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Abstract. We prove a BV estimate for scalar conservation laws that gen-
eralizes the classical Total Variation Diminishing property. In fact, for any
Lipschitz continuous monotone Φ : R→ R, we have that |Φ(u)|TV (R) is nonin-
creasing in time. We call this property Total Oscillation Diminishing because
it is in contradiction with the oscillations observed recently on some numerical
computations based on TVD schemes. We also show that Total Variation Di-
minishing finite volume schemes are TOD and that the fully discrete Godunov
scheme is TOD.

1. Introduction

This paper is concerned with the scalar conservation law
{

∂
∂t

u + ∂
∂x

A(u) = 0, t > 0, x ∈ R,

u(0, ·) = u0 ∈ L1 ∩ L∞(R).
(1)

In 1970, Kružkov [10] established the existence and uniqueness of entropy solu-
tions of (1), i.e., of weak solutions u ∈ L∞(R+ × R) for which

∂
∂t

η(u) + ∂
∂x

q(u) 6 0 in D′ (2)

holds for all entropy-entropy flux pairs (η, q) of the family

η(u) := |u− k|, q(u) := sgn(u− k)
(
A(u)− A(k)

)

with k ∈ R. His result also generalizes to several space dimensions. The proof
is based on the observation that the solution operator of (1)–(2) is an L1(R)–
contraction: for any entropy solutions u, v with initial data u0, v0

∥∥u(t)− v(t)
∥∥

L1(R)
6

∥∥u0 − v0
∥∥

L1(R)
, ∀t > 0.

This estimate implies the Total Variation Diminishing (TVD) property

|u(t)|TV (R) 6 |u0|TV (R) :=
∥∥ ∂

∂x
u0

∥∥
M1(R)

, ∀t > 0. (3)

Here M1(R) denotes the space of bounded Radon measures.
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Obviously, the TVD property is very useful. At the theoretical level, it provides
compactness in order to prove existence. At the numerical level, it serves as a
design guideline, i.e., finite volumes have been created in such a way that a
discrete TVD property holds. It is usually thought that this is sufficient for
stability (but note that non-entropic schemes can be TVD as well). However,
two recent papers [15] and [3] show that TVD schemes can exhibit oscillations
because the variation lost by the exact solution “can be used” by the scheme
to create oscillations, see Figure 1. Therefore TVD is certainly not the most
satisfactory property of equation (1).

In [9] the concept of weak nonoscillation of the entropy solution was intro-
duced. Given some function g ∈ BV (R) one considers the upper semicontinuous
modification ḡ of g (see [9]) and then counts the number of disjoint open intervals
of which the level set Eλ(g) := {ḡ < λ} consists, for any λ ∈ R. Let L(Eλ(g))
denote that number. A function is said to be weakly nonoscillating if it belongs
to the class

WL :=
{
g ∈ BV (R)

∣∣L(
Eλ(g)

)
6 L, ∀λ ∈ R}

for some L ∈ N. It is shown in [9] that if the initial data u0 ∈ WL, then
the entropy solution to (1) satisfies u(t) ∈ WL for all t > 0. There is also a
discrete analogue of this stability property: The authors of [9] prove that certain
Godunov-type schemes are weakly nonoscillatory.

In this paper, we establish a stronger stability that we state in

Theorem 1.1 (Total Oscillation Diminishing). The entropy solution to (1) sat-
isfies, for all Lipschitz continuous monotone functions Φ : R→ R,∣∣Φ(

u(t)
)∣∣

TV (R)
6

∣∣Φ(
u0

)∣∣
TV (R)

, ∀t > 0. (4)

For Φ(u) = u we recover the classical TVD property. Note, however, that we do
neither assume u0 ∈ BV (R) nor that the right-hand side of (4) is finite. It might
very well happen that |Φ(u0)|TV (R) < ∞ only for certain Φ. If |Φ(u0)|TV (R) = ∞,
then the statement (4) is void, of course. Note also that Theorem 1.1 makes more
precise the concept of weak nonoscillation as introduced in [9]. In fact, for λ ∈ R
let Φλ(u) := sgn−(u− λ) (which is of course not Lipschitz continuous). Then

2L(
Eλ(u)

)
=

∣∣Φλ(u)
∣∣
TV (R)

.

One might wonder if (4) holds true for nonmonotone Φ. But this is not the
case. In fact, consider a rarefaction wave for Burgers-Hopf equation, i.e., consider
the flux A(u) = 1

2
u2 with data u0 = 1(0,1). If Φ(u) = u2 − u, then we obviously

have |Φ(u0)|TV (R) = 0. But u0 evolves into a shock and a rarefaction wave which
will create positive variation of Φ(u(t)) for t > 0. Classically the TVD property
(3) follows from the L1(R)–contraction. So it would be interesting to know if

∥∥Φ
(
u(t)

)− Φ
(
v(t)

)∥∥
L1(R)

(5)
2



is nonincreasing in time, where u, v are two entropy solutions with initial data
u0, v0. Again such a stability result is impossible if Φ is not monotone. In fact,
choose v0 = −u0 for some u0 ∈ L1 ∩ L∞(R). If Φ(u) = u2, then we have
‖Φ(u0) − Φ(v0)‖L1(R) = 0, but usually (5) will be positive for t > 0. We do not
know if the contraction property is true for monotone Φ.

Theorem 1.1 is a consequence of the following two propositions.

Proposition 1.2. The entropy solution to (1) satisfies, for all Lipschitz contin-
uous functions Φ : R→ R,∣∣Φ(

u(t)
)∣∣

TV (R)
6 lim inf

δ→0

∣∣Φ(
u0

δ

)∣∣
TV (R)

, ∀t > 0. (6)

Here u0
δ ∈ S(R) can be any sequence with u0

δ −→ u0 in L1(R) as δ → 0.

Note that the discussion above shows that one cannot dispense with the lim inf
in the initial control in (6). However, we have the following

Proposition 1.3. Assume that the function Φ : R → R is Lipschitz continuous
and monotone. Then there exists, for all v ∈ L1 ∩ L∞(Rn), a sequence of test
functions vδ ∈ S(Rn) such that vδ −→ v in L1(Rn) as δ → 0, and

lim sup
δ→0

∣∣Φ(vδ)
∣∣
TV (Rn)

6
∣∣Φ(v)

∣∣
TV (Rn)

. (7)

The proof of this proposition is not trivial since the usual strategy of truncating
v and convolving it with some mollifier is not appropriate here. In general, this
procedure would produce too much variation for Φ(vδ). Note also that if the
conclusion of Proposition 1.3 was true for nonmonotone Φ, the same would hold
for Theorem 1.1 which is not the case. Therefore monotonicity of Φ is again a
necessary condition.

Proposition 1.2 follows from a Total Oscillation Diminishing (TOD) property
at the parabolic level. Indeed, let u ∈ L∞(R+ × R) be a solution of

{
∂
∂t

u + ∂
∂x

A(u) = ∂2

∂x2 u, t > 0, x ∈ R,

u(0, ·) = u0 ∈ S(R).
(8)

Note that we only consider smooth initial data. Then we have

Theorem 1.4 (Parabolic TOD property). The solution to (8) satisfies, for all
Lipschitz continuous functions Φ : R→ R,∣∣Φ(

u(t)
)∣∣

TV (R)
6

∣∣Φ(
u0

)∣∣
TV (R)

, ∀t > 0. (9)

We call our new property Total Oscillation Diminishing because, compared to
the TVD property, it allows to focus more on specific values of the solution u
and thus to avoid oscillations. In fact, consider Figure 1 which depicts the nu-
merical solution computed by the Lax-Friedrichs scheme. (Thanks to M. Breuss
for allowing us to use his pictures.) It is obtained with a timestep such that this
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Figure 1. TVD schemes can create oscillations. (Pictures cour-
tesy of M. Breuss)

scheme is TVD. But while the total variation of the solution is decreasing, new
extrema are created inside the shock. Assume now that Φ is strictly increasing
on some subinterval of the range of u and constant outside. Then any newly
created oscillations inside that interval increase the total variation of Φ(u), in
contradiction to (4).

The numerical counterpart of Theorem 1.1 is only partially covered in the
present paper. We prove that semi-discrete schemes with ordered fluxes (see [12])
are Total Oscillation Diminishing, see Proposition 3.2 below. Note that ordered
schemes do not necessarily enforce a discrete entropy inequality. Concerning
fully discrete schemes, we prove that the classical Godunov scheme has the TOD
property, see Proposition 4.1. It would be interesting to know what else schemes
are Total Oscillation Diminishing.

To put the TOD property into perspective, we briefly mention some known
regularity results for scalar conservation laws in one space dimension. First,
Olĕınik [11] proved for uniformly convex fluxes that entropy solutions u of (1)
satisfy the one-sided Lipschitz condition

∥∥(
∂
∂x

u
)
+

∥∥
L∞(R)

6 1

ct
, ∀t > 0, (10)

where c := inf A′′. Note that (10) only allows for decreasing jumps, and that
initial data in L∞(R) is instantaneously regularized to BVloc(R). Olĕınik’s result
has been generalized by Hoff [8] who proves that

∥∥(
∂
∂x

a(u)
)
+

∥∥
L∞(R)

6 1

t
, ∀t > 0, (11)

where a(u) := A′(u) is the characteristic speed defined by the flux. He only as-
sumes strict convexity of the flux. Clearly, (11) implies the BVloc(R)–regularizing
effect whenever A′′ is bounded away from zero. Several attempts have been made
to generalize these results to nonconvex scalar conservation laws in one space
dimension. in one space dimension: Zumbrun [16] considers the fluxes A(u) = uk

for k ∈ N and proves that
∥∥ ∂

∂x
a(u)

∥∥
M1(R)

6 ct−(k−1)/k, ∀t > 0.
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Cheng [5] allows finitely many inflection points for the flux and proves that
∥∥ ∂

∂x
a(u)

∥∥
M1(R)

6 c1

t
+ c2, ∀t > 0.

A different result was obtained by Bouchut and James [2] which in a sense is dual
to those cited above. They consider general fluxes A, but only nondecreasing
initial data u0. If A ∈ C1(R), they again obtain (11). We do not know how the
Total Oscillation Diminishing property relates to these results.

Throughout the paper, S(Rn) means the usual Schwartz space.

2. Proof of the TOD property

In this section we prove the results given in Section 1. Since the hyperbolic
TOD property follows from the parabolic one, we prove that first.

Proof of Theorem 1.4 We proceed in three steps. First we establish the result for
strictly monotone smooth Φ, then we show how the general case can be reduced
to this situation by suitable modification of Φ.

First step Let us assume first that Φ is smooth and
∣∣Φ′(u)

∣∣ > α for all u ∈ R,
where α > 0 is some number. Since the solutions of (8) are smooth with fast
decay at infinity, we can just compute as follows. We have

∂

∂t
Φ(u) + a(u)

∂

∂x
Φ(u) = Φ′(u)

∂2u

∂x2
,

and thus, setting w = ∂
∂x

Φ(u), we obtain

∂

∂t
w +

∂

∂x

[
a(u)w

]
=

∂

∂x

[
Φ′(u)

∂2u

∂x2

]
.

Consider now a smooth convex function G(w) such that G(0) = 0. Then we
deduce from the previous equality

∂

∂t
G(w) +

∂

∂x

[
a(u)G(w)

]
+

∂

∂x
a(u)

[
wG′(w)−G(w)

]

= G′(w)
∂

∂x

[
Φ′(u)

∂2u

∂x2

]
.

Next we integrate on the full line and get

d

dt

∫

R
G(w) +

∫

R

∂

∂x
a(u)

[
wG′(w)−G(w)

]

=

∫

R
G′(w)

∂

∂x

[
Φ′(u)

∂2u

∂x2

]

= −
∫

R
G′′(w)

∂w

∂x
Φ′(u)

∂2u

∂x2

5
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Figure 2. The function Gδ(w).

= −
∫

R
G′′(w)

[
Φ′′(u)

(∂u

∂x

)2

+ Φ′(u)
∂2u

∂x2

]
Φ′(u)

∂2u

∂x2

6 −
∫

R
G′′(w) Φ′′(u)

(∂u

∂x

)2

Φ′(u)
∂2u

∂x2

= −
∫

R
G′′(w)w Φ′′(u)

∂u

∂x

∂2u

∂x2
.

To get rid of the two terms that control the time derivative we choose a convex
function Gδ > 0 such that Gδ(0) = 0 and Gδ(w) = |w| − δ for |w| > 2δ, see
Figure 2. Therefore Gδ(w) → |w| and wG′

δ(w) − Gδ(w) → 0 uniformly, as δ ↓ 0
(this is reminiscent to Kružkov’s method [10] for BV estimates). Because of fast
decay at infinity, the left-hand side term then satisfies

∫

R

∣∣∣∣
∂

∂x
a(u)

∣∣∣∣
∣∣wG′

δ(w)−Gδ(w)
∣∣ −→ 0.

The right-hand side term can be estimated as
∣∣∣∣
∫

R
G′′

δ(w)w Φ′′(u)
∂u

∂x

∂2u

∂x2

∣∣∣∣

6 C

∫

{|w|6δ}

∣∣∣∣Φ′′(u)
∂u

∂x

∂2u

∂x2

∣∣∣∣ 6 Cδα−1

∫

R

∣∣∣∣Φ′′(u)
∂2u

∂x2

∣∣∣∣ −→ 0, (12)

where we used the fact that w = Φ′(u)∂u
∂x

and
∣∣Φ′(u)

∣∣ > α, by assumption. Recall
that u is smooth with rapid decay at infinity, so the integral on the right-hand
side of (12) is finite. Finally we have obtained

d

dt

∫

R
|w| 6 0,

which is the announced result of Theorem 1.4 for strictly monotone Φ.

Second step Assume now that Φ is Lipschitz continuous and monotone, say
increasing. Then we consider a sequence of smooth functions Φα with Φ′

α > Φ′+α
6



and Φ′
α uniformly bounded, such that Φ′

α −→ Φ′ a.e. as α ↓ 0. These Φα satisfy
the assumptions of the first step. Therefore

∫

R

∣∣ ∂
∂x

Φα

(
u(t)

)∣∣ dx 6
∫

R

∣∣ ∂
∂x

Φα

(
u0

)∣∣ dx, ∀t > 0. (13)

Note that the right-hand side is finite because Φ′
α is uniformly bounded and

u0 ∈ S(R). Consider now the limit α ↓ 0. Since u is smooth the left-hand side
can be estimated from below using the chain rule

∣∣ ∂
∂x

Φα(u)
∣∣ = Φ′

a(u)
∣∣∂u
∂x

∣∣ >
(
Φ′(u) + α

) ∣∣∂u
∂x

∣∣ >
∣∣ ∂
∂x

Φ(u)
∣∣ .

On the right-hand side Φ′
α −→ Φ′ a.e. and u0 ∈ S(R) yield

∫

R

∣∣ ∂
∂x

Φα

(
u0

)∣∣ dx −→
∫

R

∣∣ ∂
∂x

Φ
(
u0

)∣∣ dx.

This gives the result in the case of Lipschitz continuous monotone Φ.

Third step If Φ is an arbitrary Lipschitz continuous function, we decompose Φ
canonically into its increasing and decreasing parts

Φ = Φ+ + Φ− with Φ′
+Φ′

− = 0.

Then we apply the estimate we have just proved to the Lipschitz continuous
monotone functions Φ+ and Φ− separately and use that for smooth u

∣∣ ∂
∂x

Φ(u)
∣∣ =

∣∣ ∂
∂x

Φ+(u)
∣∣ +

∣∣ ∂
∂x

Φ−(u)
∣∣ (14)

since Φ′
+ and Φ′

− have disjoint support. This completes the proof. ¤

Proof of Proposition 1.2 Without loss of generality we assume that Φ(0) = 0
because adding a constant to Φ does not change |Φ(u)|TV (Rn). By Lipschitz
continuity, we then have |Φ(v)| 6 C|v| for v ∈ R, and therefore Φ(u) ∈ L1(R)
whenever u ∈ L1(R). We consider a truncated and regularized approximation of
the initial data u0, i.e., u0

δ −→ u0 in L1(R) as δ → 0. Let uδ be the corresponding
entropy solution to (1). This entropy solution is the unique limit as ε → 0 of the
parabolic approximation

{
∂
∂t

uδ,ε + ∂
∂x

A(uδ,ε) = ε ∂2

∂x2 uδ,ε, t > 0, x ∈ R,

uδ,ε(0, ·) = u0
δ ∈ S(R).

(15)

We now apply Theorem 1.4 and deduce that
∣∣Φ(

uδ,ε(t)
)∣∣

TV (R)
6

∣∣Φ(
u0

δ

)∣∣
TV (R)

, ∀t > 0.

As ε → 0, we know that uδ,ε −→ uδ in C
(
[0, T ]; L1(R)

)
for all T > 0, with a

uniform L∞ bound. Then also Φ(uδ,ε) −→ Φ(uδ) and we obtain
∣∣Φ(

uδ(t)
)∣∣

TV (R)
6

∣∣Φ(
u0

δ

)∣∣
TV (R)

, ∀t > 0,
7



by lower semicontinuity of the total variation, see Proposition 3.6 in [1]. Now we
may pass to the limit δ → 0. Then uδ −→ u in C

(
R+; L1(R)

)
, with a uniform

L∞ bound. This finally yields, by the same arguments,∣∣Φ(
u(t)

)∣∣
TV (R)

6 lim inf
δ→0

∣∣Φ(
u0

δ

)∣∣
TV (R)

, ∀t > 0.

Since any initial family u0
δ gives rise to the same unique entropy limit, as a

consequence of the L1(R)–contraction, Proposition 1.2 is proved. ¤

Proof of Proposition 1.3 If |Φ(v)|TV (Rn) = ∞, then any smooth approximation
vδ −→ v will do. Therefore we assume that |Φ(v)|TV (Rn) < ∞. The difficulty then
lies in the fact that we only have poor control over the total variation of v. We
proceed in two steps. First we consider the case of a strictly monotone smooth
Φ. Then we reduce the general case to the first one. Again we suppose Φ(0) = 0.
Then Lipschitz continuity of Φ implies that Φ(v) is absolutely integrable, and
therefore Φ(v) ∈ BV (Rn).

First step Assume that Φ is smooth and strictly increasing such that Φ′(u) > α
for all u ∈ R, with α > 0 some number. Following the proof of Theorem 3.9 in
[1] we can find a sequence of wδ ∈ C∞(Rn) with spt wδ compact and wδ −→ Φ(v)
in L1(Rn) as δ ↓ 0, such that∣∣wδ

∣∣
TV (Rn)

6
∣∣Φ(v)

∣∣
TV (Rn)

+ δ, ∀δ > 0.

Then we only need to prove that this approximation defines an approximation
vδ ∈ S(Rn) of v. But this follows from the strict monotonicity and smoothness
of Φ: Simply put vδ := Φ−1(wδ). Since Φ′ is bounded away from zero, the
Inverse Function Theorem implies that Φ−1 is smooth, in particular Lipschitz
continuous. Hence vδ is smooth by the chain rule and vδ −→ v in L1(Rn) because
‖vδ−v‖L1(Rn) 6 α−1‖wδ−Φ(v)‖L1(Rn). Each vδ has compact support since spt wδ

is compact and Φ(0) = 0.

Second step Assume now that Φ is merely Lipschitz continuous and increasing.
We will show that for any δ > 0 there exists vδ ∈ S(Rn) with

‖vδ − v‖L1(Rn) < 4δ and
∣∣Φ(vδ)

∣∣
TV (Rn)

6
∣∣Φ(v)

∣∣
TV (Rn)

+ 3δ.

We proceed as follows: For given δ > 0 we first construct a ṽ ∈ BV (Rn) for
which we still control the total variation of Φ(ṽ). Then we replace Φ by a strictly
monotone smooth Φα. The total variation of Φα(ṽ) is bounded since the error
term can be estimated against the BV (Rn)–norm of ṽ. Then we apply the ar-
gument of the first step. For simplicity we assume that v > 0. The general case
can be proved by applying the following arguments to the positive and negative
parts of v separately.

We first construct a function v̂ such that spt v̂ has finite measure with

‖v̂ − v‖L1(Rn) 6 δ and
∣∣Φ(v̂)

∣∣
TV (Rn)

6
∣∣Φ(v)

∣∣
TV (Rn)

+ δ,
8
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Figure 3. Approximation of Φ(u).

By the coarea formula for BV (Rn)–functions, see Theorem 3.40 of [1],

∣∣Φ(v)
∣∣
TV (Rn)

=

∫ ∞

−∞
PΦ(v)(t) dt,

where PΦ(v)(t) is the perimeter of the level set {Φ(v) > t}, i.e.,

PΦ(v)(t) :=
∣∣1{Φ(v)>t}

∣∣
TV (Rn)

.

Since Φ(v) ∈ L∞∩BV (Rn), PΦ(v) has compact support and is finite a.e. Moreover,
PΦ(v)(t) = 0 for t < 0 since v > 0. If Φ is not strictly increasing in 0, by continuity
we can find β > 0 such that Φ([0, β]) = {0} and

∫
{v6β} v(x) dx 6 δ. Therefore,

if we let v̂ := v1{β<v}, then spt v̂ has finite measure by the Chebyshev inequality
and it holds

‖v̂ − v‖L1(Rn) 6 δ and
∣∣Φ(v̂)

∣∣
TV (Rn)

=
∣∣Φ(v)

∣∣
TV (Rn)

.

Otherwise, if Φ is strictly increasing in 0, then we can find β > 0 such that

max

{∫

{Φ(v)6β}
v(x) dx,

∫ β

−∞
PΦ(v)(t) dt

}
6 δ.

We fix a Lebesgue point 0 < t < β of PΦ(v) with

βPΦ(v)(t) 6
∫ β

−∞
PΦ(v)(t) dt,

and define v̂ := v1{t<Φ(v)}. Since Φ is increasing, spt v̂ has finite measure by the
Chebyshev inequality and we get ‖v̂ − v‖L1(Rn) 6 δ and

∣∣Φ(v̂)
∣∣
TV (Rn)

6
∫ ∞

t

PΦ(v)(t) dt + tPΦ(v)(t) 6
∣∣Φ(v)

∣∣
TV (Rn)

+ δ.

For 0 < γ < δ/| spt v̂| let ai := γi and bi := Φ(ai) for all i ∈ Z. Starting from
i0 := 0 define recursively

iν+1 := min
{

i > iν

∣∣∣ bi > biν and aiν 6 γ + ‖v̂‖L∞(Rn)

}

see Figure 3. Since v̂ is bounded, we may assume that Φ is growing to infinity and
then there are only finitely many such iν , say Λ := {i1, . . . , iN}. By definition,

9
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Figure 4. Approximation of v̂.

biν−1 = biν−1+1 = · · · = biν−1. For each iν ∈ Λ we pick a number tiν ∈ (biν−1, biν )
such that

(biν − biν−1) PΦ(v̂)(tiν ) 6
∫ biν

biν−1

PΦ(v̂)(t) dt. (16)

If siν := sup{s ∈ R |Φ(s) 6 tiν}, then {Φ(v) > tiν} = {v > siν}, see Figure 3.
Since tiν is in the interior of the open interval (biν−1, biν ), we have siν ∈ (aiν−1, aiν ).
Note also that siN > ‖v̂‖L∞(R). For k ∈ Z\Λ we define sk := (ak−1 + ak)/2.
Consider then the simple function

ṽ :=
N∑

ν=1

aiν−1 1{siν >v̂>siν−1
},

see Figure 4. Then also Φ(ṽ) is a simple function and we can estimate

|Φ(ṽ)|TV (Rn) =

∣∣∣∣∣
N∑

ν=1

biν−1 1{siν >v̂>siν−1
}

∣∣∣∣∣
TV (Rn)

=
N−1∑
ν=1

(biν − biν−1)
∣∣1{v̂>siν }

∣∣
TV (Rn)

=
N−1∑
ν=1

(biν − biν−1) PΦ(v̂)(tiν )

6
N−1∑
ν=1

∫ biν

biν−1

PΦ(v̂)(t) dt 6 |Φ(v̂)|TV (Rn), (17)

using biν−1 = biν−1 , (16) and the coarea formula. Since biν − biν−1 > 0 and N is
finite, we also conclude from (17) that

|ṽ|TV (Rn) =
N−1∑
ν=1

(aiν − aiν−1)
∣∣1{v̂>siν }

∣∣
TV (Rn)
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6 2‖v̂‖L∞(Rn)

min
ν=1,...,N−1

(
biν − biν−1

) |Φ(v̂)|TV (Rn) < ∞.

Then ṽ ∈ BV (Rn) because spt ṽ ⊂ spt v̂ has finite measure. Consider

Ω :=
⋃ {

siν−1+1 > v̂ > siν−1

∣∣ ν = 1, . . . , N
}
.

Since aiν−1−1 < siν−1 < aiν−1 < siν−1+1 < aiν−1+1 we have

‖ṽ − v̂‖L1(Ω) =
N∑

ν=1

∫

{siν−1+1>v̂>siν−1
}

∣∣v̂(x)− aiν−1

∣∣ dx

6 γ

N∑
ν=1

∣∣{siν−1+1 > v̂ > siν−1

}∣∣ = |Ω|γ (18)

which is small by our choice of γ. Therefore ṽ is close to v̂ in the set Ω.
We are now going to modify ṽ in Rn\Ω in such a way that the new function

(again denoted by ṽ) satisfies the estimates

‖ṽ − v̂‖L1(Rn) < δ and |Φ(ṽ)|TV (Rn) 6 |Φ(v̂)|TV (Rn).

Note first that Φ is constant on [aiν−1 , aiν−1] for all ν = 1, . . . , N . Therefore we
consider the set Ων := {siν > v̂ > siν−1+1}. If Ων = ∅, there is nothing to do.
Otherwise we redefine ṽ in Ων as

ṽ :=
iν∑

k=iν−1+2

ak−1 1{sk>v̂>sk−1}, (19)

see Figure 4. The same argument that led to (18) then shows that

‖ṽ − v̂‖L1(Ων) 6 |Ων |γ,

and summing over ν and using (18) yields ‖ṽ−v̂‖L1(Rn) 6 δ because γ < δ/| spt v̂|.
Moreover, |Φ(ṽ)|TV (Rn) 6 |Φ(v̂)|TV (Rn) by (17) because inserting the extra states
(19) does not change Φ(ṽ).

One final modification of ṽ is needed to get a function in BV (Rn). For
each ν = 1, . . . , N we will therefore approximate ṽ in L1(Ων) by a smooth
function which takes values in [aiν−1 , aiν−1] only. Again this will not change
|Φ(ṽ)|TV (Rn). We proceed as follows: We first redefine ṽ by aiν−1 in Ων\Kν

with Kν ⊂ int Ων compact and then convolve with a standard mollifier ρν with
diam spt ρν < dist(Kν ,Rn\Ων), see Figure 4. By choosing Kν and ρν appropri-
ately, the induced L1(Ων)–error does not exceed δ/N . Repeating this for all ν
gives ṽ ∈ BV (Rn).

As in the proof of Theorem 1.4 we now consider a sequence of smooth Φα with
Φ′

α > Φ′ + α and Φ′
α uniformly bounded, such that Φα −→ Φ a.e. as α ↓ 0. Since

ṽ ∈ BV (Rn), we can find α small enough such that

|Φα(ṽ)|TV (Rn) 6 |Φ(ṽ)|TV (Rn) + δ.
11



Then we conclude as in the first step, applying the argument to Φα and ṽ instead
of Φ and v. Since vδ is smooth, the chain rule gives

|Φ(vδ)|TV (Rn) =

∫

Rn

Φ′(vδ)|Dvδ(x)| dx

6
∫

Rn

Φ′
α(vδ)|Dvδ(x)| dx = |wδ|TV (Rn),

where wδ is the approximation of Φα(ṽ) and vδ := Φ−1
α (wδ). ¤

3. Semi-discrete TOD schemes

In this section, we consider a TOD property for semi-discrete approximations
of the conservation law (1). Namely, we consider schemes

{
d
dt

vi(t) + 1
∆xi

[
Ai+1/2(t)− Ai−1/2(t)

]
= 0,

Ai+1/2(t) := A(
vi(t), vi+1(t)

)
(3-point scheme)

(see [7], [12] for the status of this theory as well as for historical and more ad-
vanced references). As usual we require some regularity for A such as Lipschitz
continuity, and we assume that the scheme is consistent, i.e.,

A(u, u) = A(u), ∀u ∈ R.

We recall the following basic notions of stability (see [12])

Definition 3.1. A consistent discrete flux A(·, ·) is called

(i) monotone if

∂

∂u
A(u, v) > 0,

∂

∂v
A(u, v) 6 0.

(ii) E-flux if

{
A(u, v) 6 A(ξ) for u 6 ξ 6 v,

A(u, v) > A(ξ) for v 6 ξ 6 u.

(iii) ordered if

{
A(u, v) 6 min(A(u), A(v)) for u 6 v,

A(u, v) > max(A(u), A(v)) for v 6 u.

The known properties being summarized as follows
12



monotone
discrete flux

⇐⇒ contraction
(multidimensional)

⇓
E-discrete flux ⇐⇒ discrete entropy inequalities

(multidimensional)
⇓

ordered
discrete flux

⇐⇒ TVD
(onedimensional)

We can complete this picture by the

Proposition 3.2 (Semi-discrete TOD schemes). Any semi-discrete ordered scheme
is TOD, i.e., for all Lipschitz continuous monotone functions Φ

∑

i∈Z

∣∣Φ(
vi+1(t)

)− Φ
(
vi(t)

)∣∣ 6
∑

i∈Z

∣∣Φ(
v0

i+1

)− Φ
(
v0

i

)∣∣, ∀t > 0.

The assumption of monotonicity of Φ cannot be dropped.

Proof. We consider the positive part
[
Φ(vi+1(t)) − Φ(vi(t))

]
+

rather than the
absolute value to simplify the proof somewhat. This is equivalent because the
scheme is conservative and for all a ∈ R it holds |a| = 2a+ − a. We also consider
only the case of increasing Φ. We start by writing

d

dt
Φ

(
vi(t)

)
+

Φ′(vi(t)
)

∆xi

[
Ai+1/2(t)− Ai−1/2(t)

]
= 0,

which implies

d

dt

[
Φ

(
vi+1(t)

)− Φ
(
vi(t)

)]
+

+ 1{
Φ(vi+1(t))>Φ(vi(t))

}
[
Φ′(vi+1(t)

)

∆xi+1

(
Ai+3/2(t)− Ai+1/2(t)

)

− Φ′(vi(t)
)

∆xi

(
Ai+1/2(t)− Ai−1/2(t)

)]
= 0.

Summing up this equality yields

d

dt

∑

i∈Z

[
Φ

(
vi+1(t)

)− Φ
(
vi(t)

)]
+

+
∑

i∈Z

Φ′(vi(t)
)

∆xi

(
Ai+1/2(t)− Ai−1/2(t)

)

[
1{

Φ(vi(t))>Φ(vi−1(t))
} − 1{

Φ(vi+1(t))>Φ(vi(t))
}
]

= 0. (20)
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Note that the second sum in (20) contains only those sites i where Φ(vi) has
a strict local maximum or minimum. This corresponds to the continuous case
where an integration over the set {w = 0} with w = ∂

∂x
Φ(u) was involved, see

(12). It remains to prove that for all i ∈ Z we have

(
Ai+1/2(t)− Ai−1/2(t)

)

[
1{

Φ(vi(t))>Φ(vi−1(t))
} − 1{

Φ(vi+1(t))>Φ(vi(t))
}
]

=
(
Ai+1/2(t)− Ai−1/2(t)

)

[
1{

Φ(vi(t))>Φ(vi±1(t))
} − 1{

Φ(vi(t))6Φ(vi±1(t))
}
]

> 0.

Consider for instance the term with the plus sign. Since Φ is increasing
(
Ai+1/2(t)− Ai−1/2(t)

)
1{

Φ(vi(t))>Φ(vi±1(t))
}

=
[
A(

vi(t), vi+1(t)
)−A(

vi−1(t), vi(t)
)]

1{
vi(t)>vi±1(t)

}

=
[
A(

vi(t), vi+1(t)
)− A

(
vi(t)

)]
1{

vi(t)>vi±1(t)
}

+
[
A

(
vi(t)

)−A(
vi−1(t), vi(t)

)]
1{

vi(t)>vi±1(t)
}

and both terms are positive under the “ordered” assumption (and only if it holds).
Similarly, for the term with minus sign we have

−
(
Ai+1/2(t)− Ai−1/2(t)

)
1{

Φ(vi(t))6Φ(vi±1(t))
}

= −
[
A(

vi(t), vi+1(t)
)−A(

vi−1(t), vi(t)
)]

1{
vi(t)6vi±1(t)

}

= −
[
A(

vi(t), vi+1(t)
)− A

(
vi(t)

)]
1{

vi(t)6vi±1(t)
}

−
[
A

(
vi(t)

)−A(
vi−1(t), vi(t)

)]
1{

vi(t)6vi±1(t)
}

and both terms are again positive under the “ordered” assumption. This proves
that semi-discrete ordered schemes have the TOD property.

We conclude this section by proving that monotonicity of Φ is indispensable.
To this end, fix some v ∈ R which is not a maximum of A. We assume that A is
not constant. Then there is a u 6= v with

{
either A(v, u) 6= A(v) if u < v

or A(u, v) 6= A(v) if v < u.
14



In fact, assume that not. Then Definition 3.1 (iii) implies
{
A(v, u) = A(v) > A(u) for all u < v

A(u, v) = A(v) > A(u) for all v < u,

in contradiction to our choice of v. For definiteness let us assume that u < v
with A(v, u) > A(v). The other cases can be handled in a similar way. By
Lipschitz continuity and consistency A(u, u) = A(u) we can find w > v such that
A(v, u) > A(w, v). Now we define initial data

v0(0) := v and vi(0) :=

{
w for i < 0

u for i > 0.
(21)

Consider equation (20) for t = 0. We can find Φ such that

Φ(u) = Φ(v), Φ′(v) > 0 and Φ′(w) = 0.

In fact, a suitable cubic polynomial will do. By construction, we then have

d

dt

∑

i∈Z

[
Φ

(
vi+1(0)

)− Φ
(
vi(0)

)]
+

(22)

= −
∑

i∈Z

Φ′(vi(t)
)

∆xi

(
Ai+1/2(t)− Ai−1/2(t)

)

[
1{

Φ(vi(t))>Φ(vi−1(t))
} − 1{

Φ(vi+1(t))>Φ(vi(t))
}
]

= −Φ′(v)

∆x0

(
A(v, u)−A(w, v)

)
> 0.

This proves that the seminorm must grow. ¤

Remark 3.3. In Proposition 1.2 we had to put a lim inf in the initial control to
cope with nonmonotone Φ. No analogue of this procedure exists at the semi-
discrete level. Note that the initial data we defined in (21) approximates a Rie-
mann problem, i.e., a discontinuity. Then the time derivative in (22) becomes
infinite as ∆xi → 0, and a kind of “boundary layer” is established: the seminorm
is instantaneously increased to the value which supposedly corresponds to the
lim inf in the continuous setting.

4. Fully discrete TOD schemes

Since it is not obvious how to prove the TOD property for a general fully
discrete scheme, we only consider the classical Godunov scheme. For simplicity,
we also restrict to the case of a regular grid. Let us quickly recall the definition
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of the Godunov scheme: Given h > 0 we define intervals Ii := [ih, (i + 1)h] for
i ∈ Z and then introduce the projection operator

Phu(x) := h−1

∫

Ii

u(y) dy for x ∈ Ii.

The numerical solution obtained by the Godunov scheme is piecewise constant
in time and space, and is therefore determined by the value vn

i it takes in the
interval Ii at discrete times tn to be specified in a moment. Therefore we consider
vn =

∑
i∈Z vn

i 1Ii
for n > 0. Given data u0 ∈ L1 ∩ L∞(R) we define v0 := Phu

0

and then use the update formula

vn := Phu
n
(
∆tn, ·), ∀n > 0,

where un is the unique entropy solution to
{

∂
∂t

un + ∂
∂x

A(un) = 0, t > 0, x ∈ R,

un(0, ·) = vn−1,
(23)

and the time steps ∆tn := tn − tn−1 are chosen in such a way that the CFL
condition ∆tnh−1‖a‖L∞(R) 6 λ for some λ 6 1/2 is satisfied. Then an explicit
formula for the numerical flux is available, see [7].

We have the following result.

Proposition 4.1. The Godunov scheme is TOD, i.e., for all Lipschitz continuous
monotone functions Φ∑

i∈Z

∣∣Φ(
vn

i+1

)− Φ
(
vn

i

)∣∣ 6
∑

i∈Z

∣∣Φ(
v0

i+1

)− Φ
(
v0

i

)∣∣, ∀n > 0.

Proof. Since vn is piecewise constant, the same is true for Φ(vn). Then
∣∣Φ(vn)

∣∣
TV (R)

=
∑

i∈Z

∣∣Φ(
vn

i+1

)− Φ
(
vn

i

)∣∣, ∀n > 0.

We already know by Theorem 1.1 that the solution operator of (23) is Total
Oscillation Diminishing. Therefore it suffices to prove the following

Claim: For all v ∈ L1 ∩ L∞(R)∣∣Φ(
Phv

)∣∣
TV (R)

6
∣∣Φ(v)

∣∣
TV (R)

. (24)

Again we assume that Φ(0) = 0. Consider functions vδ ∈ S(R) with vδ −→ v in
L1(R) and lim supδ→0 |Φ(vδ)|TV (R) 6 |Φ(v)|TV (R), as in Proposition 1.3. Since Ph

is L1(R)–continuous, the Lipschitz continuity of Φ implies Φ(Phvδ) −→ Φ(Phv)
in L1(R), and then ∣∣Φ(

Phv
)∣∣

TV (R)
6 lim inf

δ→0

∣∣Φ(
Phvδ

)∣∣
TV (R)

by lower semicontinuity of the total variation, see Proposition 3.6 in [1]. Therefore
we only need to prove (24) for v ∈ S(R). We slightly modify the argument of
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Lemma 8 in [9]. For λ ∈ R let Eλ := {x | v(x) > λ}. Since v is bounded, we
have Eλ(v) = ∅ for large λ. Then also vj := Phv|Ij

6 λ for all j ∈ Z, and thus
Eλ(Phv) is empty as well. If Eλ(v) 6= ∅, then it can be decomposed into at most
countably many connected components

Eλ(v) =

Lλ⋃

`=1

O` for some Lλ,

where O` are disjoint open intervals. Note that Eλ(v) is open because v is smooth.
We will now show that Eλ(Phv) has at most Lλ connected components. There is
nothing to do if Lλ = ∞. Otherwise we observe that

(a) If int Ij ⊂ Eλ(v), then vj > λ and int Ij ⊂ Eλ(Phv).
(b) If Ij ∩ Eλ(v) = ∅, then vj 6 λ and Ij ∩ Eλ(Phv) = ∅.

For each Ij we either have (a) or (b), or Ij is an end interval, i.e., Ij ∩ O` 6= ∅
and Ij 6⊂ O` for some `. Let J` := {j | int Ij ⊂ Eλ(Phv) and Ij ∩ O` 6= ∅} and
O∗

` := int
⋃

j∈J`
Ij. Then O∗

` contains all Ij that were already present in O`

(because of (a)) plus possibly some end intervals of O`. Therefore O∗
` is either

empty or an open interval. On the other hand, Eλ(Phv) ⊂ ⋃
` O∗

` since (b) implies
that no Ij ∈ Eλ(Phv) can exist which hits none of the O`. Let L∗λ be the number
of connected components of Eλ(Phv). There can be at most as many of these as
there are O∗

` , thus L∗λ 6 Lλ.
Now note that the perimeters of the level sets Eλ(v) and Eλ(Phv) equal just

2Lλ and 2L∗λ, respectively. Therefore we can use the coarea formula and the chain
rule once more to estimate

∣∣Φ(
Phv

)∣∣
TV (R)

= 2

∫

R
Φ′(λ) L∗λ dλ

6 2

∫

R
Φ′(λ) Lλ dλ =

∣∣Φ(v)
∣∣
TV (R)

.

This proves the claim and the proposition. ¤

Remark 4.2. It would be interesting to understand, for other schemes, which
CFL condition enforces the TOD property. As discussed in Section 1 the Lax-
Friedrichs scheme is TVD, but not TOD for certain timesteps. Therefore the two
notions seem to use different CFL conditions. This is in contrast to the semi-
discrete case because the diagram on page 13 and Proposition 3.2 together imply
that for semi-discrete schemes TVD and TOD are in fact equivalent.
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male Supérieure, CNRS UMR 8553, 45 rue d’Ulm, F 75230 Paris cedex 05, France

E-mail address: perthame@dma.ens.fr

Michael Westdickenberg, Institut für Angewandte Mathematik, Universität
Bonn, Wegelerstraße 10, D–53115 Bonn, Germany

E-mail address: mwest@iam.uni-bonn.de

18


