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Abstract. We prove that every element of the polar cone to the closed convex

cone of monotone transport maps can be represented as the divergence of a

measure field taking values in the positive definite matrices.
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1. Introduction

The one-dimensional pressureless gas dynamics equations

∂t%+∇ · (%u) = 0

∂t(%u) +∇ · (%u⊗ u) = 0

}
in [0,∞)× R (1.1)

has recently been shown equivalent (in the regime of sticky particles) to a first-order
differential inclusion on the space of monotone transport maps from the reference
measure space ([0, 1],L1|[0,1]|) =: (Ω,m) (where L1 is the one-dimensional Lebesgue
measure) to R; see [7]. More precisely, to every density/velocity (%,u) solving (1.1)
one can associate a unique map X ∈ L 2(Ω,m) with X monotone such that

%(t, ·) = X(t, ·)#m for all t ∈ [0,∞). (1.2)

Here # indicates the push-forward of measures. Then X satisfies

Ẋ + ∂IK (X) 3 V̄ for all t ∈ [0,∞), (1.3)

where K denotes the closed convex cone of all transport maps X ∈ L 2(Ω,m) that
are monotone, and where ∂IK is the subdifferential of the indicator function of K .
If X satisfies (1.3) and is related to % through (1.2), then the Eulerian velocity u

can be recovered from the Lagrangian velocity V := Ẋ through

V (t, ·) = u(t,X(t, ·)) for all t ∈ [0,∞). (1.4)

Assuming finite kinetic energy, it is natural to require that

V (t, ·) ∈ L 2(Ω,m), u(t, ·) ∈ L 2(R, %(t, ·)).

Date: July 1, 2013.

2010 Mathematics Subject Classification. 49Q20.
Key words and phrases. Optimal Transport, Polar Cone.

1



2 FABIO CAVALLETTI AND MICHAEL WESTDICKENBERG

The relation (1.4) in particular determines the initial Lagrangian velocity V̄ in (1.3)
in terms of the initial data (%,u)(0, ·) =: (%̄, ū) of the system (1.1).

It is shown in [7] that the solution of (1.3) can be written explicitly as

X(t, ·) = PK (X̄ + tV̄ ) for all t ∈ [0,∞), (1.5)

with X̄ := X(0, ·) ∈ K given by (1.2). Here PK denotes the metric projection onto
the cone K . The connection between (1.1) and (1.3) makes it possible to apply
classical results from the theory of first-order differential inclusions in Hilbert spaces
to study the pressureless gas dynamics equations, which form a system of hyperbolic
conservation laws. We refer the reader to [3, 7] for further information.

It is known that if X satisfies (1.5), then the difference (X̄ + tV̄ )−X(t, ·) must
be an element of the polar cone NK (X(t, ·)) of K , which is defined as

NK (X) :=
{
Y ∈ L 2(Ω,m) :

ˆ
Ω

Y (X ′ −X) 6 0 for all X ′ ∈ K
}

(1.6)

for all X ∈ K . We observe that NK (X) coincides with the subdifferential ∂IK (X).
Since K is a cone, one can choose X ′ = 2X, X ′ = 0 in (1.6) to obtain that

Y ∈ NK (X) ⇐⇒
ˆ

Ω

Y X = 0,

ˆ
Ω

Y X ′ 6 0 for all X ′ ∈ K . (1.7)

One is therefore naturally led to the problem of characterizing the polar cone of the
set of monotone transport maps, beyond the basic definition (1.6). It is shown in
[7] that if Y ∈ L 2(Ω,m) is an element of the polar cone NK (X), then Y coincides
with the derivative of a nonnegative function. We refer the reader to [7] for more
details, and to [4, 6, 9] for similar results.

In this paper, we will give a generalization of this result to the multi-dimensional
case. We are interested in the following setting: We assume that a Borel probability
measure % on Rd is given with finite second moments, so that

´
Rd |x|2 %(dx) < ∞.

We consider the closed convex cone of monotone transport maps

K% :=
{
f ∈ L 2(Rd, %) : f is monotone

}
.

Here we call any Borel map f : Rd −→ Rd monotone if the support of the induced
transport plan γf := (id,f)#%, which is a Borel probability measure on the product
space Rd × Rd, is a monotone set. Recall that Γ ⊂ Rd × Rd is monotone if

(y1 − y2) · (x1 − x2) > 0 for all (xi, yi) ∈ Γ with i = 1..2,

where · denotes the Euclidean inner product on Rd. Our goal is to find a represen-
tation of elements of the polar cone K ⊥

% (at the zero map), defined as

K ⊥
% :=

{
g ∈ L 2(Rd, %) :

ˆ
Rd

g(x) · f ′(x) %(dx) 6 0 for all f ′ ∈ K%

}
.

Notice that since % has finite second moments, any smooth monotone function with
at most linear growth at infinity (see details below) is an element of K%. Moreover,
whenever g ∈ K ⊥

% is given, then the product g% is in fact an Rd-valued finite Borel
measure, because of Cauchy-Schwarz inequality. We will show below in Theorem 2.1
that for any g ∈ K ⊥

% the measure g% can be written as the divergence of a finite
Borel measure taking values in the symmetric, positive semidefinite matrices. In the
one-dimensional case, we therefore obtain the derivative of a nonnegative function
(measure) as in [7]. Our proof relies on an application of the Hahn-Banach theorem
and is inspired by a similar argument in [2] for the construction of Michell trusses.
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It is possible to prove a representation of the polar cone K ⊥
% similar to ours by using

a characterization of polar cones from [10] and subharmonic functions; see [6,9] for
instance. Compared to these presentations, our proof is shorter and simpler.

2. The Main Result

We will denote by x · y the Euclidean inner product of x, y ∈ Rk, and by |x| the
induced norm. We write Rl×l for the space of real matrices. For any A,B ∈ Rl×l
with components A = (aij) and B = (bij) we define an inner product

〈A,B〉 := tr(ABT) =

l∑
i,j=1

ai,jbi,j

(with BT the transpose of B), which induces the Frobenius norm

‖A‖ :=
√

tr(AAT) =

l∑
i,j=1

a2
i,j .

We denote by Sl the space of symmetric real matrices and by Sl+ the subset of
positive semidefinite symmetric matrices. The space of all positive definite, but not
necessarily symmetric matrices will be denoted by Rl×l+ . Recall that

A ∈ Rl×l+ ⇐⇒ v · (Av) > 0 for all v ∈ Rl.

Equivalently, we have A ∈ Rl×l+ if and only if Asym := (A+AT)/2 ∈ Sl+.

Let C∗(Rd;Rl×l) be the space of all continuous functions w : Rd −→ Rl×l with
the property that lim|x|→∞ w(x) ∈ Rl×l exists. Note that we can write

C∗(Rd;Rl×l) = Rl×l + C0(Rd;Rl×l),

where C0(Rd;Rl×l) is the closure of the space of all compactly supported continuous
Rl×l-valued maps, w.r.t. the sup-norm. In an analogous way, we define C∗(Rd;Sl)
and C∗(Rd;Sl+). For any map u ∈ C 1(Rd;Rd) we denote by

e(u(x)) := Du(x)sym for all x ∈ Rd

its deformation tensor, which is an element of C (Rd;Sd). Let

C 1
∗ (Rd;Rd) := {u ∈ C 1(Rd;Rd) : Du ∈ C∗(Rd;Rd×d)},

MON(Rd) := {u ∈ C 1
∗ (Rd;Rd) : u is monotone},

so that e(u) ∈ C∗(Rd;Sd+) if u ∈ MON(Rd). The cone MON(Rd) contains all linear

maps u(x) := Ax for x ∈ Rd, where A ∈ Rd×d+ . See [1] for more details.

We will denote by M (Rd;Rk) the space of finite Rk-valued Borel measures. In
an analogous way, we define M (Rd;Sl) and M (Rd;Sl+). If fi, i = 1 . . . k, are the

components of F ∈M (Rd;Rk) and u ∈ Cb(Rd;Rk) we write

ˆ
Rd

u(x) · F(dx) =

k∑
i=1

ui(x) fi(dx).
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We will say that F has finite first moment if
∑k
i=1

´
Rd |x| |fi|(dx) <∞. If µi,j = µj,i,

i, j = 1 . . . l, are the components of M ∈M (Rd;Sl) and v ∈ Cb(Rd;Sl), then

ˆ
Rd

〈v(x),M(dx)〉 =

l∑
i,j=1

vi,j(x)µi,j(dx).

For any M = (µi,j) ∈M (Rd;Sl) we have M ∈M (Rd;Sl+) if and only if

l∑
i,j=1

µi,jvivj is a positive measure for all v ∈ Rl.

We can now state our representation result.

Theorem 2.1 (Stress Tensor). Assume that there exist a measure F ∈M (Rd;Rd)
with finite first moment and a matrix-valued field H ∈M (Rd;Sd+) with

G(u) := −
ˆ
Rd

u(x) · F(dx)−
ˆ
Rd

〈e(u(x)),H(dx)〉 > 0 (2.1)

for all u ∈ MON(Rd). Then there exists M ∈M (Rd;Sd+) such that

G(u) =

ˆ
Rd

〈e(u(x)),M(dx)〉 for all u ∈ D(Rd;Rd), (2.2)

ˆ
Rd

tr(M(dx)) 6 −
ˆ
Rd

x · F(dx)−
ˆ
Rd

tr(H(dx)). (2.3)

Notice that the integrals in (2.1) are finite for any choice of u ∈ C 1
∗ (Rd;Rd), by

our assumptions on F and H. Recall that the trace of a symmetric matrix is equal
to the sum of its eigenvalues, which in the case of a positive semidefinite matrix are
all nonnegative. Therefore (2.3) controls the size of the measure M.

For H ≡ 0 we obtain the representation announced in the introduction:ˆ
Rd

u(x) · F(dx) = −
ˆ
Rd

〈Du(x),M(dx)〉

for all test functions u. Recall that M takes values in the symmetric matrices. The
more general form of (2.1) is motivated by a variational time discretization for the
compressible Euler equations, for which a minimization problem of the form

inf
f∈K%

{
1

2

ˆ
Rd

|h(x)− f(x)|2 %(dx) +

ˆ
Rd

e(x) det(Df(x)sym)1−γ dx

}
(2.4)

for suitable h ∈ L 2(Rd, %) and nonnegative e ∈ L 1(Rd) must be solved, with γ > 1
some constant. Denoting by f ∈ K% the minimizer of (2.4) and letting g := h−f ,
we can write the corresponding first-order optimality condition (formally) as

−
ˆ
Rd

g(x) · f ′(x) %(dx)

− (γ − 1)

ˆ
Rd

e(x) det(Df(x)sym)−γ tr
(

cof(Df(x)sym)TDf ′(x)
)
dx > 0

for all f ′ ∈ K%. From this, assumption (2.1) follows if we define

F := g% and H := (γ − 1)edet(Df sym)−γ cof(Df sym)T.

One can then check that F has finite first moments and that H ∈M (Rd;Sd+). This
application will be discussed in more detail in an upcoming publication.
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2.1. Positive Functionals. In this section, we will discuss a general result about
extensions of positive functionals, which is due to Riedl [8]. Let us start with some
notation: In the following, we denote by E a normed vector space. We call positive
cone any subset C ⊂ E with C 6= E with the following properties:

C + C ⊂ C, λC ⊂ C for all λ > 0, C ∩ (−C) = {0}. (2.5)

The positive cone C induces a partial ordering > on the space E by

y > x ⇐⇒ y − x ∈ C.

A linear map F : L −→ R defined on a subspace L ⊂ E is called positive if

F (x) > 0 for all x ∈ L ∩ C. (2.6)

A linear map F : E −→ R is called functional if it is continuous.

Proposition 2.2. Let E be a Banach space, partially ordered by a positive cone C.
If some subspace L ⊂ E contains an interior point of C, then every positive linear
map F0 : L −→ R can be extended to a positive functional F : E −→ R.

Proof. See Theorem 10.10 of [8]. We include a proof for the reader’s convenience.

Step 1. We first observe that E = L− C. Indeed if x0 ∈ L is an inner point of
C, then there exists a δ > 0 with Bδ(x0) ⊂ C. Moreover, for all x ∈ E there exists
λ > 0 (choose λ := 2‖x‖/δ, for example) with the property that

x/λ ⊂ Bδ(0) = x0 −Bδ(x0) ⊂ x0 − C.

Since L is a subspace we obtain, using λC ⊂ C for all λ > 0, that

E ⊂
⋃
λ>0

λ(x0 − C) ⊂ Rx0 − C ⊂ L− C.

Step 2. Since E = L− C, for every x ∈ E there exist y± ∈ L and z± ∈ C such
that ±x = y± − z±, which implies that y+ > x > −y−. We now define

p(x) := inf
{
F0(y) : y ∈ L, y > x

}
for all x ∈ E. (2.7)

Then p(x) 6 F0(y+) <∞. On the other hand, for every y ∈ L with y > x we have
y > −y−. Since y + y− ∈ L ∩C, we have F0(y + y−) > 0, by positivity of F0. This
implies that F0(y) > −F0(y−) > −∞. We conclude that p(x) is finite for all x ∈ E.
It is easy to check that for all x1, x2 ∈ E and for all λ > 0 we have

p(x1 + x2) 6 p(x1) + p(x2), p(λx1) = λp(x1).

For every x ∈ L and z ∈ E with z > x, we have F0(x) 6 p(z) (in particular, we may
choose z = x). Indeed for every y ∈ L with y > z, we have y > x, thus y−x ∈ L∩C.
Hence F0(y−x) > 0, by positivity, which yields F0(y) = F0(x)+F0(y−x) > F0(x).
Taking the inf over all y ∈ L with y > z, we obtain the estimate.

Step 3. We can now apply the Hahn-Banach theorem and obtain a linear map
F : E −→ R with F (x) 6 p(x) for all x ∈ E. In order to show that F is positive,
let x ∈ C. Then 0 > −x and 0 ∈ L, so we may choose y = 0 in the definition
of p(−x) (see (2.7)) to obtain p(−x) 6 0. Therefore F (−x) 6 p(−x) 6 0, and so
F (x) > 0 for all x ∈ C. To prove that F is an extension of F0, let x ∈ L. Then we
may choose y = −x in (2.7) to obtain p(−x) 6 F0(−x) for all x ∈ L. Then

−F (x) = F (−x) 6 p(−x) 6 F0(−x) = −F0(x),
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hence F0(x) 6 F (x). Applying the same argument to −x ∈ L, we get F0(x) > F (x).
It follows that F0(x) = F (x) for all x ∈ L. Therefore F is an extension of F0.

Step 4. It remains to prove that F is continuous. Let x0 be the interior point of
C from Step 1, for which Bδ(x0) ⊂ C. Then Bδ(0) ⊂ ±(x0−C). Let λ := F (x0) > 0
(recall that F (x) > 0 for all x ∈ C). Then for all x ∈ Bδ(0) we have x0−x ∈ C, thus
F (x0−x) > 0. It follows that F (x0) > F (x). Similarly, we obtain F (x) > −F (x0).
Then either F vanishes (if λ = 0), or the preimage of the nonempty interval (−λ, λ)
contains a neighborhood of 0, and so F (being linear) is continuous. �

2.2. Proof of Theorem 2.1. We apply Proposition 2.2 with

E := C∗(Rd;Sd), C := C∗(Rd,Sd+), L := {e(u) : u ∈ C 1
∗ (Rd;Rd)}.

Clearly C satisfies conditions (2.5). The identity map id is an element of MON(Rd),
with constant deformation tensor e(id) equal to the identity matrix 1 ∈ Sd+. Since
the eigenvalues of a symmetric matrix depend continuously on the matrix entries,
we have that e(id) = 1 is an interior point of C: For all ‖v− id‖E sufficiently small,
the eigenvalues of v(x) are bigger than 1/2 for all x ∈ Rd and v ∈ E.

On the subspace L ⊂ E, we define the functional F0 as

F0(v) := −
ˆ
Rd

u(x) · F(dx)−
ˆ
Rd

〈v(x),H(dx)〉 where v = e(u).

Note that F0 is well-defined: If there exists another map ũ ∈ C 1
∗ (Rd;Rd) such that

e(ũ(x)) = v(x) for all x ∈ Rd, then we have e(u−ũ) ≡ 0, by linearity. Consequently,
there exist an antisymmetric matrix B ∈ Rd×d and c ∈ Rd such that

ū(x) := u(x)− ũ(x) = Bx+ c for all x ∈ Rd.

Indeed assume that e(ū(x)) = 0 and define

Wū(x) :=
Dū(x)−Dū(x)T

2
for all x ∈ Rd.

Then ∂k(Wū)i,j ≡ 0 for all indices i, j, k. Since Dū = e(ū) +Wū it follows that Dū
is a constant matrix with vanishing symmetric part, so ū is a rigid deformation.
We now observe that both ±ū ∈ MON(Rd), which implies F0(e(ū)) = 0 because of
(2.1). As F0 is linear, we conclude that F0 is well-defined. Similarly, one can check
that F0(v) > 0 for all v ∈ L ∩ C, so the linear map F0 : L −→ R is positive.

Applying Proposition 2.2, we obtain that F0 can be extended to a continuous
linear map F : E −→ R. Notice that C∗(Rd;R) is a separable and closed subalgebra
of the space Cb(Rd;R) of bounded continuous Sd-functions. As is well-known, to
any closed subalgebra of a space of bounded continuous functions, there corresponds
a compactification of the domain. In our case, we obtain the one-point (also called
Alexandroff) compactification of Rd, which we will denote by βRd. Then C∗(Rd;Sd)
is isomorphic to C (βRd;Sd). We refer the reader to [5] Section 4.8 for more details.
By the Riesz representation theorem, there therefore exists a finite Radon measure
M ∈M (βRd;Sd) that represents the functional F in the sense that

F (v) =

ˆ
βRd

〈v(x),M(dx)〉 for all v ∈ C∗(Rd;Sd).
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Since F (v) > 0 for all v ∈ C∗(Rd;Sd+) we obtain that M takes in fact values in Sd+.
Moreover, as F is an extension of F0, the following identity holds:

F0(v) = −
ˆ
Rd

u(x) · F(dx)−
ˆ
Rd

〈v(x),H(dx)〉 =

ˆ
βRd

〈v(x),M(dx)〉

for any v = e(u) and u ∈ C 1
∗ (Rd;Rd); see (2.2). In particular, we may choose u = id

(with e(id) = 1) to obtain the control (recall that M is Sd+-valued)ˆ
βRd

tr(M(dx)) = −
ˆ
Rd

x · F(dx)−
ˆ
Rd

tr(H(dx)).

Restricting the representation from βRd to Rd, we obtain the result.
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