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Abstract. We give a new convergence proof for finite volume schemes approx-
imating scalar conservation laws. The main ingredients of the proof are the
kinetic formulation of scalar conservation laws, a discrete entropy inequality
and the velocity averaging technique.

1. Introduction

We consider the Cauchy problem for nonlinear hyperbolic scalar conservation laws
in several space dimensions

(1.1)
∂ū

∂t
+∇ · f(ū) = 0 on the slab Π := [0, T )×Rd−1

for compactly supported initial data ū(0, ·) =: ū0 ∈ L1∩L∞(Rd−1). We assume the
flux function f in C1,1

loc (R) and f(0) = 0. As is well known, solutions of nonlinear
conservation laws may become discontinuous in finite time, so weak solutions must
be considered, i.e. functions ū ∈ L1 ∩ L∞(Π) such that

(1.2)
∫

Π

{
ū(x)

∂φ

∂t
(x) + f(ū(x)) · ∇φ(x)

}
dx +

∫

Rd−1
ū0(x̄)φ(0, x̄) dx̄ = 0

for all φ ∈ D(Π). As usual, we require an entropy condition (cf. Lax [La’73]). For
any entropy U ∈ C2(R) we define the entropy flux

(1.3) F (v) :=
∫ v

0

U ′(s)f ′(s) ds.

Then the entropy condition reads as follows: For all convex U and φ ∈ D(Π), φ ≥ 0

(1.4)
∫

Π

{
U(ū(x))

∂φ

∂t
(x) + F (ū(x)) · ∇φ(x)

}
dx +

∫

Rd−1
U(ū0(x̄))φ(0, x̄) dx̄ ≥ 0.

A function ū ∈ L1 ∩ L∞(Π) such that (1.2) and (1.4) hold for all convex entropies
U will be called a weak entropy solution of the Cauchy problem (1.1).
We are concerned with the convergence of approximations of ū by finite volume
schemes. This question has a history going back to the 1950s. Let us point out two
modern developments: The first is Kuznetsov’s [Kz’76] approximation theory, that
was generalized by Vila [Vi’94] to first-order finite volume methods on unstructured
grids and by Cockburn, Coquel and LeFloch [CCL’94] to higher-order schemes.
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Further generalizations can be found in Cockburn and Gremaud [CG’96] and Noelle
[No’96]. The second approach is based on a uniqueness result for measure-valued
solutions due to DiPerna [Di’85], which was first applied to the analysis of numerical
schemes by Szepessy [Sz’89] and Coquel and LeFloch [CL’91, CL’93]. Cockburn,
Coquel and LeFloch [CCL’95] and Kröner and Rokyta [KR’94] applied this theory
to first-order finite volume schemes, and Kröner, Noelle and Rokyta [KNR’95] to
higher-order schemes. Noelle [No’95] extended these results to irregular grids, where
cells may become flat as h → 0, and to general E-fluxes, which include Godunov’s
flux. Both Kuznetsov’s and DiPerna’s approach rely on Kruzkov’s existence and
uniqueness result [Kr’70].
In this paper, we give a new convergence proof for finite volume schemes on ir-
regular grids. Our approach combines several results from the field of conservation
laws, namely the kinetic formulation for scalar conservation laws, a discrete entropy
inequality and the velocity averaging technique.
The kinetic formulation was introduced by Lions, Perthame and Tadmor [LPT’94].
They show that there is a one-to-one correspondence between the entropy solutions
of a scalar conservation law and solutions of a linear transport equation for which
a certain nonlinear constraint holds true. More precisely, one considers functions ρ̄
depending on space-time and an additional v ∈ R that solve the following equation

∫

Π×R

ρ̄(x, v)
{

∂Φ
∂t

(x, v) + f ′(v) · ∇Φ(x, v)
}

dv dx(1.5)

+
∫

Rd−1×R

ρ̄0(x̄, v)Φ(0, x̄, v) dv dx̄ =
∫

Π×R

∂Φ
∂v

(x, v) dm̄(x, v)

for all Φ ∈ D(Π×R). Here m̄ is a bounded non-negative measure defined on Π×R
and ρ̄0 is the initial data. This equation is supplemented with an assumption on
the structure of ρ̄. If the function χ is defined by

(1.6) χ(v|v1, v2) :=





+1 if v2 < v < v1

−1 if v1 < v < v2

0 otherwise

for all v1, v2 ∈ R, then ρ̄ should have the form

(1.7) ρ̄(x, v) = χ(v|ū(x), 0)

for some scalar function ū defined on Π (An analogous statement should hold for
the initial data). Then we have the following equivalence (shown in [LPT’94])

Theorem 1.1. (i) Let ū be a weak entropy solution of problem (1.1). Then there
is a bounded non-negative measure m̄ such that

ρ̄ := χ(·|ū, 0) ∈ L1(Π×R) ∩ L∞(Π, L1(R))

solves the transport equation (1.5) for appropriate initial data. The measure m̄ is
supported in Π× [−M̄, M̄ ], where M̄ := ‖ū‖L∞(Π). Furthermore, we have

‖m̄‖M(Π×R) ≤
1
2

∥∥ū0
∥∥2

L2(Rd−1)
.

(ii) Vice versa, let ρ̄ ∈ L1(Π × R) ∩ L∞(Π, L1(R)) and a bounded non-negative
measure m̄ be given, that solve the transport problem (1.5). Assume that ρ̄ can be
written as in (1.7) for some function ū. Then ū is a weak entropy solution of the
Cauchy problem (1.1).
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Note that by definition

(1.8)
∫

R

χ(v|v1, v2)ϕ′(v) dv =
∫ v1

v2

ϕ′(v) dv = ϕ(v1)− ϕ(v2)

for sufficiently smooth ϕ.
There is a strong similarity between (1.5) and kinetic equations as e.g. the Boltz-
mann equation. From that perspective, ρ̄ is some sort of distribution function, and
assumption (1.7) means that ρ̄ should be a ”Maxwellian” (cf. Bouchut [Bo’98]).
The second important ingredient of our proof is a discrete entropy inequality (cf.
theorem 2.5 below). Here, we estimate the rate of entropy dissipation over each
cell in terms of the local oscillation of the numerical flux function. We refer to
[KNR’95] and [No’95]. It turns out that this result fits very neatly into the kinetic
formulation stated above.
Finally, our analysis relies on so-called velocity averaging lemmata first introduced
by Golse, Lions, Perthame and Sentis [GLPS’88] (see also DiPerna, Lions and
Meyer [DLM’91] and Bézard [Be’94]. For more recent results we refer to Bouchut
[Bo’98] and the references therein). The velocity averaging technique allows to
prove the strong compactness of a sequence of approximate solutions uh of problem
(1.2)/(1.4). The principal idea is that the macroscopic quantity ū has more regu-
larity than ρ̄ whose v-average it is. The following result is a variant of theorem B
in [LPT’94] adapted to the estimates we get in section 3

Theorem 1.2. Let 1 < p ≤ 2 and 0 < γ < 1. Choose some test function ψ ∈ D(R)
and define Λ := spt ψ. Assume there are sequences (ρh), (mh) and (πh) uniformly
bounded in Lp(Rd ×Λ), L1(Λ,M(Rd)) and L1(Λ, B1,1

−γ(Rd)) respectively, such that

(1.9)
∂ρh

∂t
+ f ′ · ∇ρh =

∂mh

∂v
+ πh in D′(Rd ×R).

If now the following non-degeneracy condition holds

(1.10) sup(τ,ξ)∈Rd meas
{
v ∈ Λ: τ + f ′(v) · ξ = 0

}
= 0,

then the sequence uh =
∫
R

ρh(·, v)ψ(v) dv belongs to a compact subset of L1
loc(R

d).

Remark 1.3. Here L1(Λ, X) stands for the space of strongly measurable, integrable
functions on Λ taking values in X, where X is some Banach space (cf. [DU’77]).
M(Rd) is the space of bounded Radon measures, and B1,1

−γ(Rd) is a Besov space
(consult definition 3.3 below).

Note that the non-degeneracy condition (1.10) (which we will assume throughout)
restricts the class of admissible flux functions: f should be nonlinear. Theorem
1.2 is another instance of the fact that the nonlinearity of a problem can have a
regularizing effect on the solutions. Think of the transport operator ∂t + f ′ · ∇
as a directional derivative along the vector (1, f ′). Then the partial regularity
information contained in equation (1.9) is transformed into compactness of the
moments of ρh, that is of uh, as long as a condition on the distribution of the
directions (1, f ′) holds true. This is the heart of the matter.
Condition (1.10) or some variant of it appears in many papers dealing with ave-
raging lemmas (see e.g. [LPT’94] or [Bo’98]). It can be seen as a generalization
of an assumption formulated by Tartar [Ta’83] in his existence proof for scalar
conservation laws in one spatial dimension.
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The structure of this paper is as follows: In the next section we define a class
of finite volume schemes for the scalar conservation law (1.1) and state the main
convergence result. This theorem is proved in section 3. In the last section we
outline the proof of the velocity averaging result 1.2.

2. A class of finite volume schemes

Let I be a countable index set and (Ti), i ∈ I, a family of closed convex polygons
Ti ⊂ Rd−1. We assume that the Ti cover the whole space, and that the intersection
of two different polygons consist of common faces and vertice only. Define the mesh
parameter h as supi diam Ti. Let (Sij) be the faces of Ti, (nij) the corresponding
outer unit normal vectors and Ji their number. Then we have

Ji∑

j=1

|Sij |nij = 0.

By definition, for every Ti there is exactly one Tk with Ti ∩ Tk = Sij . We denote
that polygon by Tij . Next choose 0 =: t0 < t1 < . . . < tN−1 < tN := T and define
∆tn := tn+1 − tn. Now the family of space-time prisms Tn

i :=
[
tn, tn+1

] × Ti for
n = 0 . . . N−1 and i ∈ I gives an unstructured mesh on Π. We write Sn

i := {tn}×Ti

for faces normal to the time direction, while faces in spatial directions are called
Sn

ij . Finally, we denote the polygon neighboring Tn
i at the face Sn

ij by Tn
ij .

The finite volume approximation uh of the entropy solution ū will be piecewise
constant on the cells of an unstructured mesh with mesh parameter h. To keep the
notation simpler, we omit the index h in what follows. We write u(x) =: un

i (resp.
un

ij) for almost all x := (t, x̄) ∈ Tn
i (resp. Tn

ij). The update formula is given by

(2.1) un+1
i = un

i − |Ti|−1
Ji∑

j=1

∣∣Sn
ij

∣∣ gn
ij

for some approximate flux function gn
ij to be defined in a moment. The numbers

(2.2) u0
i :=

1
|Ti|

∫

Ti

ū0(x̄) dx̄

are taken as numerical initial data. It is well known that in this case the sequence
of approximate initial data converges strongly in L1

loc(R
d−1) to ū0.

The class of approximate fluxes, to which the convergence result given below applies,
is the class of so-called E-fluxes as introduced by Osher [Os’84]. An E-flux is a
family (gij), i ∈ I, j = 1 . . . Ji, of measurable functions gij : R2 −→ R which are
conservative, consistent and satisfy Osher’s condition E: For v1, v2 ∈ R and all
v ∈ [min(v1, v2),max(v1, v2)]

gij(v1, v2)− f(v) · nij

v1 − v2
≥ 0.

One example of an E-flux is Godunov’s flux

gij(v1, v2) :=





min
v1≤v≤v2

f(v) · nij if v1 ≤ v2

max
v1≥v≥v2

f(v) · nij if v1 > v2,
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another one is the Lax-Friedrichs flux. Every E-flux can be obtained from these
two as a convex combination (cf. Tadmor [Td’84]). We will restrict ourselves to
Godunov’s flux in all what follows. Godunov’s flux can be rewritten

(2.3) gij(v1, v2) = f(wij(v1, v2)) · nij .

Here (wij) is a family of piecewise continuous functions wij : R2 −→ R such that
whenever Sij = Skl, i 6= k, then wij(v1, v2) = wkl(v2, v1) for all v1, v2 ∈ R. Note
that wij(v, v) = v for v ∈ R. Godunov’s flux is Lipschitz-continuous and monotone,
that means non-decreasing in the first and non-increasing in the second argument.
In case of a first-order scheme, the approximate flux is now given by

(2.4) gn
ij := gij(un

i , un
ij).

It is also possible to consider higher-order schemes, but we will not do this here.
The approximate entropy flux corresponding to the entropy U is defined as

Gij(v1, v2) := F (wij(v1, v2)) · nij

for all v1, v2 ∈ R. Obviously, Gij is consistent and conservative, too. Moreover, we
have the compatibility relation

(2.5) ∂kGij(v1, v2) = U ′(wij(v1, v2))∂kgij(v1, v2).

Here ∂k stands for the partial derivative with respect to the kth argument, k = 1, 2.
We use the notation

Gn
ij := Gij(un

i , un
ij).

Update formula (2.1) can be recast in a somewhat different form. We assume that
we are given numbers ∆xn

ij > 0 such that
Ji∑

j=1

|Sij |∆xn
ij = |Ti| .

Then we define λn
ij := ∆tn/∆xn

ij and σn
ij := ∆xn

ij |Sij | |Ti|−1. Now we can write

(2.6) un+1
i =

Ji∑

j=1

σn
iju

n+1
ij , with un+1

ij := un
i − λn

ij(g
n
ij − f(un

i ) · nij).

We refer to Noelle [No’95] for a discussion of the numbers ∆n
ij .

Theorem 2.1. Let (uh) be a sequence of approximate solutions of (1.1) built from
the finite volume scheme described in the previous section. Assume that
(i) The sequence (uh) is uniformly bounded for all sufficiently small h

M := suph

∥∥uh
∥∥

L∞(Π)
< ∞

and has uniformly compact support in Π.
(ii) There exists s ∈ (

1
2 , 1

)
such that for ∆t := infn ∆tn

(2.7) lim
h→0

h2s/∆t = 0.

(iii) There exists a constant ε > 0 such that for δ = εh/
√

∆t and all i, j, n

(1 + δ)λn
ijLij ≤ 1 where Lij = ‖f ′ · nij‖L∞([−M,M ]).

(iv) The non-degeneracy condition (1.10) holds.
Then a subsequence of (uh) converges strongly in L1

loc(Π) to a weak entropy solution
of the Cauchy problem (1.1).
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Remark 2.2. We first remark that convergence can be shown not only for Godunov’s
scheme, but for the whole class of E-schemes. It is also possible to treat higher-
order schemes (see [NW’97]). Higher-order means that on each cell a polynomial
reconstruction of the data is built using the numbers un

i at a given time level. Then
the values of these reconstructions at fixed offpoints on the cell faces are used in
definition (2.4) of the approximate fluxes gn

ij . Since we need to assume that the
higher-order correction terms can be estimated from above by some power of the
mesh parameter h [NW’97], these schemes are still first-order only in the vicinity
of discontinuities.

Remark 2.3. The assumptions we made in theorem 2.1 are comparable to those in
Noelle [No’95], where DiPerna’s convergence theory is used. However, the approach
presented here relies on the nonlinearity of the flux, that is on assumption (1.10).

Remark 2.4. Uniform boundedness was shown in Cockburn, Hou and Shu [CHS’90]
and Geiben [Ge’93]. We will not reprove this here. Since we assume compactly
supported initial data, uh will live on a bounded set for all schemes with a finite
speed of propagation, e.g. for standard finite volume schemes with ∆t ≥ Ch for
some constant C not depending on h.

In the proof of theorem 2.1 the following discrete entropy inequality, which holds
for Godunov’s flux as well as for other E-schemes, plays a prominent role [No’95].

Theorem 2.5. For all convex entropies U ∈ C2(Λ) and all i, j, n

U(un+1
ij )− U(un

i ) + λn
ij

(
Gn

ij − F (un
i ) · nij

)
+ δ

σ

2
(λn

ij)
2
(
gn

ij − f(un
i ) · nij

)2 ≤ 0.

Here σ := min−M≤v≤M U ′′(v).

3. Proof of Theorem 2.1 (Convergence)

The proof consists of two steps. First we construct an approximate distribution
function ρh from the numerical solution uh and apply the transport operator to it.
We split the resulting term into three parts and give bounds for them in various
norms. In the second step we use the velocity averaging result 1.2 to show strong
compactness of the approximate solution uh and complete the proof.

3.1. Some estimates. Let us start with the definition of the distribution function.
To simplify the notation we omit the index h most of the time. Extending u by
zero we have

ρ(x, v) := χ(v|u(x), 0) =
N−1∑
n=0

∑

i∈I

χ(v|un
i , 0)1T n

i
(x)

for almost all x = (t, x̄) ∈ Rd and v ∈ R. From the Gauss-Green theorem we get

(3.1)
∂ρ

∂t
+ f ′ · ∇ρ =: R,

where

R =
∑

i∈I

χ(·|u0
i , 0) dS0

i +
∑

i∈I

χ(·|0, uN
i ) dSN

i(3.2)

+
N−1∑
n=0

∑

i∈I

{
χ(·|un+1

i , un
i ) dSn+1

i +
1
2

Ji∑

j=1

f ′ · nijχ(·|un
ij , u

n
i ) dSn

ij

}
.
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Here dSn
i is the (d−1)−dimensional Hausdorff measure restricted to Sn

i i.e.

dSn
i := 1Sn

i
dHd−1

(same for Sn
ij). Note that in our notation the contribution from some cell face Sn

ij

is counted twice: Sn
ij is the jth face of the cell Tn

i , but also the lth face of some
neighbouring cell Tn

k . We compensated that by the factor one half in (3.2). Now
we split R into three parts

R0 =
∑

i∈I

χ(·|u0
i , 0) dS0

i +
∑

i∈I

χ(·|0, uN
i ) dSN

i(3.3)

R1 =
N−1∑
n=0

∑

i∈I

{
χ(·|un+1

i , un
i ) +

Ji∑

j=1

σn
ijλ

n
ijη

n
ij

}
dSn+1

i

R2 =
N−1∑
n=0

∑

i∈I

Ji∑

j=1

ηn
ij

{
dSn

ij − σn
ijλ

n
ij dSn+1

i

}
,

where
ηn

ij = f ′ · nijχ(·|wij(un
i , un

ij), u
n
i ).

To prove the identity R = R0 + R1 + R2 we only have to check that

1
2

∑

i∈I

Ji∑

j=1

f ′ · nijχ(·|un
ij , u

n
i ) dSn

ij =
∑

i∈I

Ji∑

j=1

f ′ · nijχ(·|wij(un
i , un

ij), u
n
i )dSn

ij .

But this follows easily from the properties of χ and wij : For fixed ij, let kl be
the unique index pair defined by Sn

ij = Sn
kl and i 6= k. Then un

i = un
kl, u

n
ij = un

k

and nij = −nkl. Since wkl(v1, v2) = wij(v2, v1) and χ(·|v1, v2) = −χ(·|v2, v1) for
v1, v2 ∈ R (cf. section 2 and definition (1.6)) we have

nklχ(·|wkl(un
k , un

kl), u
n
k ) = −nijχ(·|wkl(un

ij , u
n
i ), un

ij)

= −nijχ(·|wij(un
i , un

ij), u
n
ij)

= nijχ(·|un
ij , wij(un

i , un
ij))

Using χ(·|v1, v2) + χ(·|v2, v3) = χ(·|v1, v3) a.e. for all v1, v2, v3 ∈ R we arrive at

nklχ(·|wkl(un
k , un

kl), u
n
k ) + nijχ(·|wij(un

i , un
ij), u

n
i ) = nijχ(·|un

ij , u
n
i ).

This proves our claim. Let us take a closer look at the three parts of R. We
have R0 because we extended u from Π to Rd. Note that the first summand in
(3.3) contains the numerical initial data. The second term R1 is a measure for
the entropy production in the scalar conservation law. It corresponds to the RHS
equation of (1.5). Finally R2 is the residual. It measures the numerical error. In
the following, we will write Λ := [−M, M ].

Lemma 3.1. The Rh
0 are uniformly bounded in L1(Λ,M(Rd)).

Proof. Measurability follows from the tensor product structure of Rh
0 (cf. [DU’77]),

and the boundedness is immediate from our assumptions on uh. ¤

Lemma 3.2. Rh
1 can be written as

(3.4) Rh
1 =

∂mh

∂v
in D′

for some non-negative uniformly bounded measure mh.
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Proof. We suppress the mesh index h. Clearly, to obtain (3.4) we may simply
integrate R1 in the kinetic variable. Using overbars to indicate primitives, as in

χ̄(v|v1, v2) :=
∫ v

−M

χ(s|v1, v2) ds

for v, v1, v2 ∈ Λ, we arrive at the representation

m =
N−1∑
n=0

∑

i∈I

mn+1
i dSn+1

i , where mn+1
i = χ̄(·|un+1

i , un
i ) +

Ji∑

j=1

σn
ijλ

n
ij η̄

n
ij .

Note that R1 vanishes outside the interval [−M, M ]. Therefore, mn+1
i (v) = 0 for

v ≤ −M . But if v ≥ M we have (using (1.8) and (2.3)/(2.4))

mn+1
i (v) =

∫ v

−M



χ(s|un+1

i , un
i ) +

Ji∑

j=1

σn
ijλ

n
ijf

′(s) · nijχ(s|wij(un
i , un

ij), u
n
i )



 ds

= un+1
i − un

i +
Ji∑

j=1

σn
ijλ

n
ij

(
gn

ij − f(un
i ) · nij

)

which vanishes again because of (2.6). Note that
∑Ji

i=1 σn
ij = 1. We conclude that

m is compactly supported in Rd × [−M, M ]. Now let us fix i, n for a moment. We
choose a test function U ∈ C2(R) which is convex on [−M, M ] (a convex entropy)
and apply its second derivative to mn

i . Integrating by part and using compatibility
relation (1.3) (and (1.8) again) we find

(3.5) −
∫

R

mn+1
i (v)U ′′(v) dv = U(un+1

i )− U(un
i ) +

Ji∑

j=1

σn
ijλ

n
ij

(
Gn

ij − F (un
i ) · nij

)

(Remember that mn+1
i has compact support.) This quantity can be controlled

using the discrete entropy inequality in theorem 2.5. In fact, from representation
(2.6) and Jensen’s inequality we obtain

(3.5) ≤
Ji∑

j=1

σn
ij

{
U(un+1

ij )− U(un
i ) + λn

ij

(
Gn

ij − F (un
i ) · nij

)} ≤ 0

So, if we choose a sequence of convex entropies Uk with

‖U ′′
k ‖C(R) ≤ 1 and U ′′

k → 1sptmn+1,−
i

a.e.,

where mn+1,−
i := min(0,mn+1

i ), we find from the dominated convergence theorem

∥∥∥mn+1,−
i

∥∥∥
L1(R)

= −
∫

R

mn+1
i (v)1sptmn+1,−

i
(v) dv

= − lim
k→∞

∫

R

mn+1
i (v)U ′′

k (v) dv ≤ 0
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Since this holds for all i, n we conclude that m is a non-negative measure as claimed.
To show the boundedness of m, note that if the entropy is given by U(v) := 1

2v2

‖m‖L1(Λ,M(Rd)) =
N−1∑
n=0

∑

i∈I

|Sn+1
i |

{∫

Λ

mn+1
i (v) dv

}

= −
N−1∑
n=0

∑

i∈I

|Ti|
{

U(un+1
i )− U(un

i ) +
Ji∑

j=1

σn
ijλ

n
ij

(
Gn

ij − F (un
i ) · nij

)}
.(3.6)

But for all index pairs such that Sij = Skl, i 6= k we have

σn
ijλ

n
ij |Ti|Gn

ij = ∆tn |Sij |Gn
ij = −∆tn |Skl|Gn

kl = −σn
klλ

n
kl |Tk|Gn

kl

because the approximate entropy flux is conservative and only the outer unit normal
vectors nij change sign when going from the index pair ij to kl. Hence

∑

i∈I

Ji∑

j=1

σn
ijλ

n
ij |Ti|Gn

ij = 0.

Furthermore, we have

(3.7)
Ji∑

j=1

σn
ijλ

n
ijnij = ∆tn |Ti|−1

Ji∑

j=1

|Sij |nij = 0.

Therefore the j-sum in (3.6) drops out if we sum over all cells. The remaining
U(un

i )-terms however appear twice with alternating signs and therefore cancel out,
too, except for those with n = 0 and n = N . Since the entropy U is non-negative
we finally arrive at

(3.8) ‖m‖L1(Λ,M(Rd)) ≤
∑

i∈I

|Ti|U(u0
i ) ≤

1
2

∥∥ū0
∥∥2

L2(Rd−1)
≤ C < ∞.

(We used (2.2) and Jensen’s inequality.) The lemma is proved. ¤

Definition 3.3. Let ϕ0 ∈ D(Rd) be a non-negative radially symmetric test func-
tion which equals 1 on the ball B(0, 1) and vanishes outside B(0, 2). Define

ϕ1(ξ) := ϕ0(2−1ξ)− ϕ0(ξ) and ϕj(ξ) := ϕ1(2−j+1ξ)

for ξ ∈ Rd, j ≥ 2. Introduce the dyadic operators Sj : Φ 7→ F−1{ϕjΦ̂}. Then
the Besov space Bp,q

s (Rd) with s ∈ R and 1 ≤ p, q ≤ ∞ contains all tempered
distributions on Rd such that the norm

‖Φ‖Bp,q
s (Rd) :=

( ∞∑

j=0

2jsq‖SjΦ‖q
Lp(Rd)

)1/q

(modified if q = ∞) stays finite (for more details consult Triebel [Tr’83]).

Lemma 3.4. Let γ = (1 + s)/2. Then

lim
h→0

∥∥Rh
2

∥∥
L1(Λ,B1,1

−γ(Rd))
= 0.

Remark 3.5. Note that the Besov space B1,1
−γ(Rd) can be identified with the topo-

logical dual of the closure of D(Rn) in Cγ(Rd) (the space of Hölder continuous
functions). A proof of this result can be found in [Tr’78] .
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Proof. Again we suppress the index h. First we show that for all i, j, n

(3.9)
∥∥dSn

ij − σn
ijλ

n
ijdSn+1

i

∥∥
B1,1
−γ(Rd)

≤ Cσn
ijλ

n
ij

∣∣Sn+1
i

∣∣ hγ .

We apply a test function φ ∈ Cγ(Rd) and obtain by definition of σn
ij , λ

n
ij∫

Rd

φ(x)
{
dSn

ij(x)− σn
ijλ

n
ijdSn+1

i (x)
} ≤ σn

ijλ
n
ij

∣∣Sn+1
i

∣∣ (
φn

ij − φn+1
i

)

with φn+1
i and φn

ij the averages of φ over the cell faces Sn+1
i and Sn

ij . Then
∣∣φn

ij − φn+1
i

∣∣ ≤
∣∣∣φ̃n

ij − φ̃n+1
i

∣∣∣ +
∣∣Sn

ij

∣∣−1
∫

Sn
ij

∣∣∣φ− φ̃n
ij

∣∣∣ dHd−1

+
∣∣Sn+1

i

∣∣−1
∫

Sn+1
i

∣∣∣φ− φ̃n+1
i

∣∣∣ dHd−1 ≤ Chγ ‖φ‖Cγ(Rd) ,

where φ̃n+1
i resp. φ̃n

ij is the evaluation of φ in the center of mass of Sn
i resp. of Sn

ij .
Next, we must control the L1-norm of ηn

ij . For an arbitrary U ∈ C1(R) we have

(3.10)
∫

R

ηn
ij(v)U ′(v) dv = Gn

ij − F (un
i ) · nij =

∫ un
ij

un
i

∂2Gij(un
i , v) dv.

The first identity follows as above from the compatibility relation (1.3) and (1.8)
(consult also section 2). For the second we used the consistency and Lipschitz-
continuity of the approximate entropy flux Gij . To proceed we now replace the
derivative of Gij by (2.5). Since Godunov’s flux is non-increasing in the second
argument, the derivative of gij has a sign and we can estimate

|(3.10)| ≤
∫ un

ij

un
i

∣∣U ′(wij(un
i , v)) ∂2gij(un

i , v) dv
∣∣

≤ ‖U ′‖C(R)

∣∣∣∣∣
∫ un

ij

un
i

∂2gij(un
i , v) dv

∣∣∣∣∣ = ‖U ′‖C(R)

∣∣gn
ij − f(un

i ) · nij

∣∣

using the consistency of gij and (2.4). Note that we do not assume convexity for
U . Since the measurability of ηn

ij is obvious we learn that for all indices i, j, n

‖ηn
ij‖L1(R) ≤

∣∣gn
ij − f(un

i ) · nij

∣∣ .

Now the norm of R2 can be bounded by

‖R2‖L1(Λ,B1,1
−γ(Rd)) ≤ Chγ

N−1∑
n=0

∑

i∈I

Ji∑

j=1

σn
ijλ

n
ij |Sn+1

i ||gn
ij − f(un

i ) · nij |

and further, using the Cauchy-Schwarz inequality, by

Chγ

√√√√
N−1∑
n=0

∑

i∈I

|Ti|
Ji∑

j=1

σn
ijχ

n
i

√√√√
N−1∑
n=0

∑

i∈I

|Ti|
Ji∑

j=1

σn
ij(λ

n
ij)2

(
gn

ij − f(un
i ) · nij

)2
,

where χn
i is the characteristic function of the set of indices i, n for which un

i is
non-vanishing. Note that by assumption, the support of the numerical solution is
uniformly bounded. These terms can be handled easily: First we have

Chγ

√√√√
N−1∑
n=0

∑

i∈I

|Ti|
Ji∑

j=1

σn
ijχ

n
i ≤ C

(
h2γ

∆t

)1/2

.
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Moreover, from the discrete entropy inequality (2.5) with U(v) := 1
2v2 we find

Ji∑

j=1

σn
ij(λ

n
ij)

2
(
gn

ij − f(un
i ) · nij

)2

≤ −2
δ

Ji∑

j=1

σn
ij

{
U(un+1

ij )− U(un
i ) + λn

ij

(
Gn

ij − F (un
i ) · nij

)}
.

By definition,
∑Ji

j=1 σn
ij = 1 for all i, n. Therefore (cf. (2.6))

−
Ji∑

j=1

σn
ijU(un+1

ij ) ≤ U




Ji∑

j=1

un+1
ij


 = U(un+1

i )

which is Jensen’s inequality. We proceed as in the proof of lemma 3.2 (cf. (3.6))
and arrive at

∥∥Rh
2

∥∥
L1(Λ,B1,1

−γ(Rd))
≤ C

(
h2γ

∆t

1
δ

)1/2

‖ū0‖L2(Rd−1).

Note that 1/δ explodes as h → 0. But
(

h2γ

∆t

1
δ

)1/2

=
(

h4γ−2

ε2∆t

)1/4

=
(

h2s

ε2∆t

)1/4

for γ = (1 + s)/2, so finally we obtain

∥∥Rh
2

∥∥
L1(Λ,B1,1

−γ(Rd))
≤ C

(
h2s

∆t

)1/4

.

Using assumption (2.7) we are finished. ¤

Remark 3.6. We stop here for a moment to summarize what we have shown so far.
Since (ρh) is uniformly bounded in L∞ a subsequence converges weak* to some
function ρ̄. Associated to (ρh) there is a sequence (Rh) as defined above. Given
φ ∈ D(Π) and U ∈ D(R) we have

−
∫

Π×R

ρh(x, v)U ′(v)
{

∂φ

∂t
(x) + f ′(v) · ∇φ(x)

}
dv dx =

〈
Rh, φ⊗ U ′〉 ,

where

(3.11)
〈
Rh, φ⊗ U ′〉 =

〈
Rh

0 , φ⊗ U ′〉− 〈
mh, φ⊗ U ′′〉 +

〈
Rh

2 , φ⊗ U ′〉 .

The first term on the RHS goes to∫

Rd−1×R

ρ̄0(x̄, v)U ′(v)φ(0, x̄) dv dx̄, where ρ̄0 := χ(·|ū0, 0).

For the second, we have shown in lemma 3.2 that (mh) is uniformly bounded and
non-negative in the sense of measures. Extracting another subsequence if necessary
we have mh → m̄ weak* and m̄ ≥ 0. The third term finally goes to zero in
distributional sense (even in a somewhat stronger topology) as shown in lemma
3.4. Therefore the pair (ρ̄, m̄) solves the transport equation (1.5). (We refer also to
[LPT’94] for a similar calculation.) What remains to be done is to prove that the
nonlinear constraint (1.7) holds true for ρ̄. For this we use the velocity averaging
technique and show that (some subsequence of) (uh) converges strongly in L1

loc.
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3.2. End of Proof. To apply theorem 1.2, we choose a test function ψ which
equals 1 on the interval [−M, M ], and define πh := Rh

0 + Rh
2 . Beacause of lemmas

3.1 and 3.4, and since the space of measure is continuously embedded into B1,1
−γ(Rd)

(cf. [Tr’83]), πh satisfies the assumptions of theorem 1.2. Moreover

‖ρh‖Lp(Rd×Λ) = ‖uh‖1/p

L1(Rd)

which is uniformly bounded, too. But then theorem 1.2 shows that uh belongs to
a compact subset of L1

loc(R
d). Since∫

R

|ρh1(·, v)− ρh2(·, v)| dv =
∫

R

|χ(v|uh1 , uh2)| dv = |uh1 − uh2 |

the approximate distribution function ρh converges strongly in L1
loc(R

d×R) (up to
a subsequence). Hence, the nonlinear constraint (1.7) holds for the limit ρ̄. From
theorem 1.1 we conclude that ū is a weak entropy solution.

Remark 3.7. One classical approach to proving strong compactness for sequences
of approximate solutions consists in establishing a uniform bound on the total
variation and then making use of Helly’s theorem. For the more modern approach
relying on measure-valued solutions as introduced by DiPerna no such control is
necessary. Once one has shown consistency with the entropy condition, the L1-
contraction ensures compactness. The result presented in this paper lies somewhere
in between these two cases. In fact, we do need some control over the residual,
but this bound is comparatively easy to obtain, since we can choose a very weak
topology.

4. Proof of Theorem 1.2 (Velocity Averaging)

For completeness, we would like to give an outline of proof for theorem 1.2. We will
skip most details since the arguments are technically involved and can be found in
other papers on velocity averaging.
Let us fix some test function ψ ∈ D(R) and denote the RHS of equation (1.9) by
Rh. Then we can recover ρh from Rh (formally) by inverting the transport operator

(4.1) ρh(·, v) = F−1

{
R̂h(ξ, v)

i(τ + f ′(v) · ξ̄)

}
for all v ∈ R, ξ = (τ, ξ̄) ∈ Rd

(the Fouriertransform is taken with respect to space-time only). But now we face
the problem that the symbol −i(τ + f ′(v) · ξ̄)−1 becomes unbounded. We will need
a splitting. Let ϕ ∈ D(R) be a non-negative even test function, vanishing outside
the interval [−2, 2], with ϕ = 1 on [−1, 1]. Then we define two operators

(4.2) Aλ : Φ 7−→ F−1

{∫

R

ϕ

(
λ−1 τ + f ′(v) · ξ̄

|ξ|
)

Φ̂(ξ, v)ψ(v) dv

}

for some parameter λ ∈ (0,∞), and

(4.3) Bλ : Φ 7−→ F−1

{∫

R

(
1− ϕ

) (
λ−1 τ + f ′(v) · ξ̄

|ξ|
)

Φ̂(ξ, v)
i(τ + f ′(v) · ξ̄)ψ(v) dv

}
.

Note that the inverse symbol −i(τ + f ′(v) · ξ̄)−1 appears in (4.3), but because of
the cut-off function ϕ it is effective only in the region

(4.4)
{

ξ = (τ, ξ̄) ∈ Rd :
∣∣τ + f ′(v) · ξ̄∣∣ ≥ λ|ξ|

}
,
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that means outside a neighborhood around the singular set. Therefore it is reason-
able to expect that Bλ has nice properties. Let Λ := sptψ. Then we have

Lemma 4.1. There exists a constant C not depending on λ ∈ (0,∞) such that

(4.5) ‖Aλ(Φ)‖Lp(Rd) ≤ C
(
η(2λ)

)1/p′‖Φ‖Lp(Rd×Λ)

for all Φ ∈ Lp(Rd × Λ), 1 < p ≤ 2. The function η is given by

η(λ) := sup(τ,ξ̄)∈Rd meas
{
v ∈ Λ:

∣∣τ + f ′(v) · ξ̄
∣∣ ≤ λ|ξ|}.

Remark 4.2. We assumed that the non-degeneracy condition (1.10) holds. It is
easy to show that in that case η(λ) → 0 as λ → 0. As a consequence, the function
Aλ(Φ) for suitable Φ becomes small in Lp-norm if we let λ go to zero.

Definition 4.3. The generalized (fractional) Sobolev space Hp
s (Rd) is defined for

1 ≤ q ≤ ∞, s ∈ R as the space of all tempered distributions such that the norm

‖Φ‖Hp
s (Rd) := ‖(Id−∆)s/2Φ‖Lp(Rd)

stays finite. For more details consult [Tr’83].

Lemma 4.4. Let 1 < p ≤ 2, λ ∈ (0,∞). Then we have for all Φ ∈ Lp(Rd × Λ)

(4.6) ‖Bλ(Φ)‖Hp
1 (Rd) ≤ Cλ‖Φ‖Lp(Rd×Λ).

Cλ grows as λ → 0. The same estimate holds for the operator B′
λ : Φ 7→ Bλ

(
∂Φ
∂v

)
.

These two lemmas are shown as in [DLM’91] (compare (4.5)/(4.6) with the esti-
mates (22)/(23) in that paper) with the modifications explained in the appendix of
[LPT’94]. Note that the operators Bλ, B′

λ are smoothing: We gain one derivative.
We will now prove theorem 1.2 from these two results. First we note that the dyadic
operators Sj playing a role in the definition 3.3 of the Besov spaces commute both
with Bλ and B′

λ. We may therefore rewrite inequality (4.6) using Besov norms (and
Minkowski’s inequality) with (Id−∆)1/2Bλ(Φ) instead of Bλ(Φ) on the LHS. But
the operator (Id−∆x)1/2 defines an isomorphism (a lifting) between Besov spaces
of different regularity (cf. Triebel [Tr’83]). We conclude that

(4.7) ‖Bλ(Φ)‖Bp,q
1+s(Rd) ≤ Cλ‖Φ‖L1(Λ,Bp,q

s (Rd))

for all 1 < p ≤ 2, 1 ≤ q ≤ ∞ and s ∈ R. The same holds for B′
λ. Now for some

λ ∈ (0,∞) we have a splitting

(4.8) uh = Aλ(ρh) +
{−B′

λ(mh) + Bλ(πh)
}
.

Denote by uλ,h
0 the first term on the RHS of (4.8), and by uλ,h

1 the terms in brackets.
As already pointed out in remark 4.2

(4.9) uλ,h
0 can be made arbitrarily small in L1

loc(R
d) uniformly

with respect to h by choosing λ small enough.

Moreover we have

(4.10) uλ,h
1 is strongly compact in L1

loc(R
d) for all λ.

To see this, we choose a p near 1 such that the number γ′ := γ + d/p′ is less than
1 (which is always possible since γ < 1) and use the continuous embedding

(4.11) M(Rd) ↪→ B1,1
−γ(Rd) ↪→ B1,∞

−γ′ (R
d)
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(cf. [Tr’83]) to show that

mh, πh are uniformly bounded in L1(Λ, B1,∞
−γ′ (R

d)).

We conclude from (4.7) that uλ,h
1 is uniformly bounded in some Besov space with

strictly positive regularity, and therefore relatively compact in L1
loc(R). But then

the same is true for the sequence (uh). This proves our claim.
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[Vi’94] J.Vila, Convergence and error estimates in finite volume schemes for general multi-

dimensional scalar conservation laws: I Explicit monotone schemes, Math. Modelling
Numer. Analysis 28 (1994), pp. 267-295.

Institut für angewandte Mathematik, Wegelerstrasse 10, 53115 Bonn, Germany
E-mail address: noelle@iam.uni-bonn.de

E-mail address: mwest@iam.uni-bonn.de


