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Abstract. In this paper we consider the thin film approximation of a one-d
scalar conservation law with strictly convex flux. We prove that the sequence
of approximate solutions converges to the unique Kružkov solution.

1. Introduction

The vanishing viscosity method plays a prominent role in the theory of scalar
conservation laws: To study the properties of solutions of the equation, one first
adds a small amount of viscosity and considers

uε
t + f(uε)x = εuε

xx for ε > 0 , (1.1)

and then sends ε to zero. If the limit u ≡ limε→0 uε exists, and if the convergence
is strong enough to give sense to the nonlinearity f(u), then u is a solution of ut+
f(u)x = 0. It is well-known that solutions produced by this method are exactly
the entropy solutions of the scalar conservation law, which are characterized by
a family of inequalities: for all convex entropy–entropy flux pairs (η, q)

η(u)t + q(u)x ≤ 0 in D′ . (1.2)

For bounded initial data, entropy solutions exist and are unique, see Kružkov [7].

In this paper, we consider a different approximation for a particular flux func-
tion f(u). Instead of using the second order nondegenerate differential operator
εuε

xx, we use a fourth order degenerate one. This operator is intensely studied
in the theory of thin films moving on a flat surface, where it is derived from the
incompressible Navier-Stokes equation under the assumption of small film height
and a slip condition on the substrate, see [1]. We will consider the problem

uε
t +

{
(uε)n(1 + εuε

xxx)
}

x
= 0 for ε > 0 , (1.3)

and then study the limit ε → 0. Equation (1.3) models the dynamics of a thin
film of fluid on a vertical plane under the influence of gravity, see [1] and [5]. It
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has the property that the film height uε stays nonnegative for positive times if the
initial data is. Although physical reasoning allows n in the range (1, 3], in this
paper we only consider n ∈ [3

2
, 2). Using similar arguments, it is in fact possible

to extend the result to n ∈ (1, 3
2
), see Remark 2.3, but we do not know how to

handle the case n ∈ [2, 3] which poses additional difficulties. We will prove that,
as ε → 0, the functions uε converge to the entropy solution of the underlying
scalar conservation law. This is in accordance with numerical experiments in [1]
which also suggest that for nonconvex flux (modelling a film under the influence of
gravity and Marangoni stress) entropy violating shocks may occur. Higher-order
viscous approximations of scalar conservation laws have been studied in [9].

Compared to (1.1), the approximation (1.3) has a number of peculiarities,
which makes the problem nontrivial. The main obstacle is the lack of entropies.
Recall that for (1.1) any convex function η may serve as an entropy, since we can
multiply the equation by η′(uε) and then transform the right-hand side into

εη′(uε)uε
xx = εη(uε)xx − εη′′(uε)

(
uε

x

)2
.

In distributional sense, this quantity converges to a nonpositive Radon measure
as ε → 0, thereby yielding the entropy inequality (1.2). For (1.3), this is no
longer true. In fact, only the one-parameter family

ηp(u) ≡ 1
p
up for p ∈ [2− n, 3− n] (1.4)

gives a right-hand side which in the limit ε → 0 converges to something non-
positive. The lack of entropies results in a lack of Lρ–stability (integrability) for
solutions uε of (1.3). In fact, while a maximum principle holds for the vanish-
ing viscosity method, the thin film approximation gives much less. For n close
to 2 the entropy inequality (1.2) with ηp for p = 3 − n gives Lρ–stability for ρ
only slightly bigger than 1. This is not even sufficient to properly define the flux
(uε)n. So the first step in our investigation will be to establish sufficiently strong
Lρ–bounds for uε.

The second difficulty then is to establish the entropy condition (1.2) for the
limit function u ≡ limε→0 uε for all convex entropy–entropy flux pairs (η, q).
Clearly, this property does not follow automatically from the approximation
which allows only for the entropies ηp defined in (1.4). We will use an argument
similar to that in [3] in which we proved that in the case of a strictly convex flux
an entropy inequality for one single strictly convex entropy is sufficient to enforce
u to be an entropy solution of the problem.

2. Main Result

The existence of solutions to the thin-film equation (1.3) and their regularity is
a nontrivial issue. The usual strategy is to consider first a suitable approximation
of (1.3) for which solutions exist. Some of the properties of those approximate
solutions can then be passed to the limit, see [5] and [6]. We do not want to delve
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into these subtleties since they are not in the focus of our work. Instead we simply
assume the existence of ”reasonable” solutions which have all the properties we
need.

Definition 2.1. Fix numbers n ∈ [3
2
, 2) and ε > 0.

A function u ∈ L1
loc(R

+
0 × R), u ≥ 0 is called admissible solution of

ut +
{

un(1 + εuxxx)
}

x
= 0 (2.1)

with initial data ū ≡ u(0, ·) if the following holds

• Initial Data
We have ū ≥ 0. Then, with p ≡ 3− n,

∫

R
ū dx = 1 and 1

p

∫

R
ūp dx = 1 . (2.2)

• Distributional Solution
Let f(u) ≡ un be the flux. Then

ut + f(u)x + ε
{

1
n+1

(
un+1

)
xxx

− 3n
2

(
un−1u2

x

)
x

+ n(n−1)
2

un−2u3
x

}
x

= 0 in D′(R+
0 × R) . (2.3)

In particular, we have conservation of mass
∫

R
u(t) dx =

∫

R
ū dx

(2.2)
= 1 for a.a. t ∈ R+

0 . (2.4)

• Entropy Equation
For p ≡ 3− n define a convex entropy-entropy flux pair

η(u) ≡ 1
p
up and q(u) ≡ n

2
u2 .

Then, with µε ≡ ε(p− 1) uu2
xx,

η(u)t + q(u)x + ε
{

1
3

(
u3

)
xxx

− p+5
2

(
uu2

x

)
x

+ 5p+1
6

u3
x

}
x

= −µε in D′(R+
0 × R) . (2.5)

In particular, we have dissipation of entropy

∫

R
η
(
u(T )

)
dx + ε(p− 1)

∫ T

0

∫

R
uu2

xx dx dt ≤
∫

R
η(ū) dx

(2.2)
= 1

for a.a. T ∈ R+
0 . (2.6)
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• Div-Curl Identity
If h ∈ L∞(R+

0 × R) is such that

hx = u , (2.7a)

ht = −f(u)

−ε
{

1
n+1

(
un+1

)
xxx

− 3n
2

(
un−1u2

x

)
x

+ n(n−1)
2

un−2u3
x

}
, (2.7b)

then we have(
η(u)h

)
t
+

(
q(u)h

)
x

+ε
{

1
3

(
u3h

)
xxx

− p+5
2

(
uu2

xh
)

x
+ 5p+1

6
u3

xh− 1
2

(
u4

)
xx

+ p+7
2

u2u2
x

}
x

=
(

− η(u)f(u) + uq(u)
)

−µε h

+ε
{

p−1
4p

(
u4

)
xxx

− p2+8p−9
2p

(
u2u2

x

)
x

+ 4p2+5p−9
3p

uu3
x

}

in D′(R+
0 × R) . (2.8)

In particular, we have the following integral identity
∫

R
η
(
u(T )

)
h(T ) dx−

∫

R
η(ū)h(0) dx

=

∫ T

0

∫

R

(
− η(u)f(u) + uq(u)

)
dx dt− ε(p− 1)

∫ T

0

∫

R
uu2

xx h dx dt

+ ε4p2+5p−9
3p

∫ T

0

∫

R
uu3

x dx dt

for a.a. T ∈ R+
0 . (2.9)

Remark 2.1. The identities in (2.3), (2.5) and (2.8) follow formally from straight-
forward manipulations of Eq. (2.1). From the entropy equation (2.6) we then
obtain an Lp(R)–bound of u(t) for p = 3−n > 1. The bound on the entropy dis-
sipation in (2.6) will be used in Section 4.1 in numerous interpolation estimates,
which prove that all terms appearing above are indeed well-defined. Note also
that assumption (2.2) can always be satisfied by suitably rescaling ū and x.

Remark 2.2. A function h with (2.7a)–(2.7b) exists since (2.3) implies that the
second derivatives of h commute. By mass conservation we may then conclude
that for a.a. t ∈ R+

0 , h(t, ·) is continuous and

lim
x→∞

h(t, x)− lim
x→−∞

h(t, x) = 1 .

Since f(u) + ε
{ · · ·} in (2.3) vanishes at infinity, Eq. (2.7b) gives

lim
x→∞

h(t, x) = lim
x→∞

h(0, x) for all t ∈ [0, T ] ,

so we may normalize h such that −1 ≤ h ≤ 0.
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We now state our main result.

Theorem 2.1. Let û ∈ L3(R+
0 × R) be the unique entropy solution of the con-

servation law ût + f(û)x = 0 with initial data ū. More precisely, assume that

η(û)t + q(û)x ≤ 0 in D′(R+ × R) (2.10)

for all convex entropy-entropy flux pairs (η, q), and

ess lim
t→0

∫

R
|û(t)− ū|p dx = 0 . (2.11)

Then for any δ > 0 and any compact K ⊂ R+
0 × R, there exists an ε0 > 0 such

that for all 0 < ε < ε0 and all solutions of ut +
{
un(1 + εuxxx)

}
x

= 0 with initial
data ū in the sense of Definition 2.1, we have

∫∫

K

|u− û|3 dx dt ≤ δ .

Remark 2.3. A similar result can be proved by assuming the entropy equation
(2.5) for an entropy ηp as in (1.4) with p ≤ 1 + n

3
. This also allows to consider

the case with n ∈ (
1, 3

2

)
, but we will not pursue this idea here.

3. Preliminaries

We need some preparations.

3.1. Young measures. In the proof of Theorem 2.1 we will use Young measures
to describe the possible limits of nonlinear compositions of sequences {uν}ν which
are bounded in some Lρ–space with ρ < ∞. We therefore need generalized Young
measures, introduced by DiPerna & Majda [4], which can handle both oscillations
and concentrations.

Definition 3.1. Let C(R+
0 ) be the usual space of continuous functions on R+

0

equipped with the sup-norm. For ρ ∈ [0,∞) we define

Cρ(R+
0 ) ≡

{
g ∈ C(R+

0 )
∣∣∣ g∗ ≡ lim

s→∞
g(s)

(1+|s|)ρ exists
}

.

Let BC(R+
0 ) be the space of bounded continuous functions.

Note that C0(R+
0 ) is a completely regular subalgebra of BC(R+

0 ), i.e., it is
closed with respect to the sup-norm, contains constants, and separates points.
Associated with any such subalgebra is a compactification of R+

0 . For C0(R+
0 )

we obtain the one-point compactification of R+
0 denoted by γR+

0 . This γR+
0 is

a compact completely regular Hausdorff space, and the subalgebra C0(R+
0 ) is

isomorphic with C(γR+
0 ). The continuous linear functionals of C0(R+

0 ) can thus
be identified with measures in M(γR+

0 ). In fact, they admit a decomposition
into a measure in M(R+

0 ) and a Dirac mass at ∞. We refer to [4, 8].
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Proposition 3.1. For Ω ⊂ QT a bounded Borel set, let {uν}ν be a sequence of
nonnegative functions which are uniformly bounded in Lρ(Ω) for some ρ ∈ [1,∞).
Then there exist a pair (µ, σcon) ∈ L∞w

(
Ω; Prob(R+

0 )
) ×M+(Ω̄) (i.e., with µ a

weakly measurable mapping from Ω into the space of probability measures on R+
0 )

and a subsequence (denoted again by {uν}ν), such that for all g ∈ Cρ(R+
0 )

g(uν)
∗−⇀ 〈g〉+ g∗σcon in M(Ω̄) ,

with function 〈g〉 ∈ L1(Ω) defined by

〈g〉z ≡
∫

R+
0

g(s) µz(ds) for all z ∈ Ω .

The measure σcon captures the concentrations in the limit.

Proof. We adapt the proof of Theorem 3.2.13 in [8] to show that for any {uν}ν as
above, there exist a pair (σ, µ̂) ∈ M+(Ω̄)× L∞w

(
Ω̄, σ; Prob(γR+

0 )
)

(i.e., with µ̂ a
weakly σ-measurable mapping from Ω̄ into the space of probability measures on
γR+

0 ) and a subsequence (denoted again by {uν}ν), such that for all g ∈ Cρ(R+
0 )

g(uν)
∗−⇀ ĝσ in M(Ω̄) ,

with function ĝ ∈ L∞(Ω̄, σ) given by

ĝ(z) ≡
∫

γR+
0

g0(s) µ̂z(ds) for σ-a.a. z ∈ Ω̄ .

Here, g0(s) ≡ g(s)
1+|s|ρ if s ∈ R+

0 and g0(∞) ≡ g∗. In the second step we decompose

the limit ĝσ into an absolutely continuous part, and a part which captures possible
concentrations in the sequence {g(uν)}ν . We first note that the measure

σ̂(dz) ≡
( ∫

R+
0

µ̂z(ds)

)
σ(dz)

is absolutely continuous with respect to the Lebesgue measure, and that indeed∫
R+

0
µ̂z(ds) > 0 for a.a. z ∈ Ω, see Theorem 3.2.15 in [8]. Thus we can define a

new family {µz}z∈Ω of measures by putting

µz(ds) ≡
( ∫

R+
0

µ̂z(ds)

1 + |s|ρ
)−1 µ̂z|R+

0
(ds)

1 + |s|ρ for a.a. z ∈ Ω .

This is the µ of the proposition, and then σcon ≡ µ̂
({∞}) σ. ¤

3.2. Commutator. We assume a strictly convex flux f .

Definition 3.2. Let µ ∈ Prob(R+
0 ), and

〈g〉 ≡
∫

g(s) dµ(s) for g ∈ L1(R+
0 , µ) .
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For any convex entropy η with η(0) = 0 and η(∞) = ∞, and corresponding
entropy flux q, we define the bilinear form

B(η, f) ≡ 〈
uq(u)− η(u)f(u)

〉− 〈
u
〉〈

q(u)
〉

+
〈
η(u)

〉〈
f(u)

〉
.

Note that B(η, f) has the structure of a commutator.

Then we have the following result

Lemma 3.2. Let η be a strictly convex entropy as in Definition 3.2, and define
the bilinear form B(η, f). Then

(i) B(η, f) ≥ 0 ;
(ii) B(η, f) = 0 if and only if µ = δc for some c ∈ R+

0 , i.e., the probability
measure µ is concentrated in one point.

Proof. Since η is strictly convex, the second distributional derivative is a positive
measure on R+

0 . Thus we have the following representation

η(u) =

∫

R+
0

(u− s)+ η′′(ds) for all u ∈ R+
0 .

Since B is linear in η, we can write

B(η, f) =

∫

R+
0

B(ηs, f) η′′(ds) with ηs(u) ≡ (u− s)+ . (3.1)

The corresponding entropy flux qs is given by

qs(u) ≡ (
f(u)− f(s)

)
H(u− s) with H the Heaviside function .

Then some straightforward computation gives

B(ηs, f) =

∫

{u<s}
f(u)− f(s)− f ′(s)(u− s) dµ ·

∫

{u>s}
u− s dµ

−
∫

{u>s}
f(u)− f(s)− f ′(s)(u− s) dµ ·

∫

{u<s}
u− s dµ .

Convexity of f implies f(u) − f(s) − f ′(s)(u − s) ≥ 0 for all u, s ∈ R+
0 . Hence

B(ηs, f) ≥ 0 for all s, and so (i) follows with (3.1).
The strict convexity of f implies that B(ηs, f) > 0 if and only if

µ
(
[0, s)

) · µ(
(s,∞)

)
> 0 .

Thus B(η, f) = 0 if and only if B(ηs, f) = 0 for η′′-a.a. s ∈ R+
0 , which can happen

if and only if µ
(
[0, s)

)
= 0 or µ

(
(s,∞)

)
= 0. But

(
µ
(
[0, s0)

)
= 0

)
=⇒

(
µ
(
[0, s)

)
= 0 for all s ≤ s0

)
,

with a similar statement for µ
(
(s,∞)

)
. We conclude that B(η, f) = 0 if and only

if there exists a c ∈ R+
0 with µ

({c}) = 1. This is (ii). ¤
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4. Proof of Theorem 2.1: Convergence

We use an indirect argument. Assume indeed the theorem is false. Then there
exist δ > 0, a compact K ⊂ R+

0 ×R, a sequence εν → 0 and a sequence {uν}ν of
admissible solutions of ut +

{
un(1 + εuxxx)

}
x

= 0 in the sense of Definition 2.1
such that ∫∫

K

|uν − û|3 dx dt ≥ δ .

We will show that a subsequence of {uν}ν converges in L3
loc(R

+
0 ×R) to the unique

entropy solution û, which gives a contradiction. We split the proof into two parts.
In this section we establish strong convergence for a subsequence of {uν}ν ; in the
next section we prove that conditions (2.10) and (2.11) are satisfied for the limit.

We proceed in several steps.

• In Section 4.1 we establish several interpolation estimates.
• In Section 4.2 we provide uniform higher integrability for {uν}ν .
• In Section 4.3 we prove that a subsequence of {uν}ν converges to a

measure-valued solution of ût + f(û)x = 0.
• In Section 4.4 we prove that convergence is actually strong. Then we can

pass to the limits in the nonlinear terms.

For convenience, we will use the notation A . B to indicate the existence of a
universal constant C > 0 such that A ≤ CB.

4.1. Interpolation. We start with some preparatory estimates.

Lemma 4.1. For a function v ≥ 0 and r ∈ [1, 7], it holds

∫

R
vr dx .

(∫

R
v dx

)r+1
2

(∫

R
vv2

xx dx

)r−1
6

, (4.1)

∫

R
v

r−3
4 |v3

x| dx .
(∫

R
v dx

)r+1
8

(∫

R
vv2

xx dx

)r+17
24

, (4.2)

∫

R
v

r−1
2 v2

x dx .
(∫

R
v dx

)r+1
4

(∫

R
vv2

xx dx

)r+5
12

. (4.3)

Proof. We first derive two preliminary estimates. We have
∫

R
v

r−3
4 |v3

x| dx = 4
r+1

∫

R

(
v

r+1
4

)
x
|vx|vx dx = − 8

r+1

∫

R
v

r+1
4 |vx|vxx dx ,

after integration by parts. Then Hölder inequality gives

∫

R
v

r−3
4 |v3

x| dx .
(∫

R
vr dx

)1/6(∫

R
v

r−3
4 |v3

x| dx

)1/3(∫

R
vv2

xx dx

)1/2

,
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hence ∫

R
v

r−3
4 |v3

x| dx .
(∫

R
vr dx

)1/4 (∫

R
vv2

xx dx

)3/4

. (4.4)

Using again Hölder inequality we obtain
∫

R
v

r−1
2 v2

x dx ≤
(∫

R
vr dx

)1/3(∫

R
v

r−3
4 |v3

x| dx

)2/3

.
(∫

R
vr dx

)1/2(∫

R
vv2

xx dx

)1/2

. (4.5)

Now we prove (4.1). We start with the following pointwise estimate

(
sup v

)2 ≤ 2

∫

R
v|vx| dx .

(∫

R
v dx

)2/3 (∫

R
v|v3

x| dx

)1/3

,

which implies
∫

R
v7 dx ≤ (

sup v
)6

∫

R
v dx .

(∫

R
v dx

)3 ∫

R
v|v3

x| dx . (4.6)

Using (4.4) in (4.6) (with r = 7) and arranging terms give
∫

R
v7 dx .

(∫

R
v dx

)4 ∫

R
vv2

xx dx . (4.7)

Now we use Hölder inequality once again to estimate for r ∈ [1, 7]
∫

R
vr dx ≤

(∫

R
v dx

)7−r
6

(∫

R
v7 dx

)r−1
6

. (4.8)

Then (4.1) follows from (4.7) and (4.8). Finally, (4.1) implies the estimates (4.2)
and (4.3) because of (4.4) and (4.5). ¤
Lemma 4.2. Let u be an admissible solution of (2.1). Then

ε

∫∫

R+
0 ×R

u|u3
x| dx dt . 1 .

Proof. For r = 7 the estimate (4.2) in Lemma 4.1 simplifies to∫

R
v|v3

x| dx .
∫

R
v dx

∫

R
vv2

xx dx .

We put v ≡ u(t, ·) and integrate in time, using that
∫
R u(t) dx = 1 for a.a. t ∈ R+

0

by mass conservation (2.4). Then the claim follows from estimate (2.6). ¤
Lemma 4.3. Let R ≡ [t1, t2) × R, and let u be an admissible solution of (2.1).
Then we have, as ε|t2 − t1| tends to zero, for all r ∈ [1, 7]

ε

∫∫

R

ur dx dt + ε

∫∫

R

u
r−3
4 |u3

x| dx dt + ε

∫∫

R

u
r−1
2 u2

x dx dt = o(1) . (4.9)



10 FELIX OTTO AND MICHAEL WESTDICKENBERG

Proof. For r ∈ [1, 7) our claim follows from Lemma 4.1, in combination with mass
conservation (2.4) and entropy estimate (2.6). We have, e.g.,

ε

∫∫

R

ur dx dt . ε

∫ t2

t1

(∫

R
u dx

)r+1
2

(∫

R
uu2

xx dx

)r−1
6

dt

.
(
ε|t2 − t1|

) 7−r
6

(
ε

∫∫

R+
0 ×R

uu2
xx dx dt

)r−1
6

.

We used Hölder inequality for the integration in time. The estimates for the other
quantities ε

∫∫
R

u
r−3
4 |u3

x| dx dt and ε
∫∫

R
u

r−1
2 u2

x dx dt can be handled in a similar
way. For the extreme case r = 7 we modify (4.7) according to∫

R
v7 dx ≤ (

sup v
)7−p

∫

R
vp dx

.
(∫

R
v dx

)7−p
3

(∫

R
v|v3

x| dx

)7−p
6

∫

R
vp dx . (4.10)

Using (4.4) in (4.10) and arranging terms then yield
∫

R
v7 dx .

(∫

R
v dx

)56−8p
17+p

(∫

R
vp dx

) 24
17+p

(∫

R
vv2

xx dx

)21−3p
17+p

.

Note that 21−3p
17+p

< 1 since p = 3− n > 1. We then obtain

ε

∫∫

R

u7 dx dt

. ε

∫ t2

t1

(∫

R
u dx

)56−8p
17+p

(∫

R
up dx

) 24
17+p

(∫

R
uu2

xx dx

)21−3p
17+p

dt

.
(
ε|t2 − t1|

) 4p−4
17+p

(
ε

∫∫

R+
0 ×R

uu2
xx dx dt

)21−3p
17+p

,

using mass conservation (2.4) and entropy inequality (2.6). The estimates for
ε
∫∫

R
u|u3

x| dx dt and ε
∫∫

R
u3u2

x dx dt follow in an analogous way. ¤
4.2. Integrability. Here we prove uniform higher integrability.

Proposition 4.4. Let u be an admissible solution of (2.1). Then there exists a
constant C which does not depend on ε, such that∫∫

R+
0 ×R

u3 dx dt ≤ C . (4.11)

Proof. We derive this proposition from the div-curl identity (2.9). By Remark 2.2,
we can assume that h is normalized such that −1 ≤ h ≤ 0. Note that

−η(u)f(u) + uq(u) = cnu
3 with cn ≡ −1

p
+ n

2
> 0 (4.12)
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which is the quantity we want to control. Then (4.11) follows from the entropy
inequality (2.6) and from Lemma 4.2. ¤

4.3. Compactness. From Proposition 4.4 we know that the sequence {uν}ν is
uniformly bounded in L3(R+

0 × R). Here we will prove that a subsequence con-
verges to a measure-valued solution of ût + f(û)x = 0, and prepare the proof of
strong convergence.

Lemma 4.5. For each ν let hν ∈ L∞(R+
0 × R) be defined by (2.7a)–(2.7b) with

u replaced by uν, normalized such that −1 ≤ hν ≤ 0. Then the sequence {hν}ν is
equicontinuous on R+

0 × R.

Proof. For ease of notation, we do not write the subscript ν in the following.
From entropy inequality (2.6) we have integrability of up(t, ·) with p = 3− n > 1
for a.a. t ∈ R+

0 , uniformly in ε. Therefore

∣∣h(t, y2)− h(t, y1)
∣∣ ≤

∫ y2

y1

|hx(t)| dx . |y2 − y1|1/p′ (4.13)

for any y1, y2 ∈ R, which gives continuity in space. To prove continuity in time
we fix a ϕ ∈ D(R) with ϕ ≥ 0 and

∫
R ϕdx = 1. Then we put

ϕδ(x) ≡ 1
δ
ϕ(x

δ
) for x ∈ R and δ > 0 .

The constant δ will be optimized later. We use (4.13) to estimate
∣∣∣∣
(∫

R
ϕδ(x− y)h(t, x) dx

)
− h(t, y)

∣∣∣∣

.
∫

R
ϕδ(x− y)|x− y|1/p′ dx . δ1/p′

for (t, y) ∈ R+
0 × R. Then we find

∣∣h(t2, y)− h(t1, y)
∣∣

. δ1/p′ +

∣∣∣∣
∫

R
ϕδ(x− y)

[
h(t2, x)− h(t1, x)

]
dx

∣∣∣∣

= δ1/p′ +

∣∣∣∣
∫ t2

t1

∫

R
ϕδ(x− y)ht(t, x) dx dt

∣∣∣∣

for t1, t2 ∈ R+
0 and y ∈ R. Although ht is defined only in distributional sense by

(2.7b), all terms can be controlled. We have, e.g.,
∣∣∣∣
∫ t2

t1

∫

R
ϕδ(x− y) un(t, x) dx dt

∣∣∣∣

.
(∫ t2

t1

∫

R

∣∣ϕδ(x− y)
∣∣ 3

3−n dx dt

)3−n
3

. |t2 − t1| 3−n
3 δ−1+ 3−n

3 ,



12 FELIX OTTO AND MICHAEL WESTDICKENBERG

uniformly in ε. We used Hölder inequality and Proposition 4.4. Similarly, we can
estimate the terms in curly brackets in (2.7b) uniformly in ε, using Lemma 4.3.
Note that for each x–derivative an extra factor δ−1 appears after integration by
parts. However, choosing first δ, then |t2 − t1| small enough, we conclude that h
is continuous in time, with a modulus of continuity which is uniform in ε. ¤

Consider now a sequence {Km}m of compact sets Km ↑ (R+
0 × R). On each

Km the Arzelà-Ascoli Theorem asserts the existence of a subsequence of {hν}ν

converging uniformly to a continuous function. Then we obtain, by a diagonal
argument, a function ĥ ∈ C(R+

0 × R) with

hν −→ ĥ uniformly on compact sets . (4.14)

Moreover, if −1 ≤ hν ≤ 0 for all ν, then also −1 ≤ ĥ ≤ 0.
Now we use Proposition 3.1 with Ω ≡ (0, T ) × O, with T > 0, O ⊂ R open,

and ρ ≡ 3. Then we have the following convergence

−η(uν)f(uν) + uνq(uν)
∗−⇀

〈
uq(u)− η(u)f(u)

〉
+ cnσcon (4.15)

in M(Ω̄), see (4.12). On the other hand, we have

uν −⇀ 〈u〉
η(uν) −⇀

〈
η(u)

〉

f(uν) −⇀
〈
f(u)

〉

q(uν) −⇀
〈
q(u)

〉





weakly in L1(Ω) (4.16)

since these functions have growth strictly less than cubic at infinity. It is then
straightforward to check that the terms in curly brackets in both (2.3) and (2.5)
vanish in distributional sense because of Lemma 4.3. Note that the most singular
term to estimate is un−2u3

x, where n−2 < 0. This can be controlled by (4.9) only
if n ≥ 3

2
. Extracting another subsequence if necessary, we may also assume that

µεν −⇀ µ̂ in M(Ω̄) , (4.17)

for some nonnegative measure µ̂. Then it is easily seen that

〈u〉t +
〈
f(u)

〉
x

= 0
〈
η(u)

〉
t
+

〈
q(u)

〉
x

= −µ̂

}
in D′(Ω) . (4.18)

Moreover, (4.14) implies that ĥ satisfies

ĥt = −〈
f(u)

〉
and ĥx = 〈u〉 . (4.19)

Choosing now a sequence {Ωm}m with Ωm ↑ (R+
0 × R) proves the claim.
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4.4. Strong convergence. Let Ω ≡ (0, T )×R with T > 0. To prove convergence
of {uν}ν in L3(Ω) we use

u = uν , h = hν and ε = εν

in the div-curl identity (2.8) and pass to the limit ν → ∞. We conclude from
(4.14)–(4.17) that the following new integral identity holds∫∫

Ω

〈
uq(u)− η(u)f(u)

〉
ξ dx dt + cn

∫∫

Ω

ξ σcon(dx, dt)

= −
∫∫

Ω

µ̂ĥ ξ dx dt−
∫∫

Ω

{〈
η(u)

〉
ξt +

〈
q(u)

〉
ξx

}
ĥ dx dt ,

for any ξ ∈ D(Ω). In fact, the terms in curly brackets in (2.8) disappear because
of Lemma 4.3. Integration by parts and (4.18)–(4.19) then give∫∫

Ω

{〈
uq(u)− η(u)f(u)

〉− 〈u〉〈q(u)
〉

+
〈
η(u)

〉〈
f(u)

〉}
ξ dx dt

+ cn

∫∫

Ω

ξ σcon(dx, dt) = 0 .

Let ξ be nonnegative. Then Lemma 3.2 (i) implies that the first integral is non-
negative. Hence both terms on the left-hand side must be zero. From Lemma 3.2
(ii) we conclude that

(1) there is no concentration, i.e., σcon = 0 ;
(2) for a.a. (t, x) ∈ Ω, the Young measure is concentrated at one point, and

so convergence of {uν}ν is strong in L3(Ω) .

We define the measurable function û ≡ 〈u〉. Then〈
η(u)

〉
= η(û),

〈
f(u)

〉
= f(û) and

〈
q(u)

〉
= q(û) .

Since ξ and Ω were arbitrary, this gives strong convergence of a subsequence of
{uν}ν in L3

loc(R
+
0 × R) to a weak solution of ût + f(û)x = 0.

5. Proof of Theorem 2.1: Uniqueness

The proof consist of two steps.

• In Section 5.1 we prove that û satisfies entropy condition (2.10).
• In Section 5.2 we show that the initial data is assumed in Lp(R).

Then the uniqueness of û follows from Kružkov theory, see [7].

5.1. Entropy condition. The proof is a variant of the argument given in [3].
We repeat the main ideas for the reader’s convenience and briefly comment on
the necessary adaptations. We use the theory of viscosity solutions of Hamilton-
Jacobi equations, see [2].

Definition 5.1. Let Ω ⊂ R2 be open, and f a flux. A function h ∈ C(Ω) is called
a viscosity solution of ht + f(h)x = 0 if for any point (t, x) ∈ Ω the following is
true: For any smooth function ζ,
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(i) if h− ζ has a local maximum at (t, x), then

ζt(t, x) + f
(
ζx(t, x)

) ≤ 0 ;

(ii) if h− ζ has a local minimum at (t, x), then

ζt(t, x) + f
(
ζx(t, x)

) ≥ 0 .

It is well-known that h is a viscosity solution of ht + f(hx) = 0 if and only if
u ≡ hx is an entropy solution of the conservation law ut +f(u)x = 0. This follows
from the fact that both solutions are obtained by the vanishing viscosity method.

Proposition 5.1. Let Ω ⊂ R2 be an open subset, and assume that u ∈ Lρ(Ω),
with exponent 1 ≤ ρ < ∞, satisfies

ut + f(u)x = 0

η(u)t + q(u)x ≤ 0

}
in D′(Ω) , (5.1)

for a strictly convex flux f and one strictly convex entropy-entropy flux pair (η, q).
Assume that uq(u)− η(u)f(u) ≥ C(1+ |u|ρ) for large u, and that f, η and q have
growth strictly less than uρ at infinity. If now h ∈ C(Ω) is defined by

ht = −f(u) and hx = u , (5.2)

then h is a viscosity solution of ht + f(hx) = 0.

Remark 5.1. Condition (2.10) for û is a corollary of Proposition 5.1.

Proof. Let ζ be a smooth function, and (t, x) ∈ Ω. Statement (i) of Definition 5.1
above then follows from Jensen inequality and a stability result for viscosity
(sub)solutions. We refer to [3]. So we only consider the case when h − ζ has a
local minimum at (t, x), and we will show that statement (ii) then holds even
with equality. Without loss of generality we may assume that (t, x) = (0, 0) and(
h− ζ

)
(0, 0) = 0, and that the minimum is strict. For any α > 0 we consider

Ωα ≡ connected component of
{
h− ζ < α

}
containing (0, 0) .

Since h is continuous and (0, 0) is a strict minimum, Ωα is an open set and
diam(Ωα) → 0 as α → 0. For any g ∈ Cρ(R+

0 ) we now define

〈
g(u)

〉
α
≡ 1

|Ωα|
∫∫

Ωα

g
(
u(t, x)

)
dt dx .

Note that
〈
g(u)

〉
α

is well-defined for positive α since u ∈ Lρ(Ω). As in [3] we can
then prove that by choice of ζ and because of (5.2)

−〈
f(u)

〉
α

=
〈
ζt

〉
α

and
〈
u
〉
α

=
〈
ζx

〉
α
, (5.3)

and that (5.1) in combination with Lemma 3.2 (i) gives

lim
α→0

∣∣∣
〈
uq(u)− η(u)f(u)

〉
α
− 〈

u
〉
α

〈
q(u)

〉
α

+
〈
η(u)

〉
α

〈
f(u)

〉
α

∣∣∣ = 0 . (5.4)
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We now define a family of measures µ̂α ∈ Prob(γR+
0 ) by

∫

γR+
0

g0(s) µ̂α(ds) ≡
〈
g(u)

〉
α〈

1 + |u|ρ〉
α

(5.5)

for g0 ∈ C(γR+
0 ) and g(s) ≡ (1 + |s|ρ)g0(s) if s ∈ R+

0 . Testing with the constant
function g ≡ 1 we conclude that

〈
1 + |u|ρ〉

α
can blow up as α → 0 if and only if

{µ̂α}α concentrates all mass at ∞. But this is impossible: Since ζ is smooth
〈
ζt

〉
α
−→ ζt(0, 0) and

〈
ζx

〉
α
−→ ζx(0, 0) (5.6)

as α → 0, and so (5.3) implies that
〈
f(u)

〉
α

and
〈
u
〉
α

stay bounded. By assump-
tion, η and q have growth strictly less than uρ, and then (5.5) yields

−〈
u
〉
α

〈
q(u)

〉
α

+
〈
η(u)

〉
α

〈
f(u)

〉
α

= o(1)
〈
1 + |u|ρ〉

α

as α → 0. Moreover, we have
〈
uq(u)− η(u)f(u)

〉
α
≥ C

〈
1 + |u|ρ〉

α
.

Therefore, blow-up of
〈
1 + |u|ρ〉

α
would contradict (5.4).

Consider any subsequence of {µ̂α}α converging weak* in M(γR+
0 ) to a limit

measure µ̂ ∈ Prob(γR+
0 ). Such a subsequence always exists by Banach-Alaoglu

Theorem. Let σ ≡ limα→0

〈
1 + |u|ρ〉

α
. Then

σ =

( ∫

γR+
0

µ̂(ds)

1 + |s|ρ
)−1

=

( ∫

R+
0

µ̂(ds)

1 + |s|ρ
)−1

,

as a consequence of (5.5). We obtain the representation formula

lim
α→0

〈
g(u)

〉
α

=

∫

R+
0

g(s) µ(ds) + g∗σcon for all g ∈ Cρ(R+
0 ) ,

with σcon ≡ µ̂
({∞}) σ and with probability measure

µ(ds) ≡
( ∫

R+
0

µ̂(ds)

1 + |s|ρ
)−1 µ̂|R+

0
(ds)

1 + |s|ρ .

Using this in (5.4), we conclude as in Section 4.4 above that

(1) σcon = 0 ;
(2) the measure µ is concentrated at one point.

Let 〈g〉 ≡ ∫
R+

0
g(s) µ(ds) for g ∈ Cρ(R+

0 ). Then (5.3), (5.6) yield

ζt(0, 0) = −〈
f(u)

〉
= −f

(〈u〉) = −f
(
ζx(0, 0)

)
. (5.7)

Note that µ is, in fact, uniquely determined by this relation, and so the whole
sequence {µ̂α}α must converge. From (5.7) we conclude that h is a viscosity
solution of ht + f(hx) = 0. The proof is complete. ¤
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5.2. Initial data. We start from the entropy estimate (2.6)
∫

R
up

ν(t) dx ≤
∫

R
ūp dx for a.a. t ∈ R+

0 ,

which is true for any admissible solution uν of (2.1). Then lower semicontinuity
implies that a similar estimate holds for the limit û, and

lim sup
t→0

∥∥û(t)
∥∥

Lp(R)
≤ ‖ū‖Lp(R) . (5.8)

On the other hand, for any admissible solution uν of (2.1) we have

∫∫

R+
0 ×R

{
uν ϕtξ + f(uν) ϕξx

}
dx dt +

∫

R
ū ϕ(0)ξ dx

+ ε

∫∫

R+
0 ×R

{
− 1

n+1
un+1

ν ξxxxx + 3n
2

un−1
ν (uν)

2
x ξxx

+ n(n−1)
2

un−2
ν (uν)

3
x ξx

}
ϕdx dt = 0

for all ϕ ∈ D(R+
0 ) and ξ ∈ D(R). Passing to the limit ν →∞ gives

∫∫

R+
0 ×R

{
û ϕtξ + f(û) ϕξx

}
dx dt +

∫

R
ū ϕ(0)ξ dx = 0 ,

using Proposition 4.4 and Lemma 4.3. Fix some T > 0 and consider a sequence
{ϕm}m with ϕm ↑ 1[0,T ) a.e. For almost every choice of T

lim
m→∞

∫

R+
0 ×R

û (ϕm)tξ dx dt = −
∫

R
û(T ) ξ dx .

Therefore there exists a null set E ⊂ R+
0 such that for all T ∈ R+

0 \E
∫

R

(
û(T )− ū

)
ξ dx =

∫ T

0

∫

R
f(û) ξx dt for all ξ ∈ D(R) .

Since f has growth strictly less than cubic and û ∈ L3(R+
0 × R), this identity

implies that ess limt→0 û(t) = ū in distributional sense. Then the uniform bound
(5.8) allows to improve convergence to

lim
k→∞

û(tk) = ū weakly in Lp(R) ,

for any sequence tk → 0 with tk ∈ R+
0 \E. Lower semicontinuity gives

‖ū‖Lp(R) ≤ lim inf
k→∞

∥∥û(tk)
∥∥

Lp(R)
,

which together with (5.8) implies convergence of the norms. Then (2.11) follow
from standard functional analysis arguments.
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[7] S. Kružkov, First-order quasilinear equations in several space variables, Mat. Sbornik 123
(1970) 228–255. English transl.: Mat. USSR Sbornik 10 (1970) 217–273.
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