Veröffentlichungen
Erschienene Arbeiten
Minimal acceleration for the multi-dimensional isentropic Euler equations
Arch. Ration. Mech. Anal. 247 (2023) Paper 35
doi:10.1007/s00205-023-01864-x
arXiv:2005.03570 [math.AP]
Learning deep linear neural networks: Riemannian gradient flows and convergence to global minimizers
Information and Inference: A Journal of the IMA 11 (2022) 307-353
doi:10.1093/imaiai/iaaa039
arXiv:1910.05505 [math.OC]
Flow solutions of transport equations
Comm. Partial Differential Equations 46 (2021) 98-134
doi:10.1080/03605302.2020.1831018
arXiv:1912.06815 [math.AP]
New coupling conditions for isentropic flow on networks
Networks and Heterogeneous Media 15 (2020) 605-631
doi:10.3934/nhm.2020016
arXiv:2004.09184 [math.AP]
A variational time discretization for the compressible Euler equations
Trans. Amer. Math. Soc. 371 (2019) 5083-5155
doi:10.1090/tran/7747
arXiv:1411.1012 [math.AP]
One-dimensional granular system with memory effects
SIAM J. Math. Anal. 50 (2018) 5921-5946
doi:10.1137/17M1121421
arXiv:1703.05829 [math.AP]
A monotone hull operation for maps
J. Convex Anal. 24 (2017) 1295-1306
Euler-Lagrange equation for a minimization problem over monotone transport maps
Quart. Appl. Math. 75 (2017) 267-285
A Simple Proof of Global Existence for the 1D Pressureless Gas Dynamics Equations
SIAM J. Math. Anal. 47 (2015) 66-79
doi:10.1137/130945296
arXiv:1311.3108 [math.AP]
The polar cone of the set of monotone maps
Proc. Amer. Math. Soc. 143 (2015) 781-787
doi:10.1090/S0002-9939-2014-12332-X
arXiv:1305.2692 [math.AP]
Sticky particle dynamics with interactions
J. Math. Pures Appl. 99 (2013) 577-617
doi:10.1016/j.matpur.2012.09.013
arXiv:1201.2350 [math.AP]
Projections onto the cone of optimal transport maps and compressible fluid dynamics
J. Hyperbolic Differ. Equ. 7 (2010) 605-649
Variational particle schemes for the porous medium equation and for the system of isentropic Euler equations
M2AN Math. Model. Numer. Anal. 44 (2010) 133-166
doi:10.1051/m2an/2009043
arXiv:0807.3573 [math.NA]
Optimal Transport for the system of isentropic Euler equations
Comm. PDE 34 (2009) 1041-1073
Finite energy solutions to the isentropic Euler equations with geometric effects
J. Math. Pures et Appl. 88 (2007) 389-429
doi:10.1016/j.matpur.2007.07.004
arXiv:0812.2688 [math.AP]
Eulerian calculus for the contraction in the Wasserstein distance
SIAM J. Math. Anal. 37 (2005) 1227-1255
Total oscillation diminishing property for scalar conservation laws
Numer. Math. 100 (2005) 331-349
Convergence of thin film approximation for a scalar conservation law
J. Hyperbolic Differ. Equ. 2 (2005) 183-199
Gravity driven shallow water models for arbitrary topography
Comm. Math. Sci. 2 (2004) 359-389
Minimal entropy conditions for Burgers equation
Quart. Appl. Math. 62 (2004) 687-700
Structure of entropy solutions for multi-dimensional scalar conservation laws
Arch. Ration. Mech. Anal. 170 (2003) 137-184
On the optimality of velocity averaging lemmas
Ann. Inst. H. Poincaré Anal. Non Linéaire 20 (2003) 1075-1085
doi:10.1016/S0294-1449(03)00024-6
Some new velocity averaging results
SIAM J. Math. Anal. 33 (2002) 1007-1032
A new convergence proof for finite volume schemes using the kinetic formulation of conservation laws
SIAM J. Numer. Anal. 37 (2000) 742-757
Lecture Notes und Übersichtsartikel
Finite energy solutions to the isentropic Euler equations
Intensive Trimester ''Nonlinear Hyperbolic PDEs, Dispersive and Transport Equations: Analysis and Control'', SISSA Trieste (Italy), May 16-July 22, 2011
Regularizing effect of nonlinearity in multidimensional scalar conservation laws
Proceedings of the ''Lectures on Transport Equations and Multi-D Hyperbolic Conservation Laws'', Bologna (Italy), January 17-20, 2005
doi:10.1007/978-3-540-76781-7_3
Convergence of Approximate Solutions of Conservation Laws
In ''Geometric Analysis and Nonlinear Partial Differential Equations'', Springer Berlin, 2003
