in R the first identity in (2.7) implies that

lim
x→−∞

hn(t, x) = lim
x→−∞

hn(0, x)

for a.e. t > 0. Normalizing hn such that limx→−∞ hn(0, x) = 0, we get (2.8).

Consider next the spherically symmetric case, for which Ω = (0,∞). Then

lim
x→∞

hn(t, x)− lim
x→0

hn(t, x) = M (2.10)

for a.e. t > 0. Since the momentum ρnunAn vanishes at x = 0, the first identity
in (2.7) implies that for a.e. t we obtain again

lim
x→0

hn(t, x) = lim
x→0

hn(0, x).

Normalizing hn such that limx→0 h
n(0, x) = 0, we again obtain (2.8).

Proposition 2.1 (Higher integrability) Let (ρn, un) be the finite energy
approximate solutions constructed in Subsection 2.1, with geometry given by
(1.3) & (1.4). For any T > 0 there exists a constant C > 0 such that

sup
n

∫∫
[0,T ]×Ω

(ρn)γ+1A2 dx dt 6 C.

Proof. To simplify notation, we assume that in the spherically symmetric case
all functions are extended by zero for x < 0. Recall that we may assume the
boundary condition hn(t, 0) = 0 for all t. Then (2.7) holds in [0,∞)× R.

Step 1. We will prove that hn is locally Hölder continuous in both variables,
with constants that are bounded uniformly in n. The equi-continuity of hn in
space follows easily from (2.6) and (2.7): Let K ⊂ R be some compact subset.
For all points x1, x2 ∈ K we can then estimate

ess sup
t>0

|hn(t, x2)− hn(t, x1)|

6 ess sup
t>0

∫ x2

x1

ρnAn dx

6 ess sup
t>0

(∫ x2

x1

(ρn)γAn dx

)1/γ(∫ x2

x1

An dx

)(γ−1)/γ

.
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The first factor can be estimated by (2.6) and (2.4). We find

ess sup
t>0

|hn(t, x2)− hn(t, x1)| 6 C1|x2 − x1|(γ−1)/γ, (2.11)

with C1 > 0 some constant depending on E and ‖A‖L∞(K) (recall (2.1)).

To prove the equi-continuity in time we first fix a mollifier ϕδ with the standard
properties ϕδ ≥ 0,

∫
ϕδ dx = 1, and sptϕδ ⊂ (−δ, δ). The parameter δ > 0

will be chosen later on. We then deduce from (2.11) that for all x ∈ K

ess sup
t>0

∣∣∣∣∣
( ∫

R
ϕδ(x− y)hn(t, y) dy

)
− hn(t, x)

∣∣∣∣∣
6 C1

∫
R
ϕδ(x− y)|x− y|(γ−1)/γ dy

6 C1δ
(γ−1)/γ.

For any t1, t2 > 0 and x ∈ R we therefore obtain

|hn(t2, x)− hn(t1, x)|

6 2C1δ
(γ−1)/γ +

∣∣∣∣∣
∫

R
ϕδ(x− y)

(
hn(t2, y)− hn(t1, y)

)
dy

∣∣∣∣∣
= 2C1δ

(γ−1)/γ +

∣∣∣∣∣
∫ t2

t1

∫
R
ϕδ(x− y) (ρnun)(t, y)An(y) dy dt

∣∣∣∣∣. (2.12)

Now note that the energy bound (2.6) implies the estimate

ess sup
t>0

∫
R
|ρnun|2γ/(γ+1)An dx

6 ess sup
t>0

(∫
R
(ρn)γAn dx

)1/(γ+1)(∫
R
ρn(un)2An dx

)γ/(γ+1)

6 C2, (2.13)

with C2 > 0 some constant depending on (2.4). Using this in (2.12) and
optimizing in δ, we arrive at the following estimate: for any t1, t2 > 0

ess sup
x∈R

|hn(t2, x)− hn(t1, x)|

6 2C1δ
(γ−1)/γ + C

(γ+1)/2γ
2 ‖ϕ‖L∞(R)δ

−(γ+1)/2γ|t1 − t2|

6 C3|t1 − t2|2(γ−1)/(3γ−1)

for some constant C3 > 0. This establishes the first part of the proposition.

Step 2. Let ϕε be a standard mollifier in R2 and, after extending hn by zero
to all of R2, define the smooth function hnε := hn ? ϕε. Then the following
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identity is true in the distribution sense in [0,∞)× R:

∂t

(
ρnunAn hnε

)
+ ∂x

(
ρn(un)2An hnε

)
+ An∂x

(
P (ρn) hnε

)
(2.14)

=

{
∂t(ρ

nunAn) + ∂x
(
ρn(un)2An

)
+ An∂xP (ρn)

}
hnε (2.15)

+

{
ρnunAn (∂th

n
ε ) +

(
ρn(un)2 + P (ρn)

)
An (∂xh

n
ε )

}
. (2.16)

The first term on the right-hand side vanishes in view of the momentum
conservation law satisfied by (ρn, un). As ε → 0, we have hnε → hn uniformly
on compact sets because hn is equi-continuous by Proposition 2.1.

On the other hand, we have ∂th
n
ε → ∂th

n and ∂xh
n
ε → ∂xh

n in L1
loc([0,∞)×R).

By boundedness of (ρn, un) and (2.7), we find that in distributional sense

P (ρn)ρn(An)2 = ∂t

(
ρnunAn hn

)
+ ∂x

((
ρn(un)2 + P (ρn)

)
An hn

)
− hnP (ρn) (∂xA

n). (2.17)

We test (2.17) against a monotone sequence of functions ζk ∈ D([0,∞) × Ω̄)
with 0 6 ζk 6 1 and ζk → 1[0,T ]×Ω for some T > 0. Note that (2.6) implies

ess sup
t>0

∫
R
|ρnun|An dx

6 ess sup
t>0

(∫
R
ρnAn dx

)1/2(∫
R
ρn(un)2An dx

)1/2

,

which can be estimated against
√

2ME. Since (ρn, un) has compact support
in x and since hn > 0 is uniformly bounded by M , we obtain that for all n∫∫

[0,T ]×Ω
(ρn)γ+1(An)2 dx dt 6 2M

√
2ME + T ME ‖(∂xA)−‖L∞(R). (2.18)

For the spherically symmetric case we used the fact that hn vanishes at the
origin, so the x-derivative on the left-hand side of (2.17) does not contribute.
We have ∂xA

n −→ ∂xA because of (2.1) and (∂xA)− = 0. Therefore the second
term in the estimate (2.18) vanishes in that case. Finally, note that A 6 An

for all n, which proves the proposition in the case of spherical symmetry. For
nozzle flows we defined An := A for all n, so there is nothing more to prove.
Note that by normalizing the function hn such that −M 6 hn 6 0, we can also
obtain (2.18) with (∂xA)− replaced by the positive part of the gradient. 2

Note that for any compact subset K ⊂ [0,∞) × Ω the function A2 can be
estimated uniformly from above and below. In view of (1.3) this is obvious for
the nozzle flow case. For the case of spherically symmetric flows, observe that
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the compact set K is bounded away from the origin because Ω = (0,∞) is an
open set. Proposition 2.1 therefore implies that

ρn ∈ Lγ+1
loc

(
[0,∞)× Ω

)
uniformly in n.

2.3 Young measures based on energy bounds

It will be convenient to work with the Riemann invariants (z, z) associated
with (1.1), rather than with the physical variables (ρ, u). For simplicity of
notation, we will consistently denote pairs of numbers such as (z, z) by the
corresponding bold symbol z := (z, z). We have

z(ρ, u) = u+ ρθ, z(ρ, u) = u− ρθ, (2.19)

which is equivalent to

ρ(z) =

(
z − z

2

)1/θ

, u(z) =
z + z

2
. (2.20)

We consider entropies/entropy-fluxes as functions of (ρ, u) or z, respectively.

We now define H := {a ∈ R2 : a > a}, and we will tacitly assume that all
functions inD(H) or C0(H) are extended by zero to the closure H̄, if necessary.
Consider then the following space of bounded continuous functions

C̄(H) :=

{
ϕ ∈ C(H̄) : the function ϕ is constant in {a ∈ R2 : a = a} and

the map
(
a 7→ lim

s→∞
ϕ(sa)

)
belongs to C(S1 ∩ H̄)

}
,

where S1 ⊂ R2 denotes the sphere. This space allows us to deal with the two
difficulties of the problem under consideration: at the vacuum and in the large.
Observe that C̄(H) has a ring structure and is complete with respect to the
sup-norm. Therefore, there exists a compactification H̄ of H such that C̄(H)
is isomorphic to the space C(H̄). We refer the reader to [19,20]. For simplicity,
we will not distinguish between functions in C̄(H) and in C(H̄).

The topology of H̄ is the weak-? topology induced by C(H̄): the sequence of
points an ∈ H̄ converges to a ∈ H̄ as n→∞ if and only if

lim
n→∞

ϕ(an) = ϕ(a) for all ϕ ∈ C(H̄).

In H ⊂ H̄ this weak-? topology is consistent with the Euclidean topology, and
thus H̄ is separable. Moreover, the space H̄ is metrizable since C̄(H) is separa-
ble and separates points in H (see Proposition 1.5.3 of [19] and Section 3.8 of
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[20]). On the other hand, we emphasize the fact that the topology above does
not distinguish points in the compactification of the diagonal {a ∈ R2 : a = a}.
In that sense, all points in the vacuum are equivalent. We denote by V the
compactification of {a ∈ R2 : a = a}, and we define H := H ∪ V .

We need the following result (see Theorem 2.4 of [1]).

Theorem 2.2 (Young measures) Given any sequence of measurable func-
tions zn : [0,∞) × Ω → H̄ there exists a subsequence (still labeled zn) and a
function ν ∈ L∞w ([0,∞) × Ω,Prob(H̄)) (that is, a weakly-? measurable map
from [0,∞)× Ω into the space of probability measures on H̄), such that

ϕ(zn) −⇀
∫
H̄
ϕ(a) ν(da) weakly-? in L∞

(
[0,∞)× Ω

)
for all ϕ ∈ C(H̄).

The functions zn converge in measure to z : [0,∞)× Ω → H̄ if and only if

ν(t,x) = δz(t,x) for a.e. (t, x).

We will use Young measures to represent limits of certain nonlinear functions
of (zn) that may be unbounded. Let us introduce the weight function

W (a) := 1 + ρ(a)γ+1 for all a ∈ H.

Proposition 2.3 Consider the sequence of Riemann invariants (zn) associ-
ated with the sequence of finite energy approximate solutions (ρn, un) of Sub-
section 2.1. Let ν be a Young measure generated by (a subsequence of) (zn).
Then for almost every (t, x) ∈ [0,∞)× Ω we have that

ν(t,x) ∈ Prob(H),
∫
H
W (a) ν(t,x)(da) <∞. (2.21)

For any ϕ = ϕ0W with ϕ0 ∈ C0(H) it holds

ϕ(zn) −⇀ 〈ϕ〉 :=
∫
H
ϕ(a) ν(da) weakly in L1

loc

(
[0,∞)× Ω

)
. (2.22)

Remark 2.4 The first statement in (2.21) means that ν(t,x) is supported in
H ∪ V only instead of H̄. Note that in (2.22) we consider local convergence
in the open set Ω. For the spherically symmetric case, this means convergence
away from the origin. A slightly more precise statement is

ϕ(zn)(An)2 −⇀ 〈ϕ〉A2 weakly in L1
loc

(
[0,∞)× Ω̄

)
for all ϕ = ϕ0W with ϕ0 ∈ C0(H). Recall that An converges uniformly to A.

Proof. We proceed in three steps.
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Step 1. Let B̄r(0) be the closed ball with radius r. Fix a radial test function
ϕ ∈ C(H̄) with 0 6 ϕ 6 1, such that ϕ = 1 in H̄ ∩ B̄1(0) and ϕ = 0
for H̄ \ B2(0). Let ϕR := ϕ(·/R) and ΦR := 1 − ϕR for all R > 0. Choose
φ ∈ C(S1∩H̄) with 0 6 φ 6 1 and compactly supported in S1∩H, and extend
φ as a homogeneous function of degree zero to H̄ \{0}. Then φΦR ∈ C̄(H), so
it can be identified with a function in C(H̄). Now Theorem 2.2 applies, and
we obtain that for any compact set K ⊂ [0,∞)× Ω

∫∫
K

(∫
H̄
φ(a)ΦR(a) ν(t,x)(da)

)
dx dt = lim

n→∞

∫∫
K
φ(zn)ΦR(zn) dx dt

6 sup
n

∣∣∣{zn − zn > cφR
}
∩K

∣∣∣,
where the constant cφ > 0 depends on the support of φ. Hence, we get

∫∫
K

(∫
H̄
φ(a)ΦR(a) ν(t,x)(da)

)
dx dt

6
1

1 +
(
cφR

2

)(γ+1)/θ
sup
n

∫∫
K
W (zn) dx dt −→ 0 as R→∞.

Note that W (zn) is uniformly bounded in L1(K) because of Proposition 2.1
and our assumptions on An and K. Since φ and K were arbitrary, we conclude
that ν is supported in H and the vacuum, thus ν(t,x) ∈ Prob(H) a.e.

Step 2. Consider a monotone sequence of φk ∈ D(H) with 0 6 φk 6 1 and
φk → 1 pointwise as k →∞. For any K ⊂ [0,∞)× R compact we have

∫∫
K
〈W 〉 dx dt = lim

k→∞

∫∫
K
〈φkW 〉 dx dt,

by monotone convergence. On the other hand, Theorem 2.2 yields

∫∫
K
〈φkW 〉 dx dt = lim

n→∞

∫∫
K
φk(z

n)W (zn) dx dt

6 sup
n

∫∫
K
W (zn) dx dt,

which is finite by Proposition 2.1 and by choice of An and K.

Step 3. Let now ϕ0 ∈ C0(H) and choose a sequence of functions ϕk ∈ D(H)
with ϕk → ϕ0 in the sup-norm as k → ∞. For any K ⊂ [0,∞) × Ω compact
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and ζ ∈ Cb([0,∞)× Ω) and by setting ϕ = ϕ0W , we can then estimate∣∣∣∣∣
∫∫

K
〈ϕ〉ζ dx dt−

∫∫
K
ϕ(zn)ζ dx dt

∣∣∣∣∣
6 ‖ϕk − ϕ0‖L∞(H)‖ζ‖L∞(K)

(∫∫
K
〈W 〉 dx dt+ sup

n

∫∫
K
W (zn) dx dt

)

+

∣∣∣∣∣
∫∫

K
〈ϕkW 〉ζ dx dt−

∫∫
K
ϕk(z

n)W (zn)ζ dx dt

∣∣∣∣∣ −→ 0 as k, n→∞.

Indeed, the first term on the right-hand side vanishes as k →∞, by choice of
ϕk and in view of Step 2 and Proposition 2.1. The second term vanishes for
any fixed k as n→∞, by Theorem 2.2. This completes the proof. 2

2.4 Measure-valued solutions

Recall first that in the seminal work [15] the authors introduced the kinetic
formulation for the isentropic Euler equations. They showed that for bounded
entropy solutions, the requirement that the inequality (1.11) holds for a suf-
ficiently large class of admissible weight functions ψ, can be reformulated in
terms of a single kinetic equation with suitable source term. This result can be
generalized to the isentropic Euler equations with geometric effect as follows:
Let (χ, σ) be the entropy/entropy-flux kernels introduced in (1.9). Then the
pair of functions (ρ, u) is a finite energy solution of (1.1) & (1.7) if and only if
there exists a nonnegative bounded measure µ depending on (t, x) ∈ [0,∞)×Ω
and s ∈ R such that in the distribution sense in ([0,∞)× Ω)× R we have

∂t

(
χ(·|ρ, u)A

)
+ ∂x

(
σ(·|ρ, u)A

)
+
(
ρu χ,ρ(·|ρ, u)− σ(·|ρ, u)

)
(∂xA)

= −∂2
s (Aµ). (2.23)

Recall that a finite energy solution satisfies the entropy inequality (1.11) for a
large class of convex weights ψ. The proof of this kinetic formulation follows
closely the one given in [15] for the planar case (see also [16] for spherically
symmetric flows), and we refer the reader to the literature for further details.
The measure µ captures the entropy dissipation. It can be bounded as∫∫

[0,∞)×Ω

∫
R
A(x)µ(ds, dx, dt) 6

∫
R

(
1
2
ρu2 + U(ρ)

)
Adx. (2.24)

A similar kinetic formulation can be derived for the sequence of finite energy
approximate solutions (ρn, un) constructed in Section 2.1.

We are going to show now that a suitable subsequence of (ρn, un) converges to
a measure-valued solution of the isentropic Euler equations. In slight abuse of

15



notation, we will occasionally consider the entropy/entropy-flux kernels (χ, σ)
as functions of the Riemann invariants z instead of (ρ, u): We write

χ(s|z) :=
(
(z − s)(s− z)

)λ
+
,

σ(s|z) :=

(
θs+ (1− θ)

z + z

2

)
χ(s|z)

for s ∈ R, which is consistent with (1.9) (see (2.19)).

We need the following two observations.

Lemma 2.5 Assume that the sequence (ρn, un) of finite energy approxima-
tions constructed in Section 2.1 generates a Young measure ν as explained in
Proposition 2.3. Let (zn) be the Riemann invariants associated with (ρn, un).
For any ψ ∈ D(R), the pair (ηψ, qψ) defined by (1.10) then satisfies

ηψ(zn) −⇀ 〈ηψ〉
qψ(zn) −⇀ 〈qψ〉

weakly in Lγ+1
loc

(
[0,∞)× Ω

)
. (2.25)

We also have

(ρu ηψ,ρ)(z
n) −⇀ 〈ρu ηψ,ρ〉 weakly in L2

loc

(
[0,∞)× Ω

)
. (2.26)

Moreover, if ηψ′ is defined as in (1.10) for some ψ′ ∈ D(R), then

ηψ(zn)ηψ′(z
n) −⇀ 〈ηψηψ′〉

qψ(zn)ηψ′(z
n) −⇀ 〈qψηψ′〉

weakly in L1
loc

(
[0,∞)× Ω

)
.

Proof. A straightforward change of variables shows that ηψ is given by

ηψ(a) = ρ(a)
∫ 1

−1
ψ
(
u(a) + tρ(a)θ

)
(1− t2)λ dt, (2.27)

so clearly a 7→ ηψ(a) is a continuous function. Suppose that the support sptψ
of the function ψ is included in an interval [c, c]. Then we have

|ηψ(a)| 6 C 1{c6a}1{a6c}

 ρ(a) for a− a small,

ρ(a)2λθ for a− a large,
(2.28)

with C > 0 a constant depending on ψ and λ. Indeed, note that λ > 0 for
γ ∈ (1, 3), which implies that the map t 7→ (1 − t2)λ is integrable on [−1, 1].
The behavior for small a− a then follows immediately. For large a− a, the s-
integral in (2.27) is restricted to an interval of length (c−c)/ρ(a)θ. This implies
that the integral in (2.27) is bounded above by a constant times 1/ρ(a)θ. Since
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1− θ = 2λθ, the asymptotic behavior in (2.28) follows. We conclude that

ηψW
−1 ∈ C0(H) and ηψηψ′W

−1 ∈ C0(H)

(since 4λθ < γ + 1 if γ > 1), and by Proposition 2.3

ηψ(zn) −⇀ 〈ηψ〉
ηψ(zn)ηψ′(z

n) −⇀ 〈ηψηψ′〉
weakly in L1

loc

(
[0,∞)× Ω

)
. (2.29)

We also have |ηψ(a)|γ+1 6 CW (a) for all a ∈ H and some constant C > 0.
Therefore (2.29) can be improved to (2.25), in view of Proposition 2.1.

For qψ we can argue in a similar way, using the bound

|qψ(a)| 6 max
(
|a|, |a|

)
|ηψ(a)|

6
(

max
{
|c|, |c|

}
+ (a− a)

)
|ηψ(a)| for all a ∈ H. (2.30)

We have qψW
−1 ∈ C0(H) and qψηψ′W

−1 ∈ C0(H) (since (4λ + 1)θ < γ + 1),
and |qψ(a)|γ+1 6 CW (a) for all a ∈ H and some constant C > 0.

The statement in (2.26) follows analogously. We use the identity

(ρu ηψ,ρ)(a) = u(a)
∫

R
ψ(s)χ(s|a) ds

+ θu(a)
∫

R
ψ′(s)

(
s− u(a)

)
χ(s|a) ds,

and then proceed as in (2.30). Note that 2(λ+ 1)θ = (γ + 1)/2. 2

We now establish strong convergence of the approximate initial data.

Lemma 2.6 For any smooth weight function ψ with at most quadratic growth
at infinity, let the entropy ηψ be defined by (1.10). Then we have

ηψ(ρn, un) −→ ηψ(ρ, u) strongly in L1
loc(Ω).

Proof. By assumption (2.2), we have (ρn, un) −→ (ρ, u) in measure. It therefore
suffices to show equi-integrability of ηψ(ρn, un) locally. We choose a function
ϕ ∈ D(R) with 0 6 ϕ 6 1, such that ϕ(s) = 1 for |s| 6 1 and ϕ(s) = 0 for
|s| > 2. Define ϕR := ϕ(·/R) and ΦR := 1−ϕR, and fix some K ⊂ Ω compact.
We will show that for all ε > 0 there exist numbers N,R > 0 with

sup
n>N

∫∫
K×R

s2ΦR(s)χ(s|zn) ds dx 6 ε. (2.31)
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Indeed, we can decompose∫∫
K×R

s2ΦR(s)χ(s|zn) ds dx

=

(∫∫
K×R

s2χ(s|zn) ds dx−
∫∫

K×R
s2χ(s|z) ds dx

)

−
(∫∫

K×R
s2ϕR(s)χ(s|zn) ds dx−

∫∫
K×R

s2ϕR(s)χ(s|z) ds dx

)

+
∫∫

K×R
s2ΦR(s)χ(s|z) ds dx. (2.32)

Since χ(s|z) ∈ L1(K × R) there exists R > 0 such that∫∫
K×R

s2ΦR(s)χ(s|z) ds dx 6 ε/3.

Moreover, we can find N1 > 0 such that

sup
n>N1

∣∣∣∣∣
∫∫

K×R
s2χ(s|zn) ds dx−

∫∫
K×R

s2χ(s|z) ds dx

∣∣∣∣∣ 6 ε/3,

by assumption (2.4) of convergence of the initial total energies. For the re-
maining term on the right-hand side of (2.32), we define the function

ηR(a) :=
∫

R
s2ϕR(s)χ(s|a) ds for a ∈ H,

which is continuous and can be estimated as in (2.28). Therefore

ηR(a) 6 CR

(
1 + ρ(a)2θλ

)
for all a ∈ H,

with CR > 0 some constant.

Note that γ > 1 implies 2θλ < γ, so the sequence (ηR(zn)) is equi-integrable
because of (2.6). Since zn −→ z in measure by assumption (2.2), we have

ηR(zn) −→ ηR(z) strongly in L1(K).

Therefore there exists a number N2 > 0 with

sup
n>N2

∣∣∣∣∣
∫∫

K×R
s2ϕR(s)χ(s|zn) ds dx−

∫∫
K×R

s2ϕR(s)χ(s|z) ds dx

∣∣∣∣∣ 6 ε/3.

Combining all estimates, we obtain (2.31) with N := max(N1, N2). 2

Since the finite energy approximations (ρn, un) are themselves entropy solu-
tions of the isentropic Euler equations, we can use the kinetic formulation,
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which implies the existence of nonnegative measures µn such that

∂t

(
ηψ(zn)An

)
+ ∂x

(
qψ(zn)An

)
+
((
ρu ηψ,ρ − qψ

)
(zn)

)
(∂xA

n)

= −
∫

R
ψ′′(s)An µn(ds, ·) in D′

(
[0,∞)× Ω

)
, (2.33)

for all test functions ψ ∈ D(R). We also have ηψ(zn(0, ·)) = ηψ(zn) in the
distribution sense. Since the measures µn are uniformly bounded:∫∫

[0,∞)×Ω

∫
R
An(x)µn(ds, dx, dt) 6

∫
R

(
1
2
ρn(un)2 + U(ρn)

)
An dx

6 2E for all n (2.34)

(see (2.4)), we obtain that along a suitable subsequence (still denoted by µn)

Anµn −⇀ Aµ weak-? in M
((

[0,∞)× Ω̄
)
× R

)
.

Recall that An converges uniformly to A, by construction. After extracting an-
other subsequence if necessary, we may also assume that the sequence (ρn, un)
generates a Young measure ν as introduced in Proposition 2.3. Using Lem-
mas 2.5 & 2.6, we can then pass to the limit in equation (2.33) and obtain

∂t

(
〈ηψ〉A

)
+ ∂x

(
〈qψ〉A

)
+
〈
ρu ηψ,ρ − qψ

〉
(∂xA) = −

∫
R
ψ′′(s)Aµ(ds, ·),

〈ηψ〉(0, ·) = ηψ(z) (2.35)

in D′([0,∞) × Ω) for all test functions ψ ∈ D(R). In this sense, the Young
measure ν is a measure-valued solution of the isentropic Euler equations (1.1).
In the next subsection we are going to show that (2.35) extends to weight
functions ψ that have subquadratic growth at infinity. This will in particular
imply that the initial data (ρ, u) is attained in the distribution sense.

2.5 Equi-integrability of the energy

Here is an extension of Lemma 2.5.

Proposition 2.7 (Higher integrability of the energy) Assume that the
sequence (ρn, un) of finite energy approximations constructed in Section 2.1
generates a Young measure ν as explained in Proposition 2.3. Consider the
sequence (zn) of Riemann invariants associated with (ρn, un). For any weight
ψ ∈ C2(R) with subcubic growth at infinity, we then obtain

ηψ(zn)An −⇀ 〈ηψ〉A weakly in L1
loc

(
[0,∞)× Ω̄

)
. (2.36)
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Moreover, if ψ has subquadratic growth at infinity, then

qψ(zn)An −⇀ 〈qψ〉A
(ρu ηψ,ρ)(z

n)An −⇀ 〈ρu ηψ,ρ〉A
weakly in L1

loc

(
[0,∞)× Ω̄

)
. (2.37)

Proposition 2.7 shows that in (2.35) we can allow weight functions ψ that do
not have compact support, but grow subquadratically at infinity. In particular,
we can choose ψ(s) = 1 or ψ(s) = s, and obtain the analogue of the continuity
and momentum equation in (1.1) for the measure-valued solution ν.

The following lemma is a generalization of results from [15,16].

Lemma 2.8 Let (ρn, un) be the sequence of finite energy approximations from
Section 2.1. Then there exists a constant C > 0 such that for all T > 0

sup
n

ess sup
y∈Ω

An(y)
∫
[0,T ]

(
ρn|un|3 + (ρn)γ+θ

)
(t, y) dt

 6 C. (2.38)

Proof. As explained at the beginning of Section 2.4, for any n there exists a
nonnegative measure µn such that in the distribution sense

∂t

(
χ(·|ρn, un)An

)
+ ∂x

(
σ(·|ρn, un)An

)
+
(
ρnun χ,ρ(·|ρn, un)− σ(·|ρn, un)

)
(∂xA

n) = −∂2
s (A

nµn). (2.39)

We now integrate (2.39) against the function

1[0,T ]×[y,∞)(t, x)ψ(s)

with ψ(s) := 1
2
s|s| for s ∈ R. Using a standard approximation argument, we

obtain that for almost every T ∈ [0,∞) and y ∈ Ω

An(y)
∫
[0,T ]

qψ(ρn, un)(t, y) dt

=
∫
[y,∞)

ηψ(ρn, un)(T, x)An(x) dx−
∫
[y,∞)

ηψ(ρn, un)(0, x)An(x) dx

+
∫∫

[0,T ]×[y,∞)

(
ρnun ηψ,ρ(ρ

n, un)− qψ(ρn, un)
)
(t, x)

(
∂xA

n
)
(x) dx dt

+
∫∫

[0,T ]×[y,∞)
sign(s)An(x)µn(ds, dx, dt). (2.40)

As usual, the entropy/entropy-flux pair (ηψ, qψ) is defined by (1.10). Now∣∣∣∣∣
∫∫

[0,T ]×[y,∞)
sign(s)An(x)µn(ds, dx, dt)

∣∣∣∣∣ 6 2E
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for all n because of (2.34). Moreover, since for all finite energy approximations
the total energy is nonincreasing in time, we can estimate for t ∈ {0, T}∣∣∣∣∣

∫
[y,∞)

ηψ(ρn, un)(t, x)An(x) dx

∣∣∣∣∣ 6
∫
Ω

(
1
2
ρn(un)2 + U(ρn)

)
(t, x)An(x) dx

6
∫
Ω

(
1
2
ρn(un)2 + U(ρn)

)
(x)An(x) dx,

which for all n is bounded by 2E (see (2.6) and (2.4)). Recall that the total
energy is the second s-moment of the entropy kernel. For the third integral on
the right-hand side of (2.40), a computation based on (2.49) yields

ρnun ηψ,ρ(ρ
n, un)− qψ(ρn, un) = −θ(ρn)γ+θ

(
1− un/(ρn)θ

)λ+2

+

(λ+ 1)(λ+ 2)
.

This quantity is nonpositive and bounded below by −C(ρn)γ+θ, with C > 0
some constant. Finally, we use the fact that there exists δ > 0 such that

qψ(ρn, un) > δ
(
ρn|un|3 + (ρn)γ+θ

)
for all (ρn, un).

We refer the reader to [15] for a proof. Combining all estimates, we find

Qn(y) 6
6E

δ
+
C

δ

∫
[y,∞)

(
∂xA

n(x)
)
−

An(x)
Qn(x) dx (2.41)

for almost all y ∈ Ω, where

Qn(y) := An(y)
∫
[0,T ]

(
ρn|un|3 + (ρn)γ+θ

)
(t, y) dt.

Note that for every n, the functions (ρn, un) and Qn are compactly supported,
so the integral in (2.41) is well-defined. Then Gronwall’s lemma implies

Qn(y) 6
6E

δ
exp

C
δ

∫
[y,∞)

(
∂xA

n(x)
)
−

An(x)
dx

 for a.e. y ∈ Ω. (2.42)

For nozzle flows, the right-hand side of (2.42) can be bounded independently of
y and n, by assumption (1.4) and the choice of An. For spherically symmetric
flows, the weight An is strictly increasing, so the integral in (2.42) vanishes. 2

Proof of Proposition 2.7. Let p := (γ + θ)/γ such that p > 1. Then

sup
n

∫∫
[0,T ]×K

(
ρn(un)2 + (ρn)γ

)p
An dx dt 6 C (2.43)
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for all T > 0 and K ⊂ Ω̄ compact, with C > 0 some constant: Note first that

An
∫
[0,T ]

(
ρn(un)2

)p
dt

6

(
An

∫
[0,T ]

ρn|un|3 dt
)(3γ−1)/3γ(

An
∫
[0,T ]

(ρn)γ+θ dt

)1/3γ

, (2.44)

by Hölder inequality. For the internal energy, we have the trivial identity

An
∫
[0,T ]

(
(ρn)γ

)p
dt = An

∫
[0,T ]

(ρn)γ+θ dt. (2.45)

Since the right-hand sides of both (2.44) and (2.45) are bounded independently
of x and n because of Lemma 2.8, the bound (2.43) follows immediately after
integrating over K. Similarly, we can use the Hölder inequality to prove

sup
n

∫∫
[0,T ]×K

(ρn)γ|un|An dx dt 6 C (2.46)

for some constant C > 0. Indeed, we have

An
∫
[0,T ]

(ρn)γ|un| dt 6

(
An

∫
[0,T ]

(ρn)γ+θ dt

)2/3(
An

∫
[0,T ]

ρn|un|3 dt
)1/3

,

which is bounded uniformly. Integrating over K, we obtain (2.46). Thus

sup
n

∫∫
[0,T ]×K

(∫
R
s2χ(s|ρn, un) ds

)
|un|An dx dt 6 C (2.47)

because the second s-moment of χ is given by the total energy.

Let again ψ(s) := s|s| for s ∈ R. Then formulas (1.9) & (1.11) imply

θ
∫

R
|s|3χ(s|ρn, un) ds = qψ(ρn, un)− (1− θ)un

∫
R
s|s|χ(s|ρn, un) dt.

The first term on the right-hand side can be controlled using the argument of
Lemma 2.8 (see (2.40)). For the second term, we can use (2.47). This yields

sup
n

∫∫
[0,T ]×K

(∫
R
|s|3χ(s|ρn, un) ds

)
An dx dt 6 C, (2.48)

with C > 0 some constant. Combining (2.47) & (2.48), we obtain the conver-
gence of ηψ(zn) and qψ(zn) for unbounded ψ by standard arguments.

To prove the last statement in (2.37), note that

ρnun ηψ,ρ(ρ
n, un) = un

∫
R
ψ(s)χ(s|ρn, un) ds

+ θun
∫

R
ψ′(s)(s− un)χ(s|ρn, un) ds. (2.49)
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Using (2.38) and (2.47), we can control the right-hand side of (2.49) uniformly
in n, for all ψ with at most quadratic growth. This completes the proof. 2

2.6 Compensated compactness

We have the following crucial result.

Lemma 2.9 (div-curl-commutator) Assume that the sequence (ρn, un) of
finite energy approximations constructed in Section 2.1 generates a Young
measure ν. Then almost everywhere in [0,∞)× Ω we have

〈χ(s)σ(s′)− σ(s)χ(s′)〉 − 〈χ(s)〉〈σ(s′)〉+ 〈σ(s)〉〈χ(s′)〉 = 0

for a.e. (s, s′) ∈ R2.

Proof. For any test functions ψ, ψ′ ∈ D(R) define the entropy/entropy-flux
pairs (ηψ, qψ) and (ηψ′ , qψ′) as in (1.10). According to Lemma 2.5 we have

ηψ(zn) −⇀ 〈ηψ〉
qψ(zn) −⇀ 〈qψ〉

weakly in Lγ+1
loc

(
[0,∞)× Ω

)
, (2.50)

as well as

(ρu ηψ,ρ)(z
n) −⇀ 〈ρu ηψ,ρ〉 weakly in L2

loc

(
[0,∞)× Ω

)
. (2.51)

The same convergence holds for the pair (ηψ′ , qψ′). Moreover, we have

ηψ(zn)qψ′(z
n) −⇀ 〈ηψqψ′〉

qψ(zn)ηψ′(z
n) −⇀ 〈qψηψ′〉

weakly in L1
loc

(
[0,∞)× Ω

)
. (2.52)

Recall that for all ψ ∈ D(R), the sequence (zn) satisfies

∂t

(
ηψ(zn)An

)
+ ∂x

(
qψ(zn)An

)
+
((
ρu ηψ,ρ − qψ

)
(zn)

)
(∂xA

n)

= −
∫

R
ψ′′(s)An µn(ds, ·) in D′

(
[0,∞)× Ω

)
. (2.53)

By (2.34), the right-hand side of (2.53) is bounded inM([0,∞)×Ω). Moreover,
by (2.50) & (2.51) and the divergence form of the left-hand side of (2.53):(∫

R
ψ′′(s)An µn(ds, ·)

)

is pre-compact in W−1,r
loc

(
[0,∞)× Ω

)
for 1 6 r < 2

and uniformly bounded in W−1,γ+1
loc

(
[0,∞)× Ω

)
.
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We used Sobolev embedding. Since γ + 1 > 2, Murat’s Lemma [18] yields(∫
R
ψ′′(s)An µn(ds, ·)

)
is pre-compact in H−1

loc

(
[0,∞)× Ω

)
.

The same arguments apply to the entropy/entropy-flux pair (ηψ′ , qψ′).

We now use the div-curl-Lemma (see [17,22]), which gives the identity

〈−ηψqψ′ + qψηψ′〉+ 〈ηψ〉〈qψ′〉 − 〈qψ〉〈ηψ′〉 = 0 in D′
(
[0,∞)× Ω

)
. (2.54)

By (2.50) and (2.52), the commutator is in L1
loc([0,∞) × Ω), so (2.54) holds

pointwise almost everywhere. On the other hand, by (1.10) we have

〈−ηψqψ′ + qψηψ′〉+ 〈ηψ〉〈qψ′〉 − 〈qψ〉〈ηψ′〉

=
∫∫

R2

(
〈−χ(s)σ(s′) + σ(s)χ(s′)〉+ 〈χ(s)〉〈σ(s′)〉 − 〈σ(s)〉〈χ(s′)〉

)
ψ(s)ψ′(s′) ds ds′.

Since ψ, ψ′ were arbitrary, the integrand must vanish for almost all (s, s′). 2

3 Strong convergence and finite energy solutions

In the previous section, we showed that a subsequence of the finite energy
approximate solutions (ρn, un) converges to a measure-valued solution of the
isentropic Euler equations. In this section, we improve this result by showing
that the Young measure constructed in Proposition 2.3 is concentrated for a.e.
(t, x) ∈ [0,∞)× Ω. This implies the existence of measurable functions (ρ, u),
which form a weak solution in the sense of Definition 1.1.

3.1 Reduction of the Young measure

We first introduce some notation.

Definition 3.1 Consider ν ∈ Prob(H) such that 〈W 〉 is finite, where

〈ϕ〉 :=
∫
H
ϕ(a) ν(da)

for all ϕ := ϕbW with ϕb ∈ Cb(H). The measure ν is called an entropy
admissible Young measure if for almost every (s, s′) ∈ R2 we have

〈χ(s)σ(s′)− σ(s)χ(s′)〉 − 〈χ(s)〉〈σ(s′)〉+ 〈σ(s)〉〈χ(s′)〉 = 0. (3.1)
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Entropy admissible measures have a very particular structure:

Theorem 3.2 (Reduction of Young measures) If ν is an entropy admis-
sible Young measure, then the support of ν is either a single point of H or a
subset of the vacuum line V .

As shown in Proposition 2.3 and Lemma 2.9, the sequence (ρn, un) of finite
energy approximate solutions constructed in Subsection 2.1, generates a Young
measure with the property that for almost every (t, x) ∈ [0,∞)×Ω the measure
ν(t,x) is entropy admissible in the sense of Definition 3.1. We can therefore apply
Theorem 3.2 at each point: For all (t, x) where ν(t,x) is not supported in the
vacuum, we have ν(t,x) = δz(t,x) for some z(t, x) ∈ H, thus

〈ηψ〉(t, x) = ηψ
(
z(t, x)

)
,

〈qψ〉(t, x) = qψ
(
z(t, x)

)
, (3.2)

〈ρu ηψ,ρ − qψ〉(t, x) =
(
ρu ηψ,ρ − qψ

)(
z(t, x)

)
for all admissible weight functions ψ. If ν(t,x) is supported in V , then

〈ηψ〉(t, x) = 〈qψ〉(t, x) = 〈ρu ηψ,ρ − qψ〉(t, x) = 0

since the integrands vanish in the vacuum, see (2.27) and (2.30). For those
points we define z(t, x) := (0, 0) and obtain again (3.2). The Young measure
ν is a measure-valued solution of the isentropic Euler equations in the sense
(2.35). With z : [0,∞)× Ω −→ H defined above (2.35) takes the form

∂t

(
ηψ(z)A

)
+ ∂x

(
qψ(z)A

)
+
((
ρu ηψ,ρ − qψ

)
(z)

)
(∂xA)

= −
∫

R
ψ′′(s)Aµ(ds, ·),

ηψ
(
z(0, ·)

)
= ηψ(z) (3.3)

in D′([0,∞)× Ω) for all admissible weight functions ψ.

Consider now the functions (ρ, u) that are related to z via (2.19). Then (3.3)
shows that (ρ, u) is an entropy solution in the sense of Definition 1.1, which
proves our main Theorem 1.2. Observe that in Proposition 2.7 we can allow
functions ψ with quadratic growth in the entropy 〈ηψ〉, but only subquadratic
growth is acceptable for the entropy-flux 〈qψ〉. Since for the finite energy ap-
proximate solutions the total energy is nonincreasing in time, the same is true
for the limit functions (ρ, u)/ We therefore have

∫
Ω

(
1
2
ρu2 + U(ρ)

)
(t2, x) dx 6

∫
Ω

(
1
2
ρu2 + U(ρ)

)
(t1, x) dx
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for almost every t2 > t1. Note, however, that while the argument of Lemma 2.8
can be used to derive a uniform L1-bound for the total energy fluxes

(
1
2
ρn(un)2 +Q(ρn)

)
unAn,

we cannot prove that their limit is given by

(
1
2
ρu2 +Q(ρ)

)
uA

since concentrations might occur. As a consequence, we do not know whether
the local energy balance (that is, (1.5) with an inequality) is satisfied.

The rest of this section is devoted to the proof of Theorem 3.2.

Lemma 3.3 Given an entropy admissible Young measure ν, consider the map
s ∈ R 7→ 〈χ(s)〉. Then, 〈χ〉 ∈ Cα(R) for all α ∈ [0, λ], and so the set

S :=
{
s ∈ R : 〈χ(s)〉 > 0

}
is open. If S is empty, then ν(H) = 0. If S is nonempty, define numbers
z := inf S and z := sup S (both possibly unbounded). Then S = (z, z) and

spt ν ∩
{
a ∈ H : a < z or z < a

}
= 0. (3.4)

Proof. Note that the function f(t) := (1− t2)λ+ is bounded and Hölder contin-
uous with Hölder exponent λ. We write the entropy kernel in the form

χ(s|a) = ρ(a)2θλ f

(
s− u(a)

ρ(a)θ

)
for (s,a) ∈ R×H, (3.5)

where ρ(a) and u(a) are defined by (2.19). We then obtain

sup
s 6=s′

|χ(s|a)− χ(s′|a)|
|s− s′|α

= ρ(a)(2λ−α)θ sup
t6=t′

|f(t)− f(t′)|
|t− t′|α

6 Cρ(a)(2λ−α)θ ,

with C > 0 some constant that does not depend on a. We also have

sup
s∈R

|χ(s|a)| 6 ρ(a)2λθ.
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Since 0 < (2λ− α)θ < 1 for all α ∈ [0, λ], we can now estimate

sup
s 6=s′

∣∣∣〈χ(s)〉 − 〈χ(s′)〉
∣∣∣

|s− s′|α
= sup

s 6=s′
|s− s′|−α

∣∣∣∣∣
∫
H
χ(s|a) ν(da)−

∫
H
χ(s′|a) ν(da)

∣∣∣∣∣
6
∫
H

sup
s 6=s′

|χ(s|a)− χ(s′|a)|
|s− s′|α

ν(da)

6 C
∫
H
W (a) ν(da),

which is finite by assumption on ν. The function 〈χ〉 is bounded:

sup
s∈R

|〈χ(s)〉| = sup
s∈R

∣∣∣∣∣
∫
H
χ(s|a) ν(da)

∣∣∣∣∣
6
∫
H

sup
s∈R

|χ(s|a)| ν(da) 6
∫
H
W (a) ν(da).

This shows that 〈χ〉 ∈ Cα(R) for all α ∈ [0, λ], so S is well-defined and open.

We show next that S can be represented in the form

S =
⋃

a∈spt ν∩H
(a, a). (3.6)

Indeed assume that a ∈ spt ν ∩ H. Then we have ν(Br(a) ∩ H) > 0 for all
r > 0, by definition of support of a measure. Therefore we obtain

〈χ(s)〉 >
∫
Br(a)

χ(s|a′) dν(a′) > 0

at least for all s ∈ R with the property that χ(s|a′) > 0 for all a′ ∈ Br(a).
This implies (a + r, a − r) ⊂ S. Since r > 0 and a were arbitrary, we get the
⊃ inclusion in (3.6). For the converse direction, suppose that

〈χ(s)〉 =
∫
H
χ(s|a′) dν(a′) > 0 (3.7)

for some s ∈ R. Since χ vanishes in the vacuum, in (3.7) we can restrict
integration to H. Then ν({a ∈ H : a < s < a}) > 0, so there exists at least
one point a ∈ spt ν in that set. Then s ∈ (a, a), and (3.6) follows. If now S is
empty, then (3.6) implies that spt ν ∩H = ∅, thus ν(H) = 0.

Let us now assume that S is nonempty. We define z, z as in the statement of
the lemma. Then we argue by contradiction and assume that S is disconnected.
Since S is open, there exist numbers z < c 6 c < z and ε > 0 such that 〈χ(s)〉 = 0 for s ∈ [c, c],

〈χ(s)〉 > 0 for s ∈ (c− ε, c) ∪ (c, c+ ε).
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a

a

sptχ(s ′|·)

sptχ(s|·)

sptχ(s|·)χ(s ′|·)

sptν

sptν

sptχ(s|·) ∩ spt ν

s ′

c

c

s

Fig. 1. The product χ(s|·)χ(s′|·) lives outside spt ν.

In view of (3.6), this implies that

spt ν ∩
{
a ∈ H : c < a and a < c

}
= ∅. (3.8)

Choosing s ∈ (c− ε, c) and s′ ∈ (c, c+ ε) we use assumption (3.1) in the form

〈−χ(s)σ(s′) + σ(s)χ(s′)〉
〈χ(s)〉〈χ(s′)〉

=
〈σ(s′)〉
〈χ(s′)〉

− 〈σ(s)〉
〈χ(s)〉

, (3.9)

which is well-defined since 〈χ(s)〉〈χ(s′)〉 > 0. Now note that χ(s|a)χ(s′|a) = 0
for all a ∈ spt ν, by (3.8) (see Figure 1). We obtain

−χ(s|a)σ(s′|a) + σ(s|a)χ(s′|a) = 0 for all a ∈ spt ν,

so the left-hand side of (3.9) vanishes. For the right-hand side we can estimate

〈σ(s)〉
〈χ(s)〉

= θs
〈χ(s)〉
〈χ(s)〉

+ (1− θ)
〈uχ(s)〉
〈χ(s)〉

6 θs+ (1− θ)c < c.

Here, we have used that on the one hand

sptχ(s|·) ∩ spt ν ⊂
{
a ∈ H : a 6 c

}
∪ V ⊂

{
a ∈ H : u(a) 6 c

}
∪ V

in view of (3.8) (see again Figure 1) and, on the other hand, ν can not be
entirely concentrated at one point where χ(s|a) = 0 since 〈χ(s)〉 > 0.

With the analogous estimate

〈σ(s′)〉
〈χ(s′)〉

= θs′
〈χ(s′)〉
〈χ(s′)〉

+ (1− θ)
〈uχ(s′)〉
〈χ(s′)〉

> θs′ + (1− θ)c > c,

we obtain from (3.9) that 0 > c− c > 0, which is a contradiction. 2
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3.2 Expansion of the entropy kernels

In order to establish that the probability measure of Theorem 3.2 is concen-
trated at one point, we must understand how the entropy kernels behave under
fractional differentiation with respect to s. For λ > 0 and suitable functions
f : R −→ R we define the operators

Df := F−1
(
| · |λ+1Ff

)
, df := F−1

(
i| · |λ sign(·)Ff

)
(3.10)

in distributional sense, where F denotes the Fourier transform. We have

Df(s) =
d

ds

(
df(s)

)
, (3.11)

D
(
sf(s)

)
= sDf(s) + (λ+ 1)df(s). (3.12)

We now apply these operators to the function f(s) := (1 − s2)λ+ with s ∈ R.
According to [11], its Fourier transform is given by

Ff(z) := 2λΓ(λ+ 1)|z|−λ−1/2Jλ+1/2(|z|) (3.13)

for all z ∈ R, where Γ denotes the Gamma function and Jλ+1/2 is the Bessel
function. Note that despite of the singular factor in (3.13), the function Ff is
bounded, due to the decaying properties of the Bessel function. We have

df = cF−1
(
| · |−1/2Fg

)
, (3.14)

where c is some constant and the function g is defined for all z ∈ R by

Fg(z) := i sign(z)Jλ+1/2

(
|z|
)
.

The inverse Fourier transform of | · |−1/2 induces a fractional integration oper-
ator, called Riesz potential (see [21]). Therefore (3.14) is equivalent to

df(s) = C| · |−1/2 ? g(s), s ∈ R, (3.15)

with C some new constant. Since Fg is an odd function, we can express the
inverse Fourier transform in terms of the inverse Fourier Sine transform and
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obtain the following explicit formula (see [12]):

g(s) =

√
2

π
sign(s)

∫ ∞

0
Jλ+1/2(z) sin

(
z|s|

)
dz

=

√
2

π
sign(s)



sin
(
(λ+ 1

2
) arcsin |s|

)
√

1− s2
, |s| < 1,

cos
(
(λ+ 1

2
)π

2

)
√
s2 − 1

(
|s|+

√
s2 − 1

)λ+1/2
, |s| > 1.

(3.16)

Note that g decays like |s|−(λ+3/2) as |s| → ∞ and diverges only like |1−|s||−1/2

as |s| → 1. This implies g ∈ Lp(R) for all p ∈ [1, 2). By the Hardy-Littlewood-
Sobolev theorem (see [21]), we then have df ∈ Lq(R) for all q ∈ (2,∞). The
singular behavior of df and Df is decribed in the following proposition.

Proposition 3.4 (Fractional derivatives) Let f(s) = (1− s2)λ+ for s ∈ R,
and define the fractional derivatives Df and df by (3.10). Then there exist
constants Ai, i = 1 . . . 4, and functions r, q ∈ W 1,p(R) for p ∈ [2,∞), such
that in the distribution sense we have the following expansions:

df(s) = A1

(
H(s+ 1) +H(s− 1)

)
+ A2

(
Ci(s+ 1)− Ci(s− 1)

)
+ r(s),

Df(s) = A1

(
δ(s+ 1) + δ(s− 1)

)
+ A2

(
PV(s+ 1)− PV(s− 1)

)
+ A3

(
H(s+ 1)−H(s− 1)

)
+ A4

(
Ci(s+ 1) + Ci(s− 1)

)
+ q(s).

Here δ is the Dirac measure, PV is the principal value distribution, and H
denotes the Heaviside function. The function Ci is the Cosine integral

Ci(s) := −
∫ ∞

|s|

cos t

t
dt = C + log |s|+

∫ |s|

0

cos t− 1

t
dt, s ∈ R, (3.17)

with C > 0 some constant. For simplicity, we will treat the distributions δ and
PV as if they were functions. The coefficients A1 and A2 are not both equal to
zero. Moreover, if γ = (M + 2)/M with M ∈ N odd, then A2 = A4 = 0.

Remark 3.5 Note that by Sobolev embedding, the remainders are Hölder con-
tinuous: We have r, q ∈ Cα(R) for all exponents α ∈ [0, 1). In particular, the
functions are bounded. Moreover, we get r, q ∈ W 1,p

loc (R) for all p ∈ [1,∞).

This expansion has been proved in slightly different form in [14,5], starting
from an asymptotic formula for the Fourier transform of Df . The main dif-
ference is that in [14] the logarithm log | · | is used in place of Ci, which is
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not totally accurate since the Fourier transform of Df is a bounded function,
while the Fourier transform of the logarithm has a pole at the origin. Recall
that Ci(s) behaves like − log |s| as |s| → 0 and decays like |s|−1 at infinity.
We remark in passing that it is possible to prove Proposition 3.4 starting from
identities (3.15) and (3.16), thereby avoiding the Fourier transform altogether.
But we will not pursue this option here.

Proposition 3.4 is used to find expansions for the entropy kernel. Note that

χ(s|a) = ρ(a)2θλ f

(
s− u(a)

ρ(a)θ

)
, (s,a) ∈ R×H.

Therefore the chain rule implies the identities

dχ(s|a)

= ρ(a)θλ
(
A1

(
H(s− a) +H(s− a)

)
+ A2

(
Ci(s− a)− Ci(s− a)

))

+ ρ(a)θλ r

(
s− u(a)

ρ(a)θ

)
, (3.18)

Dχ(s|a)

= ρ(a)θλ
(
A1

(
δ(s− a) + δ(s− a)

)
+ A2

(
PV(s− a)− PV(s− a)

))

+ ρ(a)θ(λ−1)

(
A3

(
H(s− a)−H(s− a)

)
+ A4

(
Ci(s− a) + Ci(s− a)

))

+ ρ(a)θ(λ−1)

(
− A42θ log ρ(a) + q

(
s− u(a)

ρ(a)θ

))
(3.19)

in the distribution sense in s for all a ∈ H. Using (1.9) and the product rule
(3.12) we obtain similar identities for the entropy-flux kernel σ. For γ = 5/3
we have A2 = A4 = 0, so (3.18) and (3.19) do not contain PV and Ci.

3.3 Proof of the reduction result

We essentially follow the arguments in [5,14]. But since we no longer assume
that spt ν is a bounded set, we must ensure that all terms are indeed well-
defined. Let us first fix some notation.

We choose nonnegative test functions ϕ, ϕ′ ∈ D(R) with support in the interval
[−1, 1] and with integral equal to one. For ε > 0 we put

ϕε(s) := ε−1ϕ(s/ε), ϕ′ε(s) := ε−1ϕ′(s/ε)
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for all (s, ε) ∈ R× (0, 1). We then mollify the entropy kernels: Let

χε(s|a) := χ(·|a) ? ϕε(s), σε(s|a) := σ(·|a) ? ϕε(s)

for all (s,a) ∈ R × H, and define (χ′ε, σ
′
ε) analogously, using the mollifier ϕ′ε

instead. We assume that ϕ and ϕ′ are chosen in such a way that

Z :=
∫∫

R×R
H(t− s)

(
ϕ(t)ϕ′(s)− ϕ(s)ϕ′(t)

)
ds dt (3.20)

is a positive number. As shown in [5], this is always possible.

The proof of Theorem 3.2 relies on the following two propositions.

Proposition 3.6 There exist a constant B > 0 depending on λ and the num-
ber Z defined in (3.20) such that for any nonnegative ζ ∈ D(R) we have

lim
ε→0

∫
R

〈
Dχε(t)Dσ

′
ε(t)−Dσε(t)Dχ

′
ε(t)

〉〈
χ(t)

〉
ζ(t) dt

= B
∫
H
ρ(a)1−θ

(〈
χ(a)

〉
ζ(a) +

〈
χ(a)

〉
ζ(a)

)
ν(da).

Proposition 3.7 For any test function ζ ∈ D(R) we have

lim
ε→0

∫
R

〈
χ(t)Dσ′ε(t)− σ(t)Dχ′ε(t)

〉〈
Dχε(t)

〉
ζ(t) dt

= lim
ε→0

∫
R

〈
χ(t)Dσε(t)− σ(t)Dχε(t)

〉〈
Dχ′ε(t)

〉
ζ(t) dt.

Propositions 3.6 will be proved in Subsection 3.4, Proposition 3.7 in Subsec-
tion 3.5. Let us first show how they imply Theorem 3.2. Following the strategy
introduced in [5] we multiply (3.1) by 〈χ(t)〉 and obtain the identity〈

χ(s)σ(s′)− σ(s)χ(s′)
〉〈
χ(t)

〉
=
(〈
χ(s)

〉〈
σ(s′)

〉
−
〈
σ(s)

〉〈
χ(s′)

〉)〈
χ(t)

〉
for almost all (s, s′, t) ∈ R3. Cyclic permutation of the variables yields〈

χ(s′)σ(t)− σ(s′)χ(t)
〉〈
χ(s)

〉
=
(〈
χ(s′)

〉〈
σ(t)

〉
−
〈
σ(s′)

〉〈
χ(t)

〉)〈
χ(s)

〉
,〈

χ(t)σ(s)− σ(t)χ(s)
〉〈
χ(s′)

〉
=
(〈
χ(t)

〉〈
σ(s)

〉
−
〈
σ(t)

〉〈
χ(s)

〉)〈
χ(s′)

〉
.
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Summing up all terms, the right-hand sides cancel out, and we find〈
χ(s)σ(s′)− σ(s)χ(s′)

〉〈
χ(t)

〉
=
〈
χ(t)σ(s′)− σ(t)χ(s′)

〉〈
χ(s)

〉
−
〈
χ(t)σ(s)− σ(t)χ(s)

〉〈
χ(s′)

〉
.

We apply the fractional differentiation operator D with respect to s and s′,
then integrate against the mollifiers ϕε(t− s) and ϕ′ε(t− s′) as defined in the
beginning of Subsection 3.3. Finally, we multiply the resulting terms by some
nonnegative test function ζ ∈ D(R) and integrate in t over R. Then

∫
R

〈
Dχε(t)Dσ

′
ε(t)−Dσε(t)Dχ

′
ε(t)

〉〈
χ(t)

〉
ζ(t) dt

=
∫

R

〈
χ(t)Dσ′ε(t)− σ(t)Dχ′ε(t)

〉〈
Dχε(t)

〉
ζ(t) dt

−
∫

R

〈
χ(t)Dσε(t)− σ(t)Dχε(t)

〉〈
Dχ′ε(t)

〉
ζ(t) dt.

According to Proposition 3.6, the right-hand side converges to zero as ε → 0
since the two terms have the same limit. Proposition 3.7 describes the limit
of the left-hand side. Sending ε→ 0, we arrive at the identity

B
∫
H
ρ(a)1−θ

(〈
χ(a)

〉
ζ(a) +

〈
χ(a)

〉
ζ(a)

)
ν(da) = 0. (3.21)

All terms of the integrand in (3.21) are nonnegative. Choosing a monotone
sequence of ζk ∈ D(R) with 0 6 ζk 6 1 and ζk −→ 1 as k →∞, we get∫

H
ρ(a)1−θ〈χ(a)〉 ν(da) = 0,

∫
H
ρ(a)1−θ〈χ(a)〉 ν(da) = 0, (3.22)

by monotone convergence. Recall that the constant B is strictly positive.

Consider now the interval S = (z, z) defined in Lemma 3.3. If S = ∅, then the
representation (3.6) implies that spt ν ⊂ V . If S 6= ∅, then we find

spt ν ∩
{
a ∈ H : a > z or a < z

}
= ∅,

see Figure 2. Since 〈χ(s)〉 > 0 for all s ∈ S, from (3.22) and (3.6) we get

spt ν ∩
{
a ∈ H : z < a < z

}
= ∅ and spt ν ∩

{
a ∈ H : z < a < z

}
= ∅;

see again Figure 2. Therefore the measure ν must be contained in the vacuum
V and in the isolated point z := (z, z) ∈ H. We make an ansatz

ν = (1− ω)νV + ωδz for some ω ∈ [0, 1],
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a

a

sptν

z

z

z

V

Fig. 2. The spt ν is either the point z or the vacuum V .

where νV is a probability measure supported in the vacuum V . Using this
measure in the commutator relation (3.1), we find the identity

(ω − ω2)
(
− χ(s|z)σ(s′|z) + σ(s|z)χ(s′|z)

)
= 0, a.e. (s, s′) ∈ R2.

For some s, s′ ∈ S with s 6= s′ the second factor does not vanish, which implies
that ω ∈ {0, 1}. If ω = 0, then ν is supported in the vacuum V . If ω = 1, then
ν is a Dirac measure at the point z. This proves Theorem 3.2.

3.4 Proof of Proposition 3.6

As shown in Proposition 3.4, the fractional differentiation operator D applied
to the entropy/entropy flux-kernels creates distributions such as Dirac mea-
sures, principal values, and their primitives. Up to mollification, the quantities
in Propositions 3.6 and 3.7 contain products of these distributions, so we must
carefully argue that all terms are well-defined.

Let ϕε, ϕ
′
ε be the mollifiers from the beginning of Subsection 3.3 and define

Φε(s, s
′) :=

∫
R
g(t)ϕε(t− s)ϕ′ε(t− s′) dt, (s, s′) ∈ R2, (3.23)

for all ε > 0. Here g ∈ Cα(R) is some nonnegative function with compact
support, with α ∈ [0, λ]. Now fix L > 0 such that spt g ⊂ BL(0) and define

B1 := BL+1(0) and B := BL+2(0).

The proof of Proposition 3.6 is based on the following two lemmas.

Lemma 3.8 Let R be a bounded, Hölder continuous function. Consider any
pair of distributions T, T ′ ∈ D′(R) from the following table:

(T, T ′) = (δ,Q), (T, T ′) = (PV, Q), (T, T ′) = (Q,Q′),
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where Q,Q′ ∈ {H,Ci, R}. Then there exists a constant C > 0 such that

sup
ε∈(0,1)

∣∣∣∣∣
∫∫

R×R
Φε(s, s

′)
[
T (s)T ′(s′)− T ′(s)T (s′)

]
ds ds′

∣∣∣∣∣
6 ‖g‖Cα(R)

(
C
(
1 + ‖R‖Cα(B)

)2
)
. (3.24)

Moreover, we have the following limits:
(1) For (T, T ′) = (δ,H) or (PV,Ci) we have

lim
ε→0

∫∫
R×R

Φε(s, s
′)
[
δ(s)H(s′)−H(s)δ(s′)

]
ds ds′ = Z g(0),

lim
ε→0

∫∫
R×R

Φε(s, s
′)
[
PV(s) Ci(s′)− Ci(s)PV(s′)

]
ds ds′ = Zπ2 g(0).

(2) For all other combinations of T and T ′ we have

lim
ε→0

∫∫
R×R

Φε(s, s
′)
[
T (s)T ′(s′)− T ′(s)T (s′)

]
ds ds′ = 0.

The constant Z > 0 is defined by (3.20).

Proof. Note first that the assumptions on g and on the mollifiers ϕε and ϕ′ε
imply that the function Φε is in D(R× R). Therefore the pairing∫∫

R×R
Φε(s, s

′)
[
T (s)T ′(s′)− T ′(s)T (s′)

]
ds ds′ (3.25)

is well-defined for all pairs (T, T ′) considered. As a function of ε ∈ (0, 1),
the integral (3.25) is smooth. To establish (3.24) it is sufficient to control the
behavior as ε→ 0, in which case the singularities become important.

Note that a substitution of variables yields the identity∫∫
R×R

Φε(s, s
′)
[
T (s)T ′(s′)− T ′(s)T (s′)

]
ds ds′

=
∫∫

R×R
Mε(u, u

′)ϕ(u)ϕ′(u′) du du′,

where the function Mε is defined as

Mε(u, u
′) :=

∫
R
g(t)

[
T (t− εu)T ′(t− εu′)− T (t− εu)T ′(t− εu′)

]
dt

for (u, u′) ∈ R × R. In the following, we will use the decomposition (3.17) of
the Cosine Integral into a logarithm and a Hölder continuous remainder.

Step 1. Let (T, T ′) = (δ,H). Note that∫
R
g(t)δ(t− εu)H(t− εu′) dt = g(εu)H

(
ε(u− u′)

)
,
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with a similar identity if u and u′ are interchanged. Therefore

Mε(u, u
′) = g(εu)H

(
ε(u− u′)

)
− g(εu′)H

(
ε(u′ − u)

)
,

which implies the estimate

|Mε(u, u
′)| 6 2‖g‖L∞(R).

By dominated convergence, we obtain

lim
ε→0

∫∫
R×R

Φε(s, s
′)
[
δ(s)H(s′)−H(s)δ(s′)

]
ds ds′

= g(0)

(∫∫
R×R

[
H(u− u′)−H(u′ − u)

]
ϕ(u)ϕ′(u′) du du′

)
.

The integral on the right-hand side coincides with Z > 0 defined in (3.20).

Step 2. Let (T, T ′) = (δ, log | · |). Note that∫
R
g(t)δ(t− εu) log |t− εu′| dt = g(εu) log |ε(u− u′)|,

with a similar identity if u and u′ are interchanged. Therefore

Mε(u, u
′) =

[
g(εu)− g(εu′)

]
log |ε(u− u′)|.

We obtain the estimate

|Mε(u, u
′)| 6 ‖g‖Cα(R)

((
ε|u− u′|

)α∣∣∣ log |ε(u− u′)|
∣∣∣). (3.26)

Since the supports of ϕ and ϕ′ are contained in [−1, 1], the right-hand side of
(3.26) is uniformly bounded and converges to zero as ε→ 0, yielding

lim
ε→0

∫∫
R×R

Φε(s, s
′)
[
δ(s) log |s′| − log |s|δ(s′)

]
ds ds′ = 0.

Step 3. Let (T, T ′) = (δ, R). Note that∫
R
g(t)δ(t− εu)R(t− εu′) dt = g(εu)R

(
ε(u− u′)

)
,

with a similar identity if u and u′ are interchanged. Therefore

Mε(u, u
′) = g(εu)R

(
ε(u− u′)

)
− g(εu′)R

(
ε(u′ − u)

)
,

which implies the estimate

|Mε(u, u
′)| 6 ‖g‖L∞(R)

(
2‖R‖L∞(R)

)
.
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By dominated convergence, we then obtain

lim
ε→0

∫∫
R×R

Φε(s, s
′)
[
δ(s)R(s′)−R(s)δ(s′)

]
ds ds′ = 0.

Step 4. Let (T, T ′) = (PV, H). A substitution of variables yields

∫
R
g(t)PV(t− εu)H(t− εu′) dt =

∫ ∞

−ε(u−u′)
PV(s)g(s+ εu) ds,

with a similar identity if u and u′ are interchanged. Therefore

Mε(u, u
′) =

∫ ∞

−ε(u−u′)
PV(s)g(s+ εu) ds−

∫ ∞

−ε(u′−u)
PV(s)g(s+ εu′) ds.

Let us assume that u > u′, the converse case being similar. We decompose

∫ ∞

−ε(u−u′)
PV(s)g(s+ εu) ds

=
∫ ε(u−u′)

−ε(u−u′)
PV(s)g(s+ εu) ds+

∫ ∞

ε(u−u′)
PV(s)g(s+ εu) ds.

By symmetry, the first integral on the right-hand side can be rewritten as

∫ ε(u−u′)

−ε(u−u′)
PV(s)g(s+ εu) ds =

∫ ε(u−u′)

−ε(u−u′)
PV(s)

[
g(s+ εu)− g(εu)

]
ds,

which implies the estimate

∣∣∣∣∣
∫ ε(u−u′)

−ε(u−u′)
PV(s)g(s+ εu) ds

∣∣∣∣∣ 6 ‖g‖Cα(R)

∫ ε(u−u′)

−ε(u−u′)
|s|α−1 ds

= ‖g‖Cα(R)

(
2α−1

(
ε|u− u′|

)α)
.

The right-hand side is uniformly bounded and vanishes as ε→ 0. Now

∫ ∞

ε(u−u′)
PV(s)g(s+ εu) ds−

∫ ∞

−ε(u′−u)
PV(s)g(s+ εu′) ds

=
∫ ∞

ε(u−u′)
PV(s)

[
g(s+ εu)− g(s+ εu′)

]
ds,
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which implies the estimate

∣∣∣∣∣
∫ ∞

ε(u−u′)
PV(s)g(s+ εu) ds−

∫ ∞

−ε(u′−u)
PV(s)g(s+ εu′) ds

∣∣∣∣∣
6 ‖g‖Cα(R)

(ε|u− u′|
)α ∫ L+1

ε(u−u′)

ds

s


= ‖g‖Cα(R)

((
ε|u− u′|

)α[
log(L+ 1)− log |ε(u− u′)|

])
. (3.27)

Recall that spt g ⊂ BL(0). The right-hand side of (3.27) is uniformly bounded
and converges to zero as ε→ 0. Combining the above estimates we get

lim
ε→0

∫∫
R×R

Φε(s, s
′)
[
PV(s)H(s′)−H(s)PV(s′)

]
ds ds′ = 0.

Step 5. Let (T, T ′) = (PV, log | · |). A substitution of variables yields

∫
R
g(t)PV(t− εu) log |t− εu′| dt =

∫
R

PV(s)g(s+ εu) log |s+ ε(u− u′)| ds,

with a similar identity if u and u′ are interchanged. We now decompose

Mε(u, u
′)

=
∫
B1

PV(s)
[
g(εu′) log |s+ ε(u− u′)| − g(εu) log |s+ ε(u′ − u)|

]
ds

+
∫
B1

PV(s)
[(
g(s+ εu)− g(εu′)

)
log |s+ ε(u− u′)|

]
ds

−
∫
B1

PV(s)
[(
g(s+ εu′)− g(εu)

)
log |s+ ε(u′ − u)|

]
ds. (3.28)

Note that the function

ζa(t) :=
(
g(t+ a)− g(a)

)
log |t|, t ∈ R,

is Hölder continuous for all a ∈ R. Therefore we can estimate∣∣∣∣∣
∫
B1

PV(s)
[(
g(s+ εu)− g(εu′)

)
log |s+ ε(u− u′)|

]
ds

∣∣∣∣∣
=

∣∣∣∣∣
∫
B1

PV(s)
[
ζεu′

(
s+ ε(u− u′)

)
− ζεu′

(
ε(u− u′)

)]
ds

∣∣∣∣∣
6 ‖g‖Cα(R)

(
C
∫
B
|s|α′−1 ds

)
,
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with α′ < α and C > 0 some constant. Moreover, we find

lim
ε→0

∫
B1

PV(s)
[(
g(s+ εu)− g(εu′)

)
log |s+ ε(u− u′)|

]
ds

=
∫
B1

PV(s)
[
g(s)− g(0)

]
log |s| ds.

The same reasoning applies with u and u′ interchanged, with the same limit.
Therefore the last two terms in (3.28) are bounded and vanish as ε→ 0.

To control the first term on the right-hand side of (3.28), we write∫
B1

PV(s) log |s+ ε(u− u′)| ds =
∫ ε(u−u′)

−ε(u−u′)
PV(s) log |s+ ε(u− u′)| ds

+
∫ L+1

ε(u−u′)
PV(s) log

∣∣∣∣∣s+ ε(u− u′)

s− ε(u− u′)

∣∣∣∣∣ ds,
assuming without loss of generality that u− u′ > 0. Now we have∫ ε(u−u′)

−ε(u−u′)
PV(s) log |s+ ε(u− u′)| ds = π2/4,∫ L+1

ε(u−u′)
PV(s) log

∣∣∣∣∣s+ ε(u− u′)

s− ε(u− u′)

∣∣∣∣∣ ds = π2/4− h
(
ε(u− u′)

)
,

where h is a smooth, increasing function with lims→0 h(s) = 0. If u and u′ are
interchanged, we obtain the same quantities with a minus sign. Therefore∫

B1

PV(s)
[
g(εu′) log |s+ ε(u− u′)| − g(εu) log |s+ ε(u′ − u)|

]
ds

=
(
g(εu) + g(εu′)

)(
π2/2− h

(
ε(u− u′)

))
.

This left-hand side is bounded in absolute value by π2‖g‖L∞(R) and converges
to the limit π2g(0). Combining all estimates, we conclude that

|Mε(u, u
′)| 6 C‖g‖Cα(R),

with C > 0 some constant. By dominated convergence, we find

lim
ε→0

∫∫
R×R

Φε(s, s
′)
[
PV(s) log |s′| − log |s|PV(s′)

]
ds ds′

= g(0)

(
π2
∫∫

R×R

[
H(u− u′)−H(u′ − u)

]
ϕ(u)ϕ′(u′) du du′

)
.

The integral on the right-hand side coincides with Z > 0 defined in (3.20).

Step 6. Let (T, T ′) = (PV, R). A substitution of variables yields∫
R
g(t)PV(t− εu)R(t− εu′) dt =

∫
R

PV(s)g(s+ εu)R
(
s+ ε(u− u′)

)
ds,
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with a similar identity if u and u′ are interchanged. Therefore

Mε(u, u
′)

=
∫

R
PV(s)

[
g(s+ εu)R

(
s+ ε(u− u′)

)
− g(s+ εu′)R

(
s+ ε(u′ − u)

)]
ds.

Since g and R are Hölder continuous functions, we can estimate∣∣∣∣∣
∫

R
PV(s)g(s+ εu)R

(
s+ ε(u− u′)

)
ds

∣∣∣∣∣
=

∣∣∣∣∣
∫
B1

PV(s)
[
g(s+ εu)R

(
s+ ε(u− u′)

)
− g(εu)R

(
ε(u− u′)

)]
ds

∣∣∣∣∣
6 ‖g‖Cα(R)

(
‖R‖Cα(R)

∫
B
|s|α−1 ds

)
.

By dominated convergence, we then have

lim
ε→0

∫
R
g(t)PV(t− εu)R(t− εu′) dt =

∫
B

PV(s)
[
g(s)R(s)− g(0)R(0)

]
ds.

The same reasoning applies with u and u′ interchanged. We obtain the estimate

|Mε(u, u
′)| 6 ‖g‖Cα(R)

(
C‖R‖Cα(R)

)
with C > 0 some constant, and the convergence

lim
ε→0

∫∫
R×R

Φε(s, s
′)
[
PV(s)R(s′)−R(s)PV(s′)

]
ds ds′ = 0.

Step 7. Finally, let (T, T ′) = (Q,Q′) with Q,Q′ ∈ {H, log | · |, R}. We have

|Mε(u, u
′)| 6 ‖g‖L∞(R)

(
‖Q(· − εu)−Q(· − εu′)‖L2(B)‖Q′(· − εu′)‖L2(B)

+ ‖Q(· − εu′)‖L2(B)‖Q′(· − εu′)−Q′(· − εu)‖L2(B)

)
.

Since Q,Q′ ∈ W β,2
loc (R) for all β < 1, the right-hand side is uniformly bounded

and converges to zero as ε→ 0. By dominated convergence, we get that

lim
ε→0

∫∫
R×R

Φε(s, s
′)
[
Q(s)Q′(s′)−Q′(s)Q(s′)

]
ds ds′ = 0.

The proof of Lemma 3.6 is now complete. 2

Lemma 3.9 Let R be a bounded, Hölder continuous function. Consider any
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pair of distributions T, T ′ ∈ D′(R) from the following table:

{T, T ′} = {δ, δ}, {T, T ′} = {PV,PV}, {T, T ′} = {Q,Q},

{T, T ′} = {δ,PV}, {T, T ′} = {PV, Q},

{T, T ′} = {δ,Q},

where Q ∈ {H,Ci, R}. Then there exists a constant C > 0 such that

sup
ε∈(0,1)

∣∣∣∣∣
∫∫

R×R
(s− s′)Φε(s, s

′)
[
T (s)T ′(s′)

]
ds ds′

∣∣∣∣∣
6 ‖g‖Cα(R)

(
C
(
1 + ‖R‖Cα(B)

)2
)
. (3.29)

Moreover, we have the following limits:
(1) For {T, T ′} = {δ,PV} we have

lim
ε→0

∫∫
R×R

(s− s′)Φε(s, s
′)
[
PV(s)δ(s′) + δ(s)PV(s′)

]
ds ds′ = 0. (3.30)

(2) For all other combinations of T and T ′ we have

lim
ε→0

∫∫
R×R

(s− s′)Φε(s, s
′)
[
T (s)T ′(s′)

]
ds ds′ = 0.

Proof. Note first that the map (s, s′) 7→ (s− s′)Φε(s, s
′) is in D(R× R) since

the function Φε is smooth with compact support. This follows from (3.23), and
from the assumptions on g and ϕε, ϕ

′
ε. Therefore the pairing with products

of distributions is well-defined. As in the proof of Lemma 3.8, in order to
establish the bound (3.29) it is sufficient to consider the behavior as ε→ 0.

Step 1. We immediately find that∫∫
R×R

(s− s′)Φε(s, s
′)
[
δ(s)δ(s′)

]
ds ds′ = 0.

Step 2. We have the identity∫∫
R×R

(s− s′)Φε(s, s
′)
[
PV(s)δ(s′)

]
ds ds′

=
∫

R
g(t)

(∫
R
ϕε(t− s)

[
sPV(s)

]
ds

)
ϕ′ε(t) dt

=
∫

R
g(t)ϕ′ε(t) dt, (3.31)
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where we used the fact that sPV(s) = 1. We can therefore estimate∣∣∣∣∣
∫∫

R×R
(s− s′)Φε(s, s

′)
[
PV(s)δ(s′)

]
ds ds′

∣∣∣∣∣ 6 ‖g‖L∞(R).

Moreover, by continuity of g we obtain the convergence

lim
ε→0

∫∫
R×R

(s− s′)Φε(s, s
′)
[
PV(s)δ(s′)

]
ds ds′ = g(0).

If we reverse the order of the distributions, the same reasoning applies. The
resulting term converges to −g(0) as ε→ 0, so the claim (3.30) follows.

Step 3. We have the identity∫∫
R×R

(s− s′)Φε(s, s
′)
[
log |s|δ(s′)

]
ds ds′

=
∫

R
g(t)

(∫
R
ϕε(t− s)

[
s log |s|

]
ds

)
ϕ′ε(t) dt.

We can therefore estimate as follows:∣∣∣∣∣
∫∫

R×R
(s− s′)Φε(s, s

′)
[
log |s|δ(s′)

]
ds ds′

∣∣∣∣∣ 6 ‖g‖L∞(R)

(
sup
|s|62ε

∣∣∣s log |s|
∣∣∣).

The right-hand side converges to zero as ε → 0. Similar reasoning applies if
the function log | · | is replaced by H or R, and if the order of the distributions
are reversed. In particular, we have the estimate∣∣∣∣∣

∫∫
R×R

(s− s′)Φε(s, s
′)
[
R(s)δ(s′)

]
ds ds′

∣∣∣∣∣ 6 ‖g‖L∞(R)

(
2ε‖R‖L∞(B)

)
, (3.32)

which again vanishes in the limit ε→ 0.

Step 4. We have the identity∫∫
R×R

(s− s′)Φε(s, s
′)
[
PV(s)PV(s′)

]
ds ds′

=
∫

R
g(t)


(∫

R
ϕε(t− s)

[
sPV(s)

]
ds

)(∫
R
ϕ′ε(t− s′)PV(s′) ds′

)

−
(∫

R
ϕε(t− s)PV(s) ds

)(∫
R
ϕ′ε(t− s′)

[
s′PV(s′)

]
ds′
) dt

=
∫∫

R×R
g(t)

[
ϕ′ε(t− s)− ϕε(t− s)

]
PV(s) ds dt,
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where we used that sPV(s) = 1. After a substitution of variables, we get

∫∫
R×R

(s− s′)Φε(s, s
′)
[
PV(s)PV(s′)

]
ds ds′

=
∫∫

R×R
g(s+ w)

[
ϕ′ε(w)− ϕε(w)

]
PV(s) ds dw

=
∫

R

[
ϕ′ε(w)− ϕε(w)

]( ∫
B1

[
g(s+ w)− g(w)

]
PV(s) ds

)
dw. (3.33)

Now we estimate∣∣∣∣∣
∫∫

R×R
(s− s′)Φε(s, s

′)
[
PV(s)PV(s′)

]
ds ds′

∣∣∣∣∣
6 ‖g‖Cα(R)

(
2
∫
B
|t|α−1 dt

)
. (3.34)

Note that the map

ζ(w) :=
∫
B1

[
g(s+ w)− g(w)

]
PV(w) dw

is Hölder continuous and locally bounded. Therefore we obtain

lim
ε→0

∫
R
ϕε(w)

(∫
B1

[
g(s+ w)− g(w)

]
PV(s) ds

)
dw

=
∫
B

[
g(s)− g(0)

]
PV(s) ds.

The same holds with ϕ′ε in place of ϕε, therefore (3.33) converges to zero.

Step 5. We have the identity∫∫
R×R

(s− s′)Φε(s, s
′)
[
log |s|PV(s′)

]
ds ds′

=
∫

R
g(t)

(∫
R
ϕε(t− s)

[
s log |s|

]
ds

)(∫
R
ϕ′ε(t− s′)PV(s′) ds′

)
dt

−
∫

R
g(t)

(∫
R
ϕε(t− s) log |s| ds

)
dt, (3.35)

where we used that s′PV(s′) = 1. The second term can be estimated as∣∣∣∣∣
∫

R
g(t)

(∫
R
ϕε(t− s) log |s| ds

)
dt

∣∣∣∣∣ =
∣∣∣∣∣
∫

R
ϕε(w)

(∫
R
g(t) log |t− w| dt

)
dw

∣∣∣∣∣
6 ‖g‖L∞(R)

(∫
B

∣∣∣ log |t|
∣∣∣ dt). (3.36)
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As in Step 4 we find that the map

w 7→
∫

R
g(t) log |t− w| dt

is Hölder continuous and locally bounded, which implies that

lim
ε→0

∫
R
g(t)

(∫
R
ϕε(t− s) log |s| ds

)
dt =

∫
R
g(t) log |t| dt. (3.37)

For the first term in (3.35) we argue as follows: We introduce the function

ζε(s
′) :=

∫
R

g(t) ∫
R
ϕε(t− s)

[
s log |s|

]
ds

ϕ′ε(t− s′) dt (3.38)

for all s′ ∈ R. Since s 7→ s log |s| is Hölder continuous for all Hölder exponents
less than one, we find that ζε converges strongly in the Cα(R)-norm to

ζ(s′) := g(s′)
[
s′ log |s′|

]
, s′ ∈ R. (3.39)

In particular, the Cα(R)-norm of ζε is bounded uniformly in ε ∈ (0, 1), and
can in fact be estimated by C‖g‖Cα(R), with C > 0 some constant. Hence∣∣∣∣∣

∫
R
g(t)

(∫
R
ϕε(t− s)

[
s log |s|

]
ds

)(∫
R
ϕ′ε(t− s′)PV(s′) ds′

)
dt

∣∣∣∣∣
=

∣∣∣∣∣
∫
B

PV(s′)
[
ζε(s

′)− ζε(0)
]
ds′
∣∣∣∣∣

6 ‖g‖Cα(R)

(
C
∫
B
|s′|α−1 ds′

)
. (3.40)

From the strong convergence of ζε in the Hölder-norm we obtain

lim
ε→0

∫
R
g(t)

(∫
R
ϕε(t− s)

[
s log |s|

]
ds

)(∫
R
ϕ′ε(t− s′)PV(s′) ds′

)
dt

=
∫
B

PV(s′)
[
ζ(s′)− ζ(0)

]
ds′

=
∫
B
g(s′) log |s′| ds′, (3.41)

using that s′PV(s′) = 1 and ζ(0) = 0. Because of (3.37) and (3.41), the right-
hand side of (3.35) vanishes as ε → 0. The same holds with log | · | replaced
by H or R, and with the order of the distributions reversed. We have∣∣∣∣∣

∫∫
R×R

(s− s′)Φε(s, s
′)
[
R(s)PV(s′)

]
ds ds′

∣∣∣∣∣
6 ‖g‖L∞(R)

(
‖R‖L1(B)

)
+ ‖g‖Cα(R)

(
C‖R‖Cα(B)

∫
B
|s′|α−1 ds′

)
,
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which implies the desired estimate.

Step 6. We have the identity∫∫
R×R

(s− s′)Φε(s, s
′)
[
log |s| log |s′|

]
ds ds′

=
∫

R
g(t)


(∫

R
ϕε(t− s)

[
s log |s|

]
ds

)(∫
R
ϕ′ε(t− s′) log |s′| ds′

)

−
(∫

R
ϕε(t− s) log |s| ds

)(∫
R
ϕ′ε(t− s′)

[
s′ log |s′|

]
ds′
) dt. (3.42)

Using again the function ζε defined in (3.38), which converges strongly in the
sup-norm to the limit (3.39), we can now estimate∣∣∣∣∣

∫
R
g(t)

(∫
R
ϕε(t− s)

[
s log |s|

]
ds

)(∫
R
ϕ′ε(t− s′) log |s′| ds′

)
dt

∣∣∣∣∣
=

∣∣∣∣∣
∫
B

log |s′|ζε(s′) ds′
∣∣∣∣∣

6 ‖g‖L∞(R)

(
C
∫
B

log |s′| ds′
)
,

with C > 0 some constant. From the strong convergence of ζε, we obtain

lim
ε→0

∫
R
g(t)

(∫
R
ϕε(t− s)

[
s log |s|

]
ds

)(∫
R
ϕ′ε(t− s′)PV(s′) ds′

)
dt

=
∫
B

log |s′|ζ(s′) ds′

=
∫
B
g(s′)s′

(
log |s′|)2 ds′.

The same limit is obtained with primed and unprimed terms interchanged,
so the left-hand side of (3.42) vanishes as ε → 0. Any other combination of
functions from {log | · |, H,R} can be handled in the same way. We have∣∣∣∣∣
∫∫

R×R
(s− s′)Φε(s, s

′)
[
R(s)R(s′)

]
ds ds′

∣∣∣∣∣ 6 ‖g‖L∞(R)

(
2‖R‖L∞(B)‖R‖L1(B)

)
,

with similar estimates for the remaining combinations. 2

Proof of Proposition 3.6. Using (1.9) and (3.12) we find the identity

Dχ(s|a)Dσ(s′|a)−Dσ(s|a)Dχ(s′|a)

= θ(s′ − s)Dχ(s|a)Dχ(s′|a)

+ θ(λ+ 1)
[
Dχ(s|a)dχ(s′|a)− dχ(s|a)Dχ(s′|a)

]
, (3.43)
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which holds distributionally in (s, s′) ∈ R × R for all a ∈ H. Let us consider
the first term on the right-hand side. We fix some a ∈ H and integrate against
the function (3.23). We then want to use the expansion (3.19) to control∫∫

R×R
(s− s′)Φε(s, s

′)
[
Dχ(s|a)Dχ(s′|a)

]
ds ds′. (3.44)

Note that Dχ(s|a) is singular at s = a and s = a, and smooth otherwise. A
straightforward, but tedious application of Proposition 3.7 shows

sup
ε∈(0,1)

∣∣∣∣∣
∫∫

R×R
(s− s′)Φε(s, s

′)
[
Dχ(s|a)Dχ(s′|a)

]
ds ds′

∣∣∣∣∣
6 ‖g‖Cα(R)

{
Cρ(a)2θλ

(
1 + ρ(a)−θ

)(
1 + ρ(a)−αθ + | log ρ(a)|

)}
, (3.45)

with C > 0 some constant independent of a. Since 2λ− 1 > 0 for γ ∈ (1, 5/3],
the right-hand side of (3.45) vanishes as ρ(a) → 0, if α is chosen small enough.
For ρ(a) large, (3.45) grows at most linearly because 2θλ = 1 − θ < 1. By
Proposition 3.7 and the dominated convergence theorem, we obtain

lim
ε→0

∫∫
R×R

(s− s′)Φε(s, s
′)
〈
Dχ(s)Dχ(s′)

〉
ds ds′ = 0.

For the second term in (3.43) we argue similarly: Again we have a bound

sup
ε∈(0,1)

∣∣∣∣∣
∫∫

R×R
Φε(s, s

′)
[
Dχ(s|a)dχ(s′|a)− dχ(s|a)Dχ(s′|a)

]
ds ds′

∣∣∣∣∣
6 ‖g‖Cα(R)

{
Cρ(a)2θλ

(
1 + ρ(a)−θ

)(
1 + ρ(a)−αθ +

∣∣∣ log ρ(a)
∣∣∣)}

with C > 0 some constant, as follows from the expansions (3.18) and (3.19).
We use Proposition 3.6 and the dominated convergence theorem to obtain

lim
ε→0

∫∫
R×R

Φε(s, s
′)
〈
Dχ(s)dχ(s′)− dχ(s)Dχ(s′)

〉
ds ds′

= (A2
1 + π2A2

2)Z
∫
H
ρ(a)1−θ

(
g(a) + g(a)

)
ν(da).

Recall that Z 6= 0 by choice of mollifiers. Moreover, at least one of the con-
stants A1 and A2 is different from zero. Therefore B := (A2

1 + π2A2
2)Z does

not vanish. To conclude the proof of Proposition 3.6, we apply the argument
above for the particular choice g(t) := 〈χ(t)〉ζ(t) with nonnegative ζ ∈ D(R).
As shown in Lemma 3.3, the map t 7→ 〈χ(t)〉 is in Cα(R) for all α ∈ [0, λ]. 2

3.5 Proof of Proposition 3.7

We use the notation of Subsection 3.4.

46



Lemma 3.10 Let p ∈ [1, 1/(1 − λ)) and let R ∈ W 1,p
loc (R) be some function.

For any distribution T ∈ {δ,PV, H, log | · |, R} define

Tε(t) :=
∫

R
ϕε(t− s)T (s) ds for (s, ε) ∈ R× (0, 1),

where ϕε is a standard mollifier with sptϕε ⊂ [−ε, ε]. Then there exists, for
any L > 0, a constant C > 0 such that the following estimate holds:

sup
ε∈(0,1)

∫ L

0
tλp|Tε(t)|p dt 6 C

(
1 + ‖R‖pL∞(B)

)
, (3.46)

where B := BL+2(0). Moreover, as ε→ 0 we have strong convergence

tλ+Tε(t) −→ tλ+T (t) in Lploc(R).

Proof. Note that Tε is smooth as a function of ε ∈ (0, 1). To establish (3.46)
it is therefore sufficient to consider the behavior as ε → 0. Again we use the
decomposition (3.17) of Ci into a logarithm and a smooth function.

Step 1: We first consider the case of a Dirac measure. We can estimate∣∣∣∣∣
∫

R
ϕε(t− s)δ(s) ds

∣∣∣∣∣ = ϕε(t) 6 Cε−11[−ε,ε](t),

with C > 0 some constant depending on ‖ϕ‖L∞(R). Therefore we obtain

∫ L

0
tλp
∣∣∣∣∣
∫

R
ϕε(t− s)δ(s) ds

∣∣∣∣∣
p

ds 6 Cε−p
∫ ε

0
tλp dt

= Cε(λ−1)p+1
∫ 1

0
sλp ds, (3.47)

after a substitution of variables t = εs. Since by assumption p < 1/(1 − λ),
the right-hand side of (3.47) converges to zero as ε→ 0. This implies

tλ+

(∫
R
ϕε(t− s)δ(s) ds

)
−→ 0 in Lploc(R).

Step 2: Now we consider the principal value. Let t ∈ (0, ε). We decompose∫
R
ϕε(t− s)PV(s) ds

=
∫ ε−t

−(ε−t)
ϕε(t− s)PV(s) ds+

∫ ε+t

−(ε−t)
ϕε(t− s)PV(s) ds. (3.48)
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For the first term we can argue as follows: By symmetry, we have∫ ε−t

−(ε−t)
ϕε(t− s)PV(s) ds =

∫ ε−t

−(ε−t)

[
ϕε(t− s)− ϕε(t)

]
PV(s) ds.

Now fix some α ∈ (0, 1). Then we can estimate∣∣∣∣∣
∫ ε−t

−(ε−t)

[
ϕε(t− s)− ϕε(t)

]
PV(s) ds

∣∣∣∣∣ 6 ‖ϕε‖Cα(R)

∫ ε−t

−(ε−t)
|s|α−1 ds

= Cε−(1+α)|ε− t|α,

with C > 0 some constant depending on ‖ϕ‖Cα(R). This implies

∫ ε

0
tλp
∣∣∣∣∣
∫ ε−t

−(ε−t)
ϕε(t− s)PV(s) ds

∣∣∣∣∣
p

dt 6 Cpε−(1+α)p
∫ ε

0
tλp|ε− t|αp dt

= Cpε(λ−1)p+1
∫ 1

0
sλp|1− s|αp ds.

The right-hand side vanishes as ε→ 0. For the second term in (3.48) we find∣∣∣∣∫ ε+t

ε−t
ϕε(t− s)PV(s) ds

∣∣∣∣ 6 ‖ϕε‖L∞(R)

∫ ε+t

ε−t

ds

s

= Cε−1

∣∣∣∣∣ log

(
ε+ t

ε− t

)∣∣∣∣∣,
with C > 0 some new constant depending on ‖ϕ‖L∞(R). Therefore

∫ ε

0
tλp
∣∣∣∣∣
∫ ε+t

ε−t
ϕε(t− s)PV(s) ds

∣∣∣∣∣
p

dt 6 Cpε−p
∫ ε

0
tλp
∣∣∣∣∣ log

(
ε+ t

ε− t

)∣∣∣∣∣
p

dt

= Cpε(λ−1)p+1
∫ 1

0
sλp
∣∣∣∣∣ log

(
1 + s

1− s

)∣∣∣∣∣
p

ds.

Again the right-hand side converges to zero as ε→ 0. Let now t ∈ (ε, L). Then∣∣∣∣∫ t+ε

t−ε
ϕε(t− s)PV(s) ds

∣∣∣∣ 6 Cε−1

∣∣∣∣∣ log

(
t+ ε

t− ε

)∣∣∣∣∣,
with C > 0 some new constant depending on ‖ϕ‖L∞(R). We have

sup
ε<t

ε−1

∣∣∣∣∣ log

(
t+ ε

t− ε

)∣∣∣∣∣ = lim
ε→0

ε−1

∣∣∣∣∣ log

(
t+ ε

t− ε

)∣∣∣∣∣ = 2t−1.

Therefore we obtain the estimate∫ L

ε
tλp
∣∣∣∣∣
∫ t+ε

t−ε
ϕε(t− s)PV(s) ds

∣∣∣∣∣
p

dt 6 (2C)p
∫ L

ε
t(λ−1)p dt

6
(2C)p

(λ− 1)p+ 1
L(λ−1)p+1. (3.49)
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The left-hand side is bounded uniformly in ε. We conclude that

tλ+

(∫
R
ϕε(t− s)PV(s) ds

)
−→ tλ−1

+ in Lploc(R).

Step 3: We now consider the case of a Heaviside function. We have∣∣∣∣∣
∫

R
ϕε(t− s)H(s) ds

∣∣∣∣∣ 6 1.

Therefore we obtain the straightforward estimate∫ L

0
tλp
∣∣∣∣∣
∫

R
ϕε(t− s)H(s) ds

∣∣∣∣∣
p

ds 6
∫ L

0
tλp dt.

The right-hand side is bounded uniformly in ε. Moreover, we have

tλ+

(∫
R
ϕε(t− s)H(s) ds

)
−→ tλ+ in Lploc(R).

Step 4: For the case of a logarithm, we first consider t ∈ (0, ε). We decompose∫
R
ϕε(t− s) log |s| ds

=
∫ 0

−(ε−t)
ϕε(t− s) log |s| ds+

∫ ε+t

0
ϕε(t− s) log |s| ds. (3.50)

For the first term we can now estimate∣∣∣∣∣
∫ 0

−(ε−t)
ϕε(t− s) log |s| ds

∣∣∣∣∣ 6 ‖ϕε‖L∞(R)

∫ 0

−(ε−t)
| log |s|| ds

= Cε−1|ε− t|
(
1 + | log |ε− t||

)
with C > 0 some constant depending on ‖ϕ‖L∞(R). This implies

∫ ε

0
tλp
∣∣∣∣∣
∫ 0

−(ε−t)
ϕε(t− s) log |s| ds

∣∣∣∣∣
p

dt

6 Cpε−p
∫ ε

0
tλp|ε− t|p

(
1 + | log |ε− t||

)p
dt

= Cpελp+1
(
1 + | log ε|

)p ∫ 1

0
sλp|1− s|p

(
1 + | log |1− s||

)p
ds.

The right-hand side vanishes as ε→ 0. For the second term in (3.50) we find∣∣∣∣∣
∫ ε+t

0
ϕε(t− s) log |s| ds

∣∣∣∣∣ 6 Cε−1|ε+ t|
(
1 + | log |ε+ t||

)
,
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which implies the estimate∫ ε

0
tλp
∣∣∣∣∣
∫ ε+t

0
ϕε(t− s) log |s| ds

∣∣∣∣∣
p

dt

6 Cpελp+1
(
1 + | log ε|

)p ∫ 1

0
sλp|1 + s|p

(
1 + | log |1 + s||

)p
ds.

Again the right-hand side vanishes for ε→ 0. Consider now t ∈ (ε, L). Then∣∣∣∣∫ t+ε

t−ε
ϕε(t− s) log |s| ds

∣∣∣∣
6 Cε−1

∣∣∣∣|t+ ε|
(
1 + | log |t+ ε||

)
− |t− ε|

(
1 + | log |t− ε||

)∣∣∣∣,
with C > 0 some new constant depending on ‖ϕ‖L∞(R). We have

sup
ε<t

ε−1

∣∣∣∣|t+ ε|
(
1 + | log |t+ ε||

)
− |t− ε|

(
1 + | log |t− ε||

)∣∣∣∣
= lim

ε→0
ε−1

∣∣∣∣|t+ ε|
(
1 + | log |t+ ε||

)
− |t− ε|

(
1 + | log |t− ε||

)∣∣∣∣ = 2| log |t||.

Therefore we obtain the estimate∫ L

ε
tλp
∣∣∣∣∣
∫ t+ε

t−ε
ϕε(t− s) log |s| ds

∣∣∣∣∣
p

dt 6 (2C)p
∫ L

ε
tλp| log |t||p dt.

The right-hand side is bounded uniformly in ε. We obtain

tλ+

(∫
R
ϕε(t− s) log |s| ds

)
−→ tλ+ log |t| in Lploc(R).

Step 5: Finally, let us consider the case of a function R ∈ W 1,p
loc (R). By Sobolev

embedding theorems, the function R ∈ Cα(R) for some α ∈ [0, λ). We have∫ L

0
tλp
∣∣∣∣∣
∫

R
ϕε(t− s)R(s) ds

∣∣∣∣∣
p

ds 6 ‖R‖pL∞(B)

∫ L

0
tλp dt,

using Minkowski inequality. The convergence

tλ+

(∫
R
ϕε(t− s)R(s) ds

)
−→ tλ+R(t) in Lploc(R)

follows from well-known results on mollification of Lploc-functions. 2

Remark 3.11 A careful inspection of the previous proof shows that the state-
ment of Lemma 3.10 is still true for T ∈ {H,Ci, R} and tλ−1

+ . We have

sup
ε∈(0,1)

∫ L

0
t(λ−1)p|Tε(t)|p dt 6 C

(
1 + ‖R‖pL∞(B)

)
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for some constant C > 0 depending on L, and the strong convergence

tλ−1
+ Tε(t) −→ tλ−1

+ T (t) in Lploc(R).

For T ∈ {δ,PV} and tλ−1
+ we obtain the bound

sup
ε∈(0,1)

εp
∫ L

0
t(λ−1)p|Tε(t)|p dt 6 C

for some C > 0. Note the extra factor εp needed here to control the integral.
Again the necessary estimates can be adapted easily. We have

εp
∫ L

ε
tλp
∣∣∣∣∣
∫ t+ε

t−ε
ϕε(t− s)PV(s) ds

∣∣∣∣∣
p

dt 6 εp(2C)p
∫ L

ε
t(λ−2)p dt

6
(2C)p

|(λ− 2)p+ 1|
ε(λ−1)p+1 (3.51)

instead of (3.49). The right-hand side of (3.51) converges to zero as ε→ 0.

Lemma 3.12 Let f(s) = (1− s2)λ+ for all s ∈ R. Fix some p ∈ [1, 1/(1− λ))
and a standard mollifier ϕε such that sptϕε ⊂ [−ε, ε]. Then we have

sup
ε∈(0,1)

∥∥∥∥∥f(t)

(∫
R
ϕε(t− s)df(s) ds

)∥∥∥∥∥
W 1,p(R)

6 C
(
1 + ‖r‖L∞(R)

)
,

sup
ε∈(0,1)

∥∥∥∥∥f(t)

(∫
R
(t− s)ϕε(t− s)Df(s) ds

)∥∥∥∥∥
W 1,p(R)

6 C
(
1 + ‖q‖L∞(R)

)
,

(3.52)
with C > 0 some constant. Moreover, we find

f(t)

(∫
R
ϕε(t− s)df(s) ds

)
−→ f(t)df(t)

f(t)

(∫
R
(t− s)ϕε(t− s)Df(s) ds

)
−→ 0

 in W 1,p(R) (3.53)

as ε→ 0. This implies strong convergence in Cα(R), for some α ∈ [0, λ).

Proof. Note first that by Proposition 3.4, the derivative df contains Heaviside
functions, logarithms and a remainder in W 1,p

loc (R). We have

d

dt

{
f(t)

(∫
R
ϕε(t− s)df(s) ds

)}

=
df(t)

dt

(∫
R
ϕε(t− s)df(s) ds

)
+ f(t)

(∫
R
ϕε(t− s)Df(s) ds

)
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for a.e. t ∈ R, where we used (3.11). The derivative of f(t) blows up like
|1− |t||λ−1

+ as |t| → 1. We apply Lemma 3.10 and Remark 3.11 to obtain

d

dt

{
f(t)

(∫
R
ϕε(t− s)df(s) ds

)}
−→ df(t)

dt
df(t) + f(t)Df(t) in Lp(R)

as ε→ 0. The first statement in (3.53) follows. Similarly, we write

d

dt

{
f(t)

(∫
R
(t− s)ϕε(t− s)Df(s) ds

)}

= ε
df(t)

dt

(∫
R
ψε(t− s)Df(s) ds

)
+ f(t)

(∫
R
(∂tψ)ε(t− s)Df(s) ds

)
,

(3.54)

with ψ(t) := tϕ(t) and ψε(t) := ε−1ψ(t/ε) for all (s, ε) ∈ R × (0, 1). We
apply Lemma 3.10 and Remark 3.11 to obtain the second bound in (3.52)
and convergence in Lp(R) as ε → 0. Note that the extra factor ε causes the
first term on the right-hand side of (3.54) to vanish. For the second term we
apply the dominated convergence theorem: Since ∂tψ has zero mean, we have
pointwise convergence to zero almost everywhere. We conclude that

d

dt

{
f(t)

(∫
R
(t− s)ϕε(t− s)Df(s) ds

)}
−→ 0 in Lp(R)

as ε→ 0, which implies the second statement in (3.53). 2

Proof of Proposition 3.7. Using (1.9) and (3.12) we find the identity

χ(t|a)Dσ(s|a)− σ(t|a)Dχ(s|a)

= θ(t− s)χ(t|a)Dχ(s|a) + θ(λ+ 1)χ(t|a)dχ(s|a), (3.55)

which holds distributionally in (s, s′) ∈ R × R for all a ∈ H. Let us consider
the first term on the right-hand side. We fix some a ∈ H and integrate against
the mollifier ϕε(t− s). We apply Lemmas 3.10 and 3.12 and obtain that

∥∥∥∥∥χ(t|a)

(∫
R
ϕε(t− s)dχ(s|a) ds

)∥∥∥∥∥
W 1,p(K)

6 Cρ(a)3θλ

for all K ⊂ R compact, with C > 0 depending on K and ‖r‖L∞(R). Recall
that 0 < 3θλ < γ + 1 for γ ∈ (1, 3). We can integrate against ν to get

∥∥∥∥∥
〈
χ(t)

(∫
R
ϕε(t− s)dχ(s) ds

)〉∥∥∥∥∥
W 1,p(K)

6 C
∫
H
W (a) ν(da),
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which is finite by assumption on ν. Sending ε→ 0, we obtain

〈
χ(t)

(∫
R
ϕε(t− s)dχ(s) ds

)〉
−→

〈
χ(t)dχ(t)

〉
locally in Cα(R), (3.56)

for some α ∈ (0, λ). We used Lemma 3.12 and Sobolev embedding. Similarly

∥∥∥∥∥χ(t|a)

(∫
R
(t− s)ϕε(t− s)Dχ(s|a) ds

)∥∥∥∥∥
W 1,p(K)

6 Cρ(a)3θλ
(
1 + ρ(a)−θ

)(
1 + | log ρ(a)|

)
,

with C > 0 some constant. Since 0 < (3λ− 1)θ < γ + 1 for γ ∈ (1, 3), we get

∥∥∥∥∥
〈
χ(t)

(∫
R
(t− s)ϕε(t− s)dχ(s) ds

)〉∥∥∥∥∥
W 1,p(K)

6 C
∫
H
W (a) ν(da).

Sending ε→ 0, we obtain that

〈
χ(t)

(∫
R
(t− s)ϕε(t− s)Dχ(s) ds

)〉
−→ 0 locally in Cα(R), (3.57)

as follows from Lemma 3.12 and Sobolev embedding. Therefore

〈
χ(t)Dσε(t)− σ(t)Dχε(t)

〉
−→ θ(λ+ 1)

〈
χ(t)dχ(t)

〉
locally in Cα(R).

(3.58)
Note that (3.56) and (3.57) are independent of the choice of mollifier: we can
use ϕ′ε(t − s) instead (see the beginning of Subsection 3.3 for the definition)
and obtain the analogous convergence as in (3.58), with the same limit.

To conclude the proof of Proposition 3.7 it is now sufficient to notice that

〈
Dχ′ε(t)

〉
−⇀

〈
Dχ(t)

〉
weakly-? in

(
Cα
c (R)

)∗
(3.59)

(the dual of the space of Hölder continuous functions with compact support).
Recall that the fractional derivative Dχ(·|a) contains only Dirac measures,
principal value operators, and locally integrable functions (see (3.19)). It stays
bounded uniformly as ρ(a) → 0 since λ > 1 if γ ∈ (1, 5/3], and grows at most
linearly for ρ(a) large. Recall that if γ = 5/3, then the constant A4 in (3.19)
vanishes, so the logarithmic term does not matter. We can now integrate
Dχ(·|a) against ν, and then (3.59) follows. The same convergence holds if we
use the mollifier ϕε(t− s) instead.
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For any test function ζ ∈ D(R) we therefore obtain

lim
ε→0

∫
R

〈
χ(t)Dσ′ε(t)− σ(t)Dχ′ε(t)

〉〈
Dχε(t)

〉
ζ(t) dt

= lim
ε→0

∫
R

〈
χ(t)Dσε(t)− σ(t)Dχε(t)

〉〈
Dχ′ε(t)

〉
ζ(t) dt

= θ(λ+ 1)
∫

R

〈
χ(t)dχ(t)

〉〈
Dχ(t)

〉
ζ(t) dt.

This completes the proof of the proposition. 2

A Propagation of equi-integrability

For nozzle flows with A constant, the proof of Proposition 2.7 can also be based
on the following lemma, which shows that for entropy solutions of the isen-
tropic Euler equations, equi-integrability of the total energy is “propagated.”
We complement assumptions (i)–(iv) of Section 2.1 by requiring that

(v) the sequence (ρn, un) vanishes uniformly in the large in the sense that for
each ε > 0 there exists a compact subset K ⊂ R with

sup
n

∫
R\K

(
1
2
ρn(un)2 + U(ρn)

)
An dx 6 ε.

Under this assumption, (2.31) of Lemma 2.6 can be improved: With the no-
tation used there, we have that for all ε > 0 there exist N,R > 0 such that

sup
n>N

∫∫
R×R

s2ΦR(s)χ(s|zn) ds dx 6 ε. (A.1)

Then we have the following result.

Lemma A.1 Choose a test function ϕ ∈ D(R) with 0 6 ϕ 6 1, such that
ϕ(s) = 1 for |s| 6 1 and ϕ(s) = 0 for |s| > 2. Define ϕR := ϕ(·/R) and
ΦR := 1− ϕR. For all T > 0 and all ε > 0 there exist R,N > 0 such that

sup
n>N

∫∫
[0,T ]×R

∫
R
s2ΦR(s)χ(s|zn) ds dx dt 6 ε, (A.2)

sup
n>N

∫∫
[0,T ]×R

∫
R
|s|ΦR(s) |σ(s|zn)| ds dx dt 6 ε. (A.3)

Proof. By (A.1), there exist R,N > 0 such that

sup
n>N

∫∫
R×R

2s2ΦR/2(s)χ(s|zn) ds dx 6 ε/T. (A.4)
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For this R let ψ(s) := 2(s2 − R2)1{|s|>R} for all s ∈ R. Since ψ is convex we
can use this weight function in the entropy inequality (1.11) and obtain

ess sup
t>0

∫∫
R×R

ψ(s)χ(s|zn(t, x)) ds dx 6
∫

R×R
ψ(s)χ(s|zn) ds dx (A.5)

for all n. On the other hand, we have the following estimate:

s2ΦR(s) 6 ψ(s) 6 2s2ΦR/2(s) for all s ∈ R.

Combining this with (A.4) and (A.5), we find that for all n > N

ess sup
t>0

∫∫
R×R

s2ΦR(s)χ(s|zn(t, x)) ds dx 6 ε/T,

and integrating over [0, T ] we obtain (A.2).

To derive (A.3), we use the estimate∫∫
R2
|s|ΦR(s) |σ(s|zn(t, x))| ds dx 6 θ

∫∫
R2
s2ΦR(s)χ(s|zn(t, x)) ds dx

+ (1− θ)

(∫
R

(
ρn(un)2

)
(t, x) dx

)1/2

(∫∫
R×R

s2ΦR(s)χ(s|zn(t, x)) ds dx
)1/2

for almost every t. The kinetic energy is uniformly bounded by (2.6). 2
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