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Figure 1: Numerical version of a gradient flow for intM(2.63,2)

1. Generalized Integral Menger Curvature
[Blatt, Reiter 2015]

The generalized integral Menger curvature
intM(p,q)(γ) is defined as∫∫∫

(R/Z)3

|γ′(u1)| |γ′(u2)| |γ′(u3)|
R(p,q) (γ(u1), γ(u2), γ(u3))

du1 du2 du3

where

R(p,q)(x, y, z) :=
(|z − x| |y − x| |z − y|)p

|(z − x) ∧ (y − x)|q
.
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Figure 2: R(1,1) is sim-
ply the diameter of the
unique circle through
x, y and z.

We have that intM(p,p) = 2pMp, the integral Menger
curvature.
For injective curves γ ∈ C1(R/Z,Rn) parametrized
by arc-length,

intM(p,q)(γ) <∞ ⇔ γ ∈ W
3p−2
q −1,q(R/Z,Rn)

with q > 1, p ∈
(
2
3q+1, q+ 2

3

)
. We work in the Hilbert

space setting q = 2, requiring p ∈
(
7
3,

8
3

)
.

2. Existence Times for the Gradient Flow

We want existence of the gradient flow, i.e. a solu-
tion to

d

dt
γ(·, t) = −∇ intM(p,2)(γ(·, t))

γ(·, 0) = γ0 ∈ W
3
2p−2,2
ir (R/Z,R3),

the index ir meaning injective curves which are
regular, i.e. |γ′0(·)| ≥ c > 0. The right hand side is
locally Lipschitz continuous and we have bounds
for both it and the radius of the balls where Lips-
chitz continuity holds. With these bounds, we ob-
tain a minimal existence time which depends non-
increasingly on

1

BiLip(γ0)
:= sup

x,y∈R/Z

|x− y|R/Z
|γ0(x)− γ0(y)|

and the Gagliardo-semi-norm

[γ′0] := [γ′0]W
3
2p−2,2(R/Z,R3)

.

3. Controlling Bi-Lipschitz Constant and
Semi-norm via intM(p,q)

For curves parametrized by arc-length, Blatt and
Reiter give estimates for both quantities. We have,
for non-decreasing λ, µ : [0,∞)→ [0,∞), that

1

BiLip(γ)
≤ µ(intM(p,2)(γ))

and
[γ′] ≤ λ(intM(p,2)(γ)).

We can extend these estimates to curves that have
a fixed parametrization. Thus, if we have a flow
that preserves parametrization, we can find a uni-
form lower bound for the existence time of each
new flow starting at the end of the last one. This
would mean that we have long time existence.

4. Preserving Constraints via Projected
Gradients [Neuberger 1997]

Consider Hilbert spaces H1, H2, an open set U ⊆
H1 and two Fréchet differentiable maps E : U →
R, the energy, and S : U → H2, the constraint.
Let PN (A) denote the orthogonal projection onto
the null-space of an operator A. Assuming a clas-
sical solution to

d

dt
u(t) = −∇SE(u(t))

:= −PN (DS(u(t)))∇E(u(t))

exists on [0, T ], we have

S(u(t)) = S(u(0))

for all t ∈ [0, T ].

5. Local Lipschitz Continuity of the
Projected Gradient

If the constraint is C1,1
loc with pointwise surjective dif-

ferential, the right hand side is locally Lipschitz and
the flow starting at x0 ∈ U exists at least up to time

T (M(x0), ‖DS(x0)‖, ‖Rx0‖, LDS(x0), r∇E(x0)),

where Rx0 is a right-inverse to DS(x0), LDS is the
Lipschitz constant of DS and M(x0) and r∇E(x0)
are an upper bound and a Lipschitz radius for ∇E.
T is non-decreasing in its last argument and non-
increasing in all the others.

6. A Constraint that Preserves the
Parametrization [Scholtes, Schumacher,

Wardetzky 2019]

We define S as the logarithmic strain:

S : W
3
2p−2,2
ir (R/Z,R3)→ W

3
2p−3,2(R/Z,R),

γ 7→ ln(|γ′(·)|)

S is Fréchet differentiable and DS is locally Lips-
chitz continuous.
Also, DS(γ) is surjective with right inverse Rγ and

‖DS(γ)‖ , ‖Rγ‖ , LDS(γ) ≤ C

(
[γ′] ,

1

BiLip(γ)

)
,

where C is non-decreasing in its components.

7. Minimal Existence Time for the Projected
Gradient Flow

There is a unique classical solution to
d

dt
γ(·, t) = −∇S intM(p,2)(γ(·, t))

γ(·, 0) = γ0 ∈ W
3
2p−2,2
ir (R/Z,R3)

(∗)

up to time

T = T

(
[γ′0] ,

1

BiLip(γ0)

)
> 0.

T is non-increasing in its components. With the
estimates by Blatt and Reiter, we may instead use
the lower bound

T = T (intM(p,2)(γ0))

which is non-increasing.

8. Continuing the Flow

Since
d

dt
intM(p,2)(γ(·, t)) ≤ 0,

we can restart the flow at time T0 :=
T (intM(p,2)(γ0)). This yields a new existence time
T (intM(p,2)(γ(·, T0))) which is at least as long as
T0 itself. Iterating this argument yields long time
existence.

9. Main Theorem: Long Time Existence

There is a unique classical solution to (∗) which
exists for all positive times. We have that

(t 7→ γ(·, t)) ∈ C1,1
(
[0,∞),W

3
2p−2,2(R/Z,R3)

)
and, for all t ≥ 0,∣∣∣∣ ddxγ(x, t)

∣∣∣∣ = ∣∣∣∣ ddxγ0(x)
∣∣∣∣ .
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