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Abstract. The convex hull of a function φ is its largest l.s.c. convex minorant.

In this paper, we propose a similar construction for monotone vector fields.

The definition is based on the theory of autoconjugate functions (which are
also called self-dual Lagrangians) and their relation to monotone maps.

1. Introduction

Forming the convex hull of a (possibly extended) real-valued functions is a well-
established operation with numerous applications in convex analysis, optimization,
(stochastic) control, pde theory, etc. Convex functions have many useful properties.
For example, the subdifferential of a lower semicontinuous (l.s.c.) convex function
can be defined in every point of the domain and is a maximally monotone set-valued
map with good regularity and fine structure properties; see [1] for more information.
The convex hull operation leaves portions of the graph unchanged that are already
convex, and only modifies suitable neighborhoods of non-convex regions.

In this paper, we introduce an operation that to a given vector field associates a
maximally monotone modification. Since the construction is similar in spirit to the
convex hull operation, we call this new vector field the monotone hull. Note that if
the given vector field is contained in a suitable Hilbert space (e.g. an L2-space), then
one could also consider the metric projection onto the set of monotone maps, which
forms a closed convex cone; see [8]. The monotone hull operation we consider here
is more geometric and defined explicitly. Like the convex hull, it leaves all points
unchanged that are already monotone, in the sense of Definition 3.1.

Our construction relies on the Fitzpatrick theory, which establishes a close con-
nection between maximally monotone vector fields and l.s.c. convex functions. We
consider set-valued maps from a reflexive real Banach space X into the dual space
X∗. As usual, we identify set-valued maps with their graphs, which are subsets of
the direct product X ×X∗. A set Γ ⊂ X ×X∗ is maximally monotone if and only
if it is representable in the following way: there exists a proper, l.s.c., convex, and
autoconjugate function hΓ : X ×X∗ −→ R ∪ {+∞} such that

Γ =
{

(x, x∗) ∈ X ×X∗ : hΓ(x, x∗) = 〈x∗, x〉
}
,

where 〈x∗, x〉 is the dual pairing; see [10]. The function hΓ is autoconjugate if

h∗Γ(x∗, x) = hΓ(x, x∗) for all (x, x∗) ∈ X ×X∗,
with h∗Γ the Fenchel conjugate of hΓ (see Section 2). In [11] autoconjugate func-
tions are called self-dual Lagrangians instead. The protoptype of an autoconjugate
function is the Fenchel function h(x, x∗) = φ(x)+φ∗(x∗), with φ : X −→ R∪{+∞}
a proper, l.s.c., convex function. Then h represents the (cyclically) monotone map
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∂φ. More generally, a maximally monotone set Γ ⊂ X×X∗ (or: the corresponding
set-valued function) can be represented by the Fitzpatrick function (see [10])

ϕΓ(x, x∗) := sup
(y,y∗)∈Γ

(
〈y∗, x〉+ 〈x∗, y〉 − 〈y∗, y〉

)
= 〈x∗, x〉 − inf

(y,y∗)∈Γ
〈y∗ − x∗, y − x〉 for (x, x∗) ∈ X ×X∗. (1.1)

The Fitzpatrick function ϕΓ is l.s.c. and convex. If Γ 6= ∅, then ϕΓ is not identically
equal to −∞. We refer the reader to [6, 15] and [7, 11–14, 16–18] for additional in-
formation. Autoconjugate functions can be constructed using the proximal average
of a l.s.c. convex function and its Fenchel conjugate; see [3] for more details.

2. Notation

In the following, we consider a reflexive real Banach space Z and its topological
dual Z∗, with corresponding norms ‖ ·‖Z and ‖ ·‖Z∗ , respectively. The dual pairing
will be denoted by 〈z∗, z〉 for (z, z∗) ∈ Z × Z∗. A function f : Z −→ R ∪ {+∞}
will be called proper if its domain dom(f) := {z ∈ Z : f(z) <∞} is nonempty. For
proper f we define its Fenchel conjugate f∗ : Z∗ −→ R ∪ {+∞} by

f∗(z∗) := sup
z∈Z

(
〈z∗, z〉 − f(z)

)
for all z∗ ∈ Z∗.

The function f and its Fenchel conjugate satisfy the Fenchel-Young inequality

f(z) + f∗(z∗) > 〈z∗, z〉 for all (z, z∗) ∈ Z × Z∗.
Being the pointwise sup of a family of linear maps, the Fenchel conjugate f∗ is l.s.c.
and convex. If g : Z −→ R ∪ {+∞} and g 6 f , then f∗ 6 g∗. The biconjugate f∗∗

of f is obtained by applying Fenchel conjugation twice. For any proper function f ,
we have f∗∗ = f if and only if f is l.s.c. and convex, by Fenchel-Moreau theorem.
More generally, the biconjugate f∗∗ of a proper function f coincides with the closed
convex hull of f , which is defined as the largest l.s.c. convex minorant of f :

conv(f) := sup
{
g : Z −→ R ∪ {+∞} : g l.s.c. convex, g 6 f

}
.

Indeed we have the pointwise inequality

f∗∗(z) = sup
z∗∈Z∗

(
〈z∗, z〉 − f∗(z∗)

)
= sup
z∗∈Z∗

(
〈z∗, z〉 − sup

z′∈Z

(
〈z∗, z′〉 − f(z′)

))
= sup
z∗∈Z∗

inf
z′∈Z

(
〈z∗, z − z′〉+ f(z′)

)
6 f(z) for all z ∈ Z (2.1)

(simply pick z′ = z in (2.1)). Since f∗∗ is l.s.c. convex, it follows that f∗∗ 6 conv(f).
To prove the converse direction, we note that conv(f) 6 f implies conv(f)∗∗ 6 f∗∗.
But conv(f) is l.s.c. convex and therefore coincides with its biconjugate, by Fenchel-
Moreau theorem. This proves the f∗∗ = conv(f) for proper functions f .

In the following, we will use these concepts in the case where Z = X ×X∗, with
X a reflexive real Banach space and X∗ its topological dual. In this case, the dual
pairing between (x∗, x∗∗) ∈ (X ×X∗)∗ and (y, y∗) ∈ X ×X∗ is given by〈

(x∗, x∗∗), (y, y∗)
〉

= 〈x∗, y〉+ 〈y∗, x∗∗〉.
Note that the bidual X∗∗ = X because X is assumed to be reflexive.
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3. Monotone Hull

Given a set Γ ⊂ X×X∗, our goal is to associate to Γ a maximally monotone set
Γ̄ containing all points of Γ that are already monotone in the following sense:

Definition 3.1 (Monotone Point). Let Γ ⊂ X ×X∗ be given. We call (x, x∗) ∈ Γ
a monotone point if 〈x∗ − y∗, x− y〉 > 0 for all (y, y∗) ∈ Γ.

If Γ is monotone, then all points in Γ are monotone.
Our construction is based on the proximal average considered in [3] by Bauschke

and Wang and on the following two lemmas, which collect relevant properties of the
Fitzpatrick function ϕΓ associated to Γ, and its Fenchel conjugate σΓ. We include
the elementary proofs for the reader’s convenience. Notice that identities (3.1) and
(3.3) are well-known in the case of monotone Γ ⊂ X ×X∗. We observe here that
they still hold for the monotone points of a general set Γ.

Lemma 3.2. Suppose that the set Γ ⊂ X ×X∗ is nonempty. Then the associated
Fitzpatrick function ϕΓ defined by (1.1) has the following properties:

ϕΓ(x, x∗) > 〈x∗, x〉 for all (x, x∗) ∈ Γ,

ϕΓ(x, x∗) = 〈x∗, x〉 if and only if (x, x∗) ∈ Γ is monotone. (3.1)

Proof. For the first inequality, we pick (y, y∗) = (x, x∗) ∈ Γ in (1.1) to get

inf
(y,y∗)∈Γ

〈y∗ − x∗, y − x〉 6 0.

On the other hand, if (x, x∗) ∈ Γ is a monotone point, then

inf
(y,y∗)∈Γ

〈y∗ − x∗, y − x〉 > 0, (3.2)

by definition. It follows that ϕΓ(x, x∗) 6 〈x∗, x〉. Conversely, if ϕΓ(x, x∗) 6 〈x∗, x〉,
then (3.2) must be true (see (1.1)) and hence (x, x∗) ∈ Γ is monotone. �

We will always assume in the following that Γ admits a Fitzpatrick function that
is proper. A sufficient condition is the existence of at least one monotone point. To
simplify notation, we define π(x, x∗) := 〈x∗, x〉 for all (x, x∗) ∈ X ×X∗. Assuming
that Γ 6= ∅, we consider the biconjugate σΓ := (π + δΓ)∗∗, where

δΓ(x, x∗) :=

{
0 if (x, x∗) ∈ Γ

+∞ otherwise

is the indicator function of Γ. The biconjugate of a function f is its closed convex
hull of f (the largest l.s.c. convex minorant of f). The domain of σΓ is the convex
hull of Γ in X ×X∗. The Fenchel conjugate of π + δΓ is given by

(π + δΓ)∗(x∗, x) = sup
(y,y∗)∈X×X∗

(
〈y∗, x〉+ 〈x∗, y〉 − (π + δΓ)(y, y∗)

)
= sup

(y,y∗)∈Γ

(
〈y∗, x〉+ 〈x∗, y〉 − 〈y∗, y〉

)
= ϕΓ(x, x∗) for all (x, x∗) ∈ X ×X∗.

We conclude that ϕ∗Γ(x∗, x) = σΓ(x, x∗) for all (x, x∗) ∈ X×X∗. Taking the Fenchel
conjugate again and using that ϕ∗∗Γ = ϕΓ by Fenchel-Moreau theorem (because ϕΓ is
l.s.c. convex) we find that σ∗Γ(x∗, x) = ϕΓ(x, x∗) for all (x, x∗) ∈ X×X∗. Therefore
the Fitzpatrick function ϕΓ and σΓ are Fenchel conjugates of each other.
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Lemma 3.3. Consider the biconjugate σΓ := (π + δΓ)∗∗ for Γ 6= ∅. Then

σΓ(x, x∗) 6 〈x∗, x〉 for all (x, x∗) ∈ Γ,

σΓ(x, x∗) = 〈x∗, x〉 for all monotone points (x, x∗) ∈ Γ. (3.3)

Proof. The first estimate follows from the fact that σΓ is the largest l.s.c. convex
minorant of π + δΓ; see above. By Fenchel-Young inequality we have

σΓ(x, x∗) + σ∗Γ(x∗, x) > 2〈x∗, x〉 for all (x, x∗) ∈ X ×X∗.

Since σ∗Γ(x∗, x) = ϕΓ(x, x∗) and since ϕΓ(x, x∗) = 〈x∗, x〉 for every monotone point
(x, x∗) ∈ Γ (see Lemma 3.2), we find that σΓ(x, x∗) > 〈x∗, x〉 for such (x, x∗). �

Note that σΓ is not identically equal to −∞ if and only if ϕΓ is proper. If Γ 6= ∅,
then ϕΓ is not identically equal to −∞ and therefore σΓ is proper.

Definition 3.4 (Proximal Average). For nonempty Γ ⊂ X ×X∗ suppose that the
Fitzpatrick function ϕΓ (see (1.1)) is proper. Let σΓ := (π + δΓ)∗∗. Then

hΓ(x, x∗) := inf

{
1

2
σΓ(x1, x

∗
1) +

1

2
ϕΓ(x2, x

∗
2) +

1

4
g(x1 − x2, x

∗
1 − x∗2) : (3.4)

(x, x∗) =
1

2
(x1, x

∗
1) +

1

2
(x2, x

∗
2)

}
for all (x, x∗) ∈ X ×X∗ is the proximal average of ϕΓ and σΓ, with

g(y, y∗) :=
1

2
‖y‖2X +

1

2
‖y∗‖2X∗ for all (y, y∗) ∈ X ×X∗. (3.5)

Proposition 3.5 (Monotone Hull). Let hΓ be the proximal average hΓ introduced
in Definition 3.4, for Γ ⊂ X ×X∗ as considered there. Then the set

Γ̄ :=
{

(x, x∗) ∈ X ×X∗ : hΓ(x, x∗) = 〈x∗, x〉
}

(3.6)

is maximally monotone and contains all monotone points of Γ.

Proof. Since both ϕΓ, σΓ are l.s.c., convex, and proper, and since g defined in (3.5)
and its Fenchel conjugate (which coincides with g) both have full domain, we obtain
that hΓ is l.s.c., convex, and proper as well; see Corollary 5.2 in [3]. In addition, the
function hΓ is autoconjugate (see Lemma 5.5 in [3]) and thus Γ̄ in (3.6) is maximally
monotone. We refer the reader to [11,17,18] (see also Fact 5.6 in [3] and its proof).
It remains to show that Γ̄ contains all monotone points of Γ.

Step 1. Pick any (x, x∗) ∈ X ×X∗. By Fenchel-Young inequality we have

σΓ(x1, x
∗
1) + ϕΓ(x2, x

∗
2) > 〈x∗1, x2〉+ 〈x∗2, x1〉

for any (x1, x
∗
1), (x2, x

∗
2) ∈ X ×X∗ (recall that the Fitzpatrick function ϕΓ and σΓ

are Fenchel conjugates to each other; see above). Therefore we can estimate

hΓ(x, x∗) >
1

2
inf

{
〈x∗1, x2〉+ 〈x∗2, x1〉+

1

4
‖x1 − x2‖2X +

1

4
‖x∗1 − x∗2‖2X∗ : (3.7)

(x, x∗) =
1

2
(x1, x

∗
1) +

1

2
(x2, x

∗
2)

}
.
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Figure 1. ϕΓ Figure 2. σΓ

We eliminate (x2, x
∗
2) = (2x− x1, 2x

∗ − x∗1) and write

〈x∗1, x2〉 = 〈x∗, x〉+ 〈x∗1 − x∗, x〉+ 〈x∗1, x− x1〉,
〈x∗2, x1〉 = 〈x∗, x〉+ 〈x∗, x1 − x〉+ 〈x∗ − x∗1, x1〉,

‖x1 − x2‖2X = 4‖x1 − x‖2X and ‖x∗1 − x∗2‖2X∗ = 4‖x∗1 − x∗‖2X∗ .

Using these identities in (3.7), we obtain the inequality

hΓ(x, x∗) > 〈x∗, x〉+
1

2
inf

{
‖x1 − x‖2X + ‖x∗1 − x∗‖2X∗ − 2〈x∗1 − x∗, x1 − x〉

}
,

where the inf is taken over all (x1, x
∗
1) ∈ X ×X∗. By the definition of dual norm,

we have 〈x∗1 − x∗, x1 − x〉 6 ‖x∗1 − x∗‖X∗‖x1 − x‖X , which implies that

‖x1 − x‖2X + ‖x∗1 − x∗‖2X∗ − 2〈x∗1 − x∗, x1 − x〉 > 0.

This lower bound is attained for (x1, x
∗
1) = (x, x∗). Hence

hΓ(x, x∗) > 〈x∗, x〉 for all (x, x∗) ∈ X ×X∗. (3.8)

Step 2. Assume now that (x, x∗) ∈ Γ is a monotone point. Choosing

(x1, x
∗
1) = (x2, x

∗
2) = (x, x∗)

in (3.4), and using (3.1) and (3.3), we obtain that hΓ(x, x∗) 6 〈x∗, x〉. �

Remark 3.6. We call the maximally monotone set Γ̄ introduced in Proposition 3.5
the monotone hull of Γ. Note that the map Γ 7→ Γ̄ actually defines a projection: All
points in Γ̄ are monotone and hence contained in the monotone hull of Γ̄. Moreover,
since Γ̄ is already maximally monotone, its monotone hull coincides with Γ̄.

Let us consider some examples that illustrate how the monotone hull works.

Example 3.7. We consider the following subset of R× R, which is not monotone:

Γ :=
{

(α, α) : α ∈ R
}
∪
{

(−1, 1)
}
.

The associated Fitzpatrick function ϕΓ defined in (1.1) is given by

ϕΓ(x, x∗) = max

{
x− x∗ + 1,

(x+ x∗)2

4

}
for all (x, x∗) ∈ R× R;

see Figure 1. The thick black curve marks monotone points, where ϕΓ coincides with
π (cf. Lemma 3.2). In order to find the biconjugate σΓ = (π+δΓ)∗∗ we compute the



6 MICHAEL WESTDICKENBERG

Figure 3. hΓ − π Figure 4. Monotone Hull

convex hull of the graph of π restricted to Γ, which amounts to finding all segments
connecting (−1, 1,−1) to any point (α, α, α2) with α ∈ R. We find that

σΓ(x, x∗) =
x− x∗

2
+

(x+ x∗)2

2(x− x∗ + 2)

for all (x, x∗) ∈ R×R with 0 6 x+x∗ < 2 or (x, x∗) = (−1, 1), and σΓ(x, x∗) = +∞
otherwise; see Figure 2. We have σΓ = π for all points on the thick black curve (cf.
Lemma 3.3). One can check that ϕΓ, σΓ are Fenchel conjugates of each other.

We do not have an explicit formula for the proximal average hΓ in Definition 3.4.
A numerical approximation of the difference hΓ−π for the relevant triangle in R2 is
shown in Figure 3. We have hΓ > π everywhere in R2, with equality characterizing
the points in the monotone hull Γ̄. A sketch of Γ̄, obtained by numerically finding
the zero set of hΓ − π, is given in Figure 4. Since we do not know hΓ explicitly,
we were unable to solve hΓ − π = 0 exactly. The monotone hull Γ̄ is a maximally
monotone subset of R2 containing the monotone points of Γ (i.e., containing all
points in {(α, α) : |α| > 1}). It is symmetric along the second diagonal in R2.

Example 3.8. We consider the following monotone subset of R× R:

Γ :=
{

(0, α) : α ∈ [−1, 1]
}
.

Note that π(x, x∗) = 0 for all (x, x∗) ∈ Γ, which implies that

σΓ(x, x∗) =

{
0 if (x, x∗) ∈ Γ,

+∞ otherwise.

The corresponding Fitzpatrick function is given by

ϕΓ(y, y∗) = |y| for all (y, y∗) ∈ R× R.

A straightforward calculation reveals that the proximal average of ϕΓ and σΓ is

hΓ(x, x∗) =
1

2
|x|2 + |x|+


0 if |x∗| 6 1,
1
2 |x
∗ − 1|2 if x∗ > 1,

1
2 |x
∗ + 1|2 if x∗ < −1.

Solving for hΓ(x, x∗) = 〈x∗, x〉, we obtain the monotone hull

Γ̄ := Γ ∪
{

(α, α+ 1): α > 1
}
∪
{

(α, α− 1) : α < −1
}
.

Note that the projection of Γ̄ onto the first or second coordinate is all of R.
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Example 3.9. We consider the following subset of R× R, which is not monotone:

Γ :=
{

(α,−α) : α ∈ [−1, 1]
}
.

Note that π(x, x∗) = −α2 for all (x, x∗) = (α,−α) ∈ Γ, which implies that

σΓ(x, x∗) =

{
−1 if (x, x∗) ∈ Γ,

+∞ otherwise.

The corresponding Fitzpatrick function is given by

ϕΓ(y, y∗) = 1 + |y∗ − y| for all (y, y∗) ∈ R× R.

A straightforward calculation reveals the proximal average of ϕΓ and σΓ as

hΓ(x, x∗) =
1

2
|x|2 +

1

2
|x∗|2 for all (x, x∗) ∈ R× R.

Solving for hΓ(x, x∗) = 〈x∗, x〉, we obtain the monotone hull

Γ̄ :=
{

(α, α) : α ∈ R
}
.

Note that no point of Γ other than (0, 0) is contained in its monotone hull Γ̄. Again
the projection of Γ̄ onto the first or second coordinate is all of R.

These examples suggest that the monotone hull generates a maximal monotone
map whose domain is as large as possible. Indeed we have

Proposition 3.10 (Full Support). Let X be a real Hilbert space with inner product
〈·, ·〉, so that X∗ = X. For any Γ ⊂ X×X we consider its monotone hull Γ̄ defined
in Proposition 3.5. Suppose that Γ ⊂ BR(0)×BR(0) for some R > 0. Then

‖x− x∗‖X 6 2R for all (x, x∗) ∈ Γ̄. (3.9)

As a consequence, the maximally monotone set-valued map uΓ̄ induced by Γ̄ via

x∗ ∈ uΓ̄(x) ⇐⇒ (x, x∗) ∈ Γ̄,

has domain dom(uΓ̄) = X and grows linearly as ‖x‖X →∞.

The statement remains true for the inverse function u−1
Γ̄

, which is also maximally
monotone. It would be interesting to know whether uΓ̄ is single-valued and Lipschitz
continuous outside some neighborhood of Γ, as is the case in Examples 3.7–3.9.

Note that whenever Γ is monotone, then the estimate (3.9) can be deduced from
Theorem 2.10 of [4], which explores the connection between maximal extensions
of monotone maps, and Kirszbraun-Valentine extensions of nonexpansive functions
(i.e., Lipschitz continuous functions with Lipschitz constant 1). Our proof of (3.9)
relies on the observation that the Fitzpatrick function ϕΓ is nowhere −∞ if the set
Γ is bounded. Then a suitable pointwise bound on its Yosida approximation shows
that uΓ̄(x) is finite for all x ∈ X, and so its domain must be all of X.

Proof. We proceed in three steps.

Step 1. Consider Γ as above and let conv(Γ) be its closed convex hull, which is
bounded as well. Let σΓ := (π+ δΓ)∗∗ be the convex hull of π+ δΓ. We claim that
σΓ(x, x∗) = +∞ if (x, x∗) 6∈ conv(Γ). Indeed we have

σΓ(x, x∗) = sup
(z,z∗)∈X×X∗

inf
(y,y∗)∈Γ

(
〈z∗, x− y〉+ 〈x∗ − y∗, z〉+ 〈y∗, y〉

)
,
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by definition. Since conv(Γ) is closed and convex, for every (x, x∗) 6∈ conv(Γ) there
exists a non-zero continuous linear functional on X × X separating conv(Γ) and
(x, x∗) (see Corollary V.2.12 in [9]): There exists (z, z∗) ∈ X ×X such that

〈z∗, x〉+ 〈x∗, z〉 > c > c− ε > 〈z∗, y〉+ 〈y∗, z〉
for all (y, y∗) ∈ conv(Γ), with c ∈ R and ε > 0 some constants. It follows that

inf
(y,y∗)∈Γ

(
〈αz∗, x− y〉+ 〈x∗ − y∗, αz〉+ 〈y∗, y〉

)
> αε−R2

for any α > 0, which converges to infinity when α → ∞. Since σΓ(x, x∗) involves
taking the sup over all (z, z∗) ∈ X ×X∗, the claim follows.

Step 2. Consider now the proximal average hΓ of Definition 3.4 and the mono-
tone hull Γ̄; see (3.6). Since X∗ = X we will simply write ‖ ·‖ for the corresponding
norms. As shown in the proof of Proposition 3.5, we can estimate from below

hΓ(x, x∗) = inf

{
‖x− z‖2 + ‖x∗ − z∗‖2 + ϕΓ(2x− z, 2x∗ − z∗) + σΓ(z, z∗)

}
> 〈x∗, x〉+

1

2
inf ‖(x− z)− (x∗ − z∗)‖2, (3.10)

where the inf is taken over (z, z∗) ∈ X×X. Here we used that the norm is induced
by the inner product since X is a Hilbert space. For any such (z, z∗) we have

〈2x∗ − z∗, 2x− z〉 > 4〈x∗, x〉 − 2‖x∗‖‖z‖ − 2‖z∗‖‖x‖ − ‖z∗‖‖z‖
and, for all (y, y∗) ∈ Γ, which is contained in BR(0)×BR(0),

〈(2x∗ − z∗)− y∗, (2x− z)− y〉
6 4〈x∗, x〉+ 2‖x∗‖(‖z‖+R) + 2(‖z∗‖+R)‖x‖+ (‖z∗‖+R)(‖z‖+R).

Hence ϕΓ(2x−z, 2x∗−z∗) > −∞ for all (x, x∗), (z, z∗) ∈ X×X; see (1.1). Assume
now that (x, x∗) ∈ Γ̄ so that hΓ(x, x∗) = 〈x∗, x〉 is finite. Pick (z, z∗) with

‖x− z‖2 + ‖x∗ − z∗‖2 + ϕΓ(2x− z, 2x∗ − z∗) + σΓ(z, z∗) 6 〈x∗, x〉+ ε,

with ε > 0 arbitrary. This forces (z, z∗) ∈ conv(Γ) because σΓ is infinite outside of
conv(Γ) and the Fitzpatrick function is nowhere −∞. Now (3.10) implies

‖(x− z)− (x∗ − z∗)‖2 6 2ε.

Using that conv(Γ) ⊂ B̄R(0)× B̄R(0), we can estimate

‖x− x∗‖ 6 ‖(x− z)− (x∗ − z∗)‖+ ‖z − z∗‖ 6
√

2ε+ 2R.

Since ε > 0 was arbitrary, it follows that ‖x− x∗‖ 6 2R.

Step 3. To simplify the notation, we will omit the subscript Γ̄ in the following. If
ε > 0, then for any x ∈ X there exists exactly one y ∈ X with x ∈ y+εu(y). We can
therefore define the resolvent map Jε := (id + εu)−1 and the Yosida approximation
uε := (id− Jε)/ε, which are both single-valued, defined on all of X, and Lipschitz
continuous with Lipschitz constant 1 and 1/ε, respectively. We have

uε(x) ∈ u
(
Jε(x)

)
for all x ∈ X, (3.11)

from which it follows that uε is maximally monotone. Since Jε(x) = x− εuε(x), we
observe that uε(x) is determined as the unique solution of the differential inclusion
z ∈ u(x− εz). For any σ > 0 we find that uε+σ(x) is the unique solution of

z ∈ u
(
x− (ε+ σ)z

)
= u

(
(x− σz)− εz

)
,
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so that uε+σ(x) = uε
(
x− σuε+σ(x)

)
for all x ∈ X. We now write

‖uε(x)− uε+σ(x)‖2 = ‖uε(x)‖2 − ‖uε+σ(x)‖2 − 2〈uε+σ(x), uε(x)− uε+σ(x)〉.
By monotonicity of uε, the inner product is nonnegative:

〈uε+σ(x), uε(x)− uε+σ(x)〉

=
1

σ

〈
x−

(
x− σuε+σ(x)

)
, uε(x)− uε

(
x− σuε+σ(x)

)〉
> 0,

which implies that for all ε, σ > 0 and x ∈ X we have

‖uε+σ(x)− uε(x)‖2 6 ‖uε(x)‖2 − ‖uε+σ(x)‖2. (3.12)

In particular, the map ε 7→ ‖uε(x)‖2 for ε > 0 is nonincreasing. We refer the reader
to [5] pp. 27–28 for more on resolvents maps and Yosida approximations.

Beacuse of (3.11), we conclude from Step 2 above that

‖Jε(x)− uε(x)‖ 6 2R for all x ∈ X. (3.13)

From this and Jε(x) = x− εuε(x), we find that

‖uε(x)‖ 6 ‖Jε(x)‖+ ‖uε(x)− Jε(x)‖ 6 (‖x‖+ ε‖uε(x)‖) + 2R

so that ‖uε(x)‖ 6 2(‖x‖+2R) for all ε < 1/2. Then Jε(x) −→ x strongly as ε→ 0.
Moreover, we have limε→0 ‖uε(x)‖2 = α for some α <∞ and hence

lim
ε,σ→0

‖uε+σ(x)− uε(x)‖2 = 0;

see (3.12). Therefore the uε(x) form a Cauchy sequence and uε(x) −→ v strongly,
with v ∈ X. Because of (3.13) and since the graph of a maximally monotone map
is closed, it follows that v ∈ u(x). In particular, we have x ∈ dom(u). �
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[18] S. Simons and C. Zălinescu, Fenchel duality, Fitzpatrick functions and maximal monotonicity,

J. Nonlinear Convex Anal. 6 (2005), no. 1, 1–22.

Michael Westdickenberg, Lehrstuhl für Mathematik (Analysis), RWTH Aachen Uni-

versity, Templergraben 55, D-52062 Aachen, Germany
E-mail address: mwest@instmath.rwth-aachen.de


	1. Introduction
	2. Notation
	3. Monotone Hull
	References

